

DFS PORTION of FCC 47 CFR PART 15 SUBPART E DFS PORTION of INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11n 2x2 ACCESS POINT

MODEL NUMBER: MR18-HW

FCC ID: UDX-60026010 IC: 6961A-60026010

REPORT NUMBER: 13U16380-1

ISSUE DATE: DECEMBER 17, 2013

Prepared for CISCO SYSTEMS INC. 170 WEST TASMAN DRIVE SAN JOSE CA., 95134, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	12/17/13	Initial Issue	T. Lee

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 2 of 68

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
4	4.1. MEASURING INSTRUMENT CALIBRATION	5
4	4.2. SAMPLE CALCULATION	5
	4.3. MEASUREMENT UNCERTAINTY	5
5.	DYNAMIC FREQUENCY SELECTION	6
ł	5.1. OVERVIEW 5.1.1. LIMITS 5.1.2. TEST AND MEASUREMENT SYSTEM 5.1.3. SETUP OF EUT 1 5.1.4. DESCRIPTION OF EUT	6 9 12
ł	5.2. RESULTS FOR 20 MHz BANDWIDTH 1 5.2.1. TEST CHANNEL 1 5.2.2. RADAR WAVEFORMS AND TRAFFIC 1 5.2.3. CHANNEL AVAILABILITY CHECK TIME 2 5.2.4. OVERLAPPING CHANNEL TESTS 2 5.2.5. MOVE AND CLOSING TIME 2 5.2.6. DETECTION BANDWIDTH 3 5.2.7. IN-SERVICE MONITORING 3	14 14 21 26 26 31
2	5.3. RESULTS FOR 40 MHz BANDWIDTH 4 5.3.1. TEST CHANNEL 4 5.3.2. RADAR WAVEFORMS AND TRAFFIC 4 5.3.3. CHANNEL AVAILABILITY CHECK TIME 4 OVERLAPPING CHANNEL TESTS 5 5.3.4. MOVE AND CLOSING TIME 5 5.3.5. NON-OCCUPANCY PERIOD 5 5.3.6. DETECTION BANDWIDTH 5 5.3.7. IN-SERVICE MONITORING 6	40 40 47 52 52 57 58
6.	SETUP PHOTOS6	57

Page 3 of 68

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	CISCO SYSTEMS INC. 170 WEST TASMAN DRIVE SAN JOSE, CA., 94134, U.S.A.	
EUT DESCRIPTION:	802.11n 2x2 ACCESS POINT	
MODEL:	MR18	
SERIAL NUMBER:	Q2GD-27VN-FYYE	
DATE TESTED:	NOVEMBER 08 to 21, 2013	
	APPLICABLE STANDARDS	
S	STANDARD	TEST RESULTS
DFS Portion of	CFR 47 Part 15 Subpart E	Pass
INDUSTRY CA	NADA RSS-GEN Issue 8	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tri M

TIM LEE WISE PROGRAM MANAGER UL Verification Services Inc.

Tested By:

Douçlas Combuser

DOUG ANDERSON WISE EMC ENGINEER UL Verification Services Inc.

Page 4 of 68

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009, RSS-GEN Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 68

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 6 of 68

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational	Operational Mode				
	Master	Client	Client			
		(without DFS)	(with DFS)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			

Table 3: Interference Threshold values, Master or Client incorporating In-ServiceMonitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm
Note 1: This is the level at the input of the receiver as Note 2: Throughout these test procedures an addition of the test transmission waveforms to account for var will ensure that the test signal is at or above the deter response.	nal 1 dB has been added to the amplitude iations in measurement equipment. This

Page 7 of 68

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

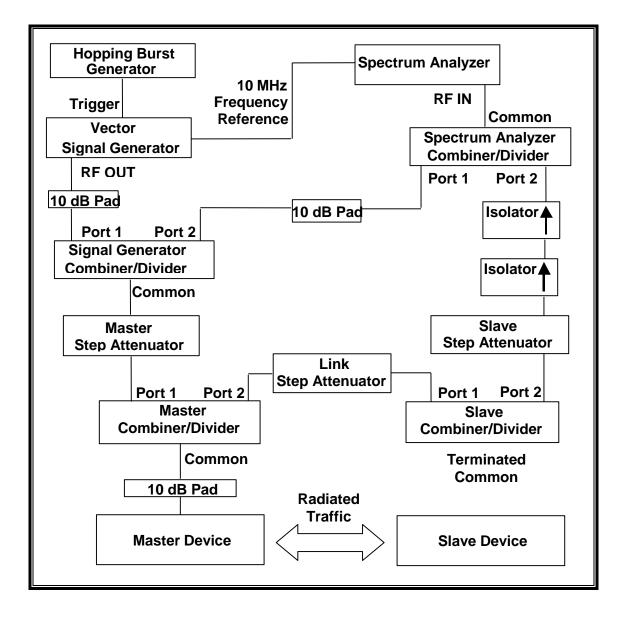
The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials
				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	Radar Types 1-4)			80%	120

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30


Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

Page 8 of 68

5.1.2. TEST AND MEASUREMENT SYSTEM

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

Page 9 of 68

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device. The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

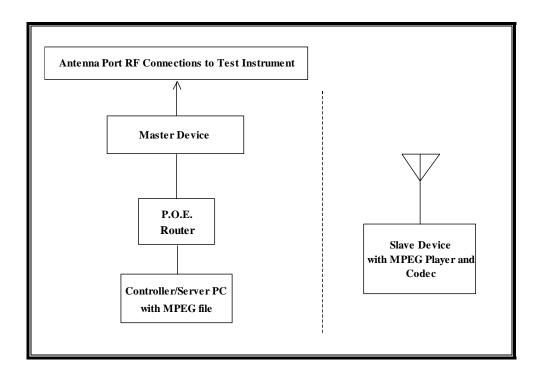
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 10 of 68

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the Link Step Attenuator between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The WLAN traffic level, as displayed on the spectrum analyzer, is confirmed to be at lower amplitude than the radar detection threshold and is confirmed to be the Radar Detection Device rather than the associated device. If a different setting of the Master Step Attenuator is required to meet the above conditions, a new System Calibration is performed for the new Master Step Attenuator setting.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST								
Description Manufacturer Model Asset Number Cal Due								
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/10/14				
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	09/12/14				
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	09/10/14				

Page 11 of 68

5.1.3. SETUP OF EUT

CONDUCTED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

	PERIPHERAL S	SUPPORT EQUIF	PMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
Notebook PC (Controller/Server)	Lenovo	Type 3249-2HU	R9-AWVWD 11/01	DoC
AC Adapter (Controller/Server PC)	Lenovo	42T4418	1142T4418Z1ZGW G18CJYH	DoC
Notebook PC (Slave Device)	Apple	MacBood Air A1465	C02KQ889F5N7	QDS-BRCM1072
AC Adapter (Slave Device)	Delta Electronics	ADP-45GDT U1000EA LPS	C04253205MWF50 CAA	DoC
P.O.E. Router	Trendnet	TPE-TG80g	JW1235G800574	DoC
AC Adapter (P.O.E.Router)	Li Tone Electronics	LTE120E-SE-1	122100406	DoC

Page 12 of 68

5.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding operation in the band 5600 to 5650 MHz.

The EUT is a Master Device.

The highest power level within these bands is 26.77 dBm EIRP in the 5250-5350 MHz band and 24.77 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 3 dBi.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 3 = -61 dBm.

The calibrated conducted DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to a 50-ohm coaxial antenna port. All antenna ports are connected to the test system via a power divider to perform conducted tests.

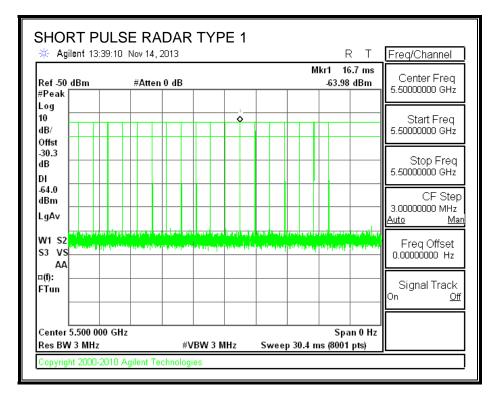
TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

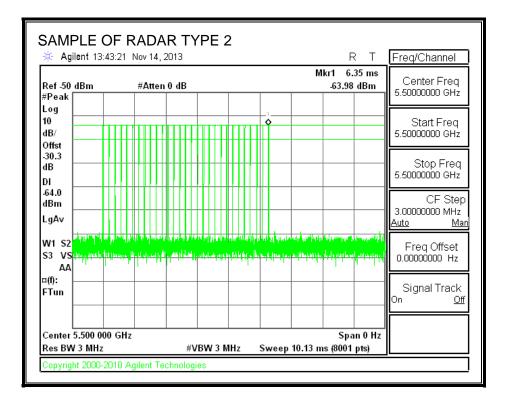
The software installed in the master device is revision R21.

UNIFORM CHANNEL SPREADING

See Manufacturer's Attestation.


5.2. RESULTS FOR 20 MHz BANDWIDTH

5.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz.

5.2.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

Page 14 of 68

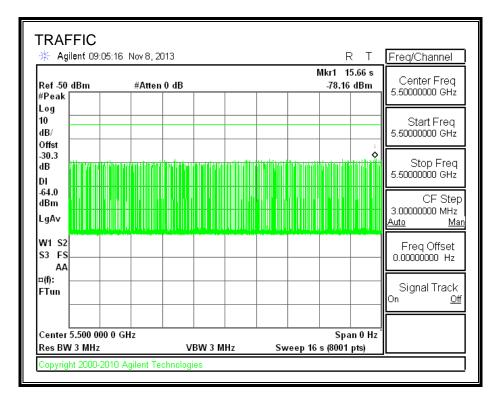
Page 15 of 68

🔆 Agile	ent 1	3:4	3:5	5	No	/ 14	1,2	201	3								RT	Freq/Channel
Ref₋50 d #Peak [IBm				#1	4tt	en	0 (ΙB			1			N		.805 ms)7 dBm	Center Freq 5.5000000 GHz
Log 10 dB/						\$												Start Freq 5.5000000 GHz
Offst -30.3 dB	_																	Stop Freq
DI -64.0 dBm																		CF Step 3.0000000 MHz
LgA∨ W1 S2	an u ball	1 7 1 1	a 11	-		r II.	111	141		4 7	an fill the fact	and the second		1944.P	alla da stat	an Alifestur		<u>Auto Mar</u>
S3 VS AA	etalla P	14,44	րիս	чИ	ini 	A U U	1.1	⁴⁸⁴ 1	1.4 ^b	rti)	n hullanla	e ku jihite e	a Urantı İ	li ka	na ing pagan	(LINADAAN)	er al per alla a	Freq Offset 0.00000000 Hz
¤(f): – FTun –																		Signal Track On <u>Off</u>
Center 5 Res BW) G	Hz							BW 3 I				45 47	Sj ms (800	oan 0 Hz 1. pto)	

Page 16 of 68

🔆 Agi		.40.2	0 1	404	14, .	201	5	 					R T	Freq/Channel
Ref -50 #Peak	dBm			#A	tten	0 0	iΒ					Mkr1 2.4 -63.97	oo4ms 7dBm	Center Freq 5.50000000 GHz
Log 10 dB/ Offst					1 >									Start Freq 5.5000000 GHz
-30.3 dB DI														Stop Freq 5.50000000 GHz
-64.0 dBm LgAv														CF Step 3.00000000 MHz <u>Auto Mar</u>
												7147991919191919 		
¤(f): FTun														Signal Track On <u>Off</u>
Center :	5.500 0 / 3 MHz		Hz				#	W 3 1	 MH-7	Swee	n 10 12	Sp ms (8001	an 0 Hz	

Page 17 of 68


🔆 Agile	ent 13:3	36:34	Nov 14,	2013					R		Freq/Channel
Ref-50 d #Peak [IBm		#Attei	n0dB				MI	kr1 1.0 -64.09	03 ms dBm	Center Freq 5.50000000 GHz
Log 10 dB/ Offst		¢									Start Freq 5.50000000 GHz
-30.3 dB											Stop Freq 5.5000000 GHz
-64.0 dBm LgAv											CF Step 3.00000000 MHz <u>Auto Mar</u>
				t Paristan 1 ₁₁ -14 distant							Freq Offset 0.00000000 Hz
¤(f): – FTun –											Signal Track On <u>Off</u>
Center 5 Res BW		0 GHz		#V	BW 3	MHz	Sw	/eep 8 m	•	n 0 Hz pts)	

Page 18 of 68

🔆 Agilent 13:38:3	34 Nov 14, 2013		R T	Freq/Channel
Ref -50 dBm #Peak	#Atten 0 dB		Mkr1 3.331 ms -63.99 dBm	Center Freq 5.5000000 GHz
Log 10 dB/			1 0	Start Freq 5.5000000 GHz
Offst -30.3 dB DI				Stop Freq 5.5000000 GHz
-64.0 dBm				CF Step 3.00000000 MHz <u>Auto Mar</u>
S3 VS AA		un in antige () in the article of the fi	n an ga anna garlana la ga an g	
¤(f): FTun				Signal Track On <u>Off</u>
Center 5.500 000 G Res BW 3 MHz		¢VBW 3 MHz	Span 0 Hz Sweep 5 ms (8001 pts)	

Page 19 of 68

TRAFFIC

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 20 of 68

5.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 21 of 68

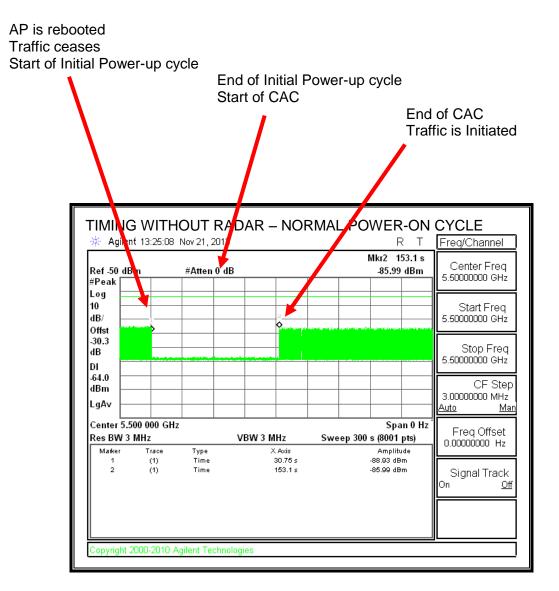
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.75	153.1	122.4	62.4

Radar Near Beginning of CAC

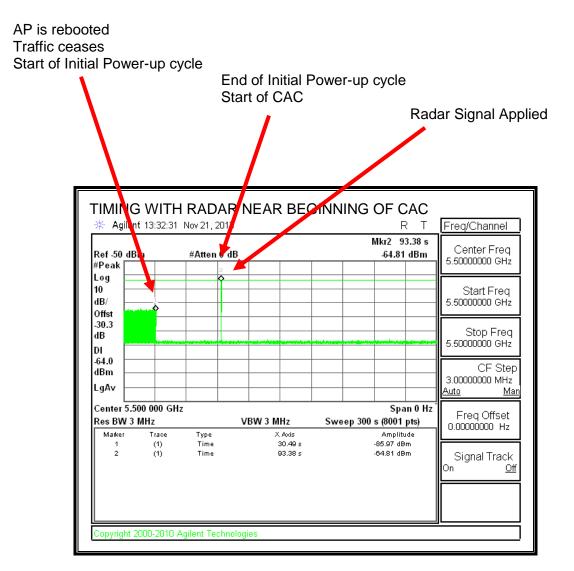
Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.49	93.38	62.9	0.5


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.45	151.3	120.9	58.5

QUALITATIVE RESULTS

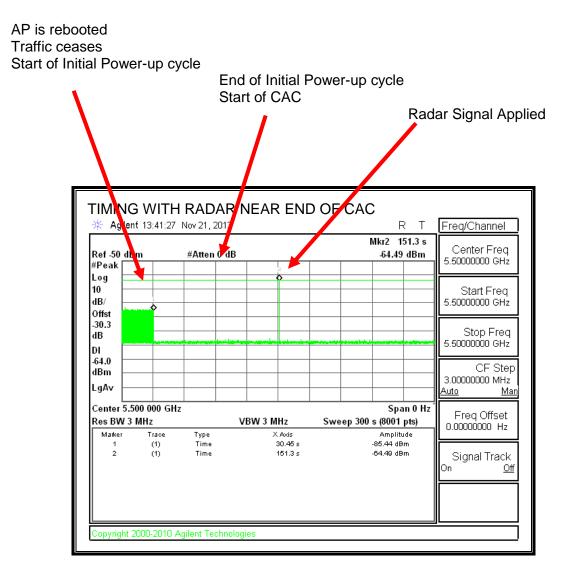
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		


TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 23 of 68

TIMING WITH RADAR NEAR BEGINNING OF CAC



No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 24 of 68

TIMING WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 25 of 68

5.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

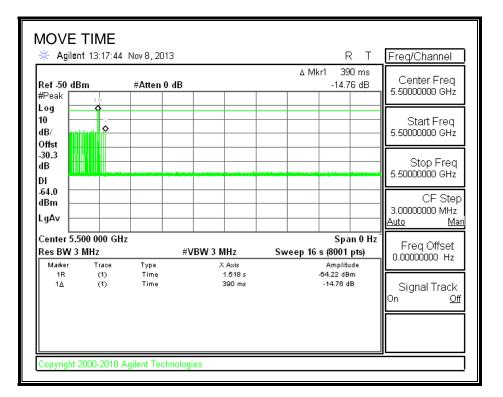
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

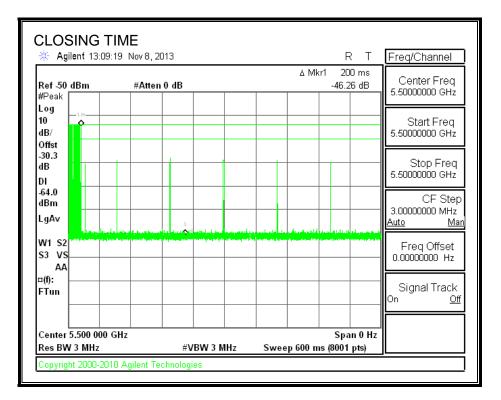
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 ms) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.390	10
Aggregate Channel Closing Transmission Time	Limit

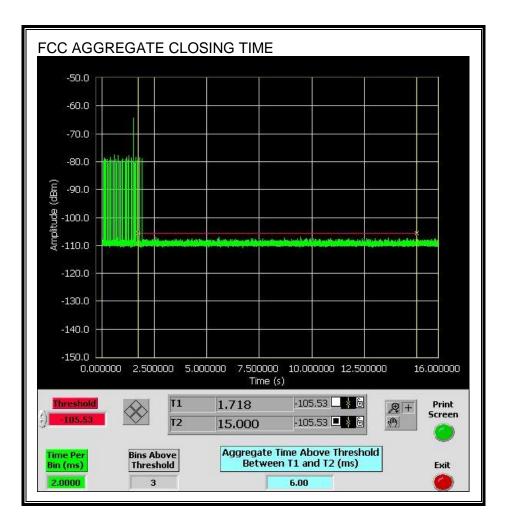
Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
6.0	60


Page 26 of 68

MOVE TIME

Page 27 of 68

CHANNEL CLOSING TIME

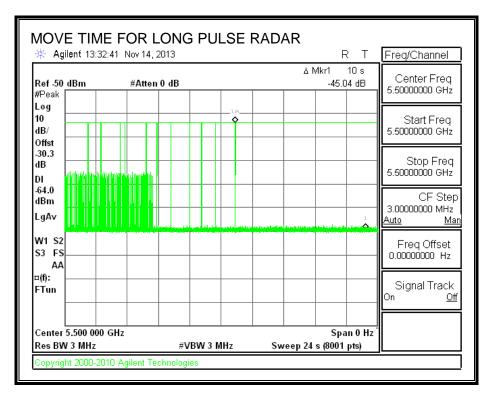


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 28 of 68

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

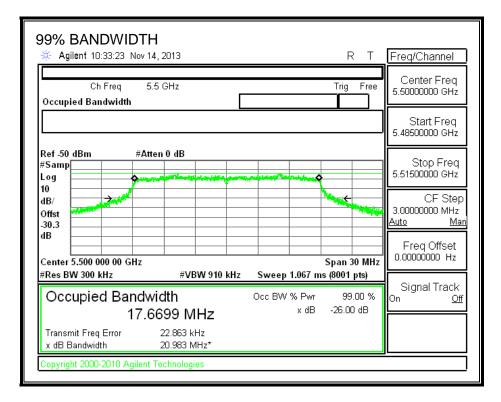


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 29 of 68

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 30 of 68

5.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5508	16	17.670	90.5	80

DETECTION BANDWIDTH PROBABILITY

DETECTIO	N BANDWIDTH	PROBABI	ILITY RESULTS		
	n Bandwidth Tes e 1 Waveform: 1		Vidth, 1428 us PRI, 14	8 Pulses per l	Burst
Freque (MH)	ency Numbe		Number Detected	Detection (%)	Mark
549	2	10	10	100	FL
549	3	10	10	100	
549		10	10	100	
549		10	10	100	
549		10	10	100	
549		10	10	100	
549		10	10	100	
549		10	10	100	
550		10	10	100	
550	-	10	10	100	
550		10	10	100	
550	-	10	10	100	
550	-	10	10	100	
550		10	10	100	
550		10	10	100	
550		10	10	100	
550	8	10	10	100	FH

Page 32 of 68

5.2.7. IN-SERVICE MONITORING

RESULTS

CC Radar Test Summ	lary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	96.67	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	96.67	60	Pass
Aggregate		98.33	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	34	100.00	70	Pass

Page 33 of 68

TYPE 1 DETECTION PROBABILITY

	128 us PRI, 18 Pulses per Burst
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 34 of 68

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	4.7	191.00	29	Yes
2002	1.3	189.00	26	Yes
2003	1.5	184.00	24	Yes
2004	1.3	181.00	24	Yes
2005	1.9	182.00	27	Yes
2006	1.5	157.00	25	Yes
2007	2.8	159.00	24	No
2008	3.1	164.00	26	Yes
2009	4	153.00	28	Yes
2010	4.5	186.00	27	Yes
2011	2	225.00	27	Yes
2012	3.3	224.00	25	Yes
2013	2.3	212.00	25	Yes
2014	2.8	210.00	28	Yes
2015	1	174.00	26	Yes
2016	2.3	198.00	26	Yes
2017	3.2	214.00	29	Yes
2018	4.4	195.00	23	Yes
2019	2.9	167.00	28	Yes
2020	1.9	158.00	27	Yes
2021	1	208.00	25	Yes
2022	2.9	154.00	27	Yes
2023	3.2	184.00	23	Yes
2024	1.9	221.00	23	Yes
2025	4.4	166.00	23	Yes
2026	3.2	188.00	26	Yes
2027	1.4	182.00	29	Yes
2028	4.3	176.00	23	Yes
2029	2.3	155.00	29	Yes

Page 35 of 68

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	10	351.00	16	Yes
3002	9.1	301.00	16	Yes
3003	5.6	321.00	17	Yes
3004	5.8	367.00	17	Yes
3005	8.4	483.00	16	Yes
3006	8.6	485.00	16	Yes
3007	7.2	276.00	17	Yes
3008	9.9	348.00	18	Yes
3009	8.5	333.00	18	Yes
3010	5.6	317.00	18	Yes
3011	10	446.00	17	Yes
3012	6.6	462.00	16	Yes
3013	9.4	420.00	18	Yes
3014	7.3	369.00	18	Yes
3015	9.6	309.00	17	Yes
3016	5.1	378.00	18	Yes
3017	5.1	356.00	18	Yes
3018	7.3	276.00	17	Yes
3019	7.8	408.00	17	Yes
3020	6.8	393.00	16	Yes
3021	9.3	416.00	17	Yes
3022	8.4	284.00	18	Yes
3023	6.4	424.00	18	Yes
3024	6.8	412.00	16	Yes
3025	8.4	392.00	18	Yes
3026	7.9	450.00	16	Yes
3027	5.4	316.00	16	Yes
3028	9.1	427.00	18	Yes
3029	6	379	16	Yes
3030	5.1	286	18	Yes

Page 36 of 68

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	12.6	311.00	12	Yes
4002	10.2	285.00	12	Yes
4003	19.9	290.00	16	Yes
4004	15.8	345.00	16	Yes
4005	19.3	361.00	12	Yes
4006	18.9	425.00	12	Yes
4007	14.9	357.00	15	Yes
4008	12.8	446.00	15	Yes
4009	17.7	365.00	16	Yes
4010	14	414.00	16	Yes
4011	14.2	300.00	16	Yes
4012	16.6	354.00	14	Yes
4013	14	399.00	14	Yes
4014	16.1	258.00	16	Yes
4015	13.3	329.00	16	Yes
4016	11.9	268.00	16	Yes
4017	19.6	308.00	14	Yes
4018	16.9	441.00	14	Yes
4019	17.1	432.00	15	Yes
4020	17.6	405.00	12	No
4021	14	410.00	15	Yes
4022	17.2	483.00	15	Yes
4023	11.6	379.00	12	Yes
4024	18.4	494.00	14	Yes
4025	11.7	475.00	15	Yes
4026	18.6	461.00	16	Yes
4027	13.7	272.00	14	Yes
4028	16.7	377.00	15	Yes
4029	14.5	429.00	15	Yes
4030	10.8	390.00	12	Yes

Page 37 of 68

TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

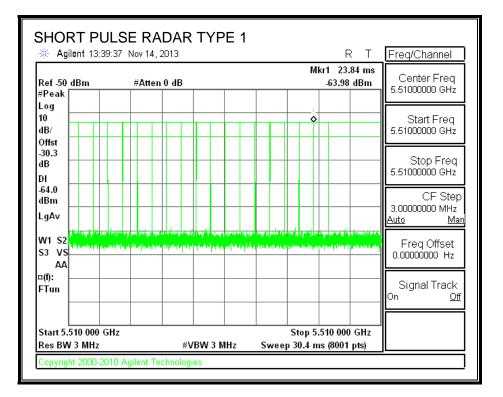
Note: The Type 5 randomized parameters are shown in a separate document.

Page 38 of 68

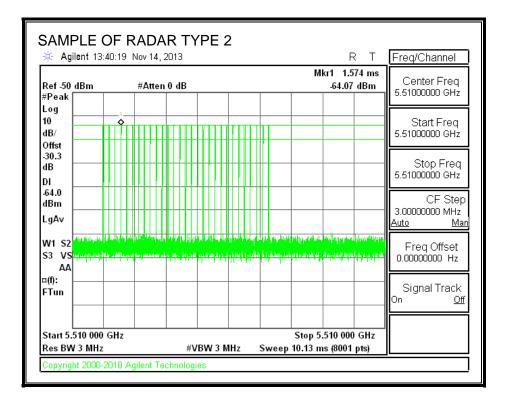
TYPE 6 DETECTION PROBABILITY

1 us Pulse	t for FCC Hopping Rada e Width, 333 us PRI, 9 ust 2005 Hopping Se	9 Pulses per Burst,	1 Burst per Hop)
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	272	5492	6	Yes
2	747	5493	3	Yes
3	1222	5494	3	Yes
4	1697	5495	5	Yes
5	2172	5496	1	Yes
6	2647	5497	5	Yes
7	3122	5498	4	Yes
8	3597	5499	4	Yes
9	4072	5500	2	Yes
10	4547	5501	4	Yes
11	5022	5502	3	Yes
12	5497	5503	4	Yes
13	5972	5504	2	Yes
14	6447	5505	5	Yes
15	6922	5506	4	Yes
16	7397	5507	2	Yes
17	7872	5508	2	Yes
18	8347	5492	1	Yes
19	8822	5493	2	Yes
20	9297	5494	3	Yes
21	9772	5495	3	Yes
22	10247	5496	4	Yes
23	10722	5497	5	Yes
24	11197	5498	2	Yes
25	11672	5499	3	Yes
26	12147	5500	3	Yes
27	12622	5501	2	Yes
28	13097	5502	4	Yes
29	13572	5503	3	Yes
30	14047	5504	5	Yes
31	14522	5505	5	Yes
32	14997	5506	2	Yes
33	15472	5507	3	Yes
34	15947	5508	7	Yes

Page 39 of 68

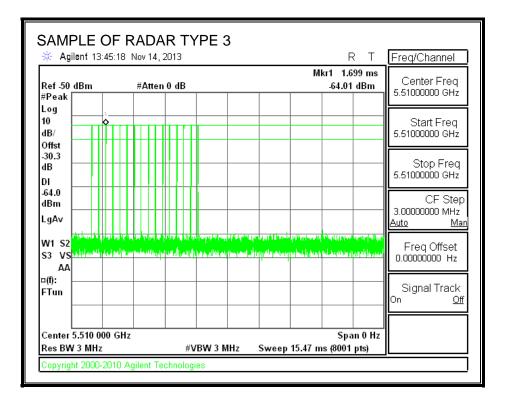

5.3. RESULTS FOR 40 MHz BANDWIDTH

5.3.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5510 MHz.

5.3.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS



Page 40 of 68

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 41 of 68

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

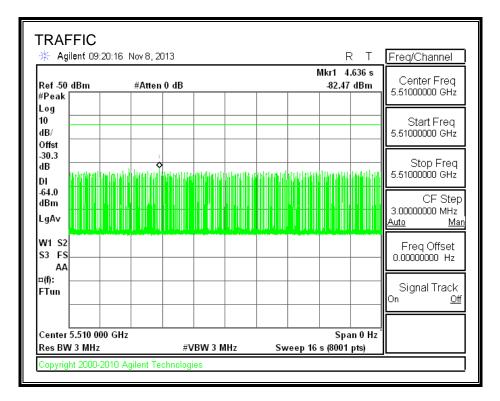
Page 42 of 68

🔆 Agil	ent 13:	45:49	No۱	/ 14, :	2013	3						RT	Freq/Channel
Ref₋50 (#Peak [dBm		#1	Atten	0 d	в						 2.243 ms 9.99 dBm	Center Freq 5.51000000 GHz
Log 10 dB/ Offst			•										Start Freq 5.51000000 GHz
-30.3 dB													- Stop Freq 5.51000000 GHz
-64.0 dBm LgAv													CF Step 3.00000000 MHz Auto Mar
												t site lines ^t syste Line linest syste	
¤(f): FTun													Signal Track On <u>Off</u>
Center 5 Res BW			z			#1	/BV	N 3 N	/H-7	Swoo	n 10 13	Span 0 Hz)01 pts)	-

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 43 of 68

🔆 Agilent 13:37:	30 Nov 14, 2013			RΤ	Freq/Channel
Ref -50 dBm #Peak	#Atten 0 dB		Mkı	1 3.72 ms -63.96 dBm	Center Freq 5.51000000 GHz
Log 10 dB/ Offst		1			Start Freq 5.51000000 GHz
-30.3 dB					Stop Freq 5.51000000 GHz
-64.0 dBm LgAv					CF Step 3.00000000 MHz <u>Auto Mar</u>
W1 S2					Freq Offset 0.00000000 Hz
¤(f): FTun					Signal Track On <u>Off</u>
Center 5.510 000 0 Res BW 3 MHz		#VBW 3 MHz	Sweep 8 ms	Span 0 Hz : (8001 pts)	


Page 44 of 68

🔆 Agilent 13:38:	05 Nov 14, 2013		R T	Freq/Channel
Ref -50 dBm #Peak	#Atten 0 dB		Mkr1 2.333 m -64.00 dBm	Contor Frod
Log 10 dB/		11		Start Freq 5.51000000 GHz
Offst -30.3 dB DI				- Stop Freq 5.5100000 GHz
-64.0 dBm				CF Step 3.0000000 MHz <u>Auto Ma</u> i
S3 VS AA			ener alen den forste stellen in der stelle stelle s	Ered Offset
¤(f): FTun				Signal Track
Center 5.510 000 Res BW 3 MHz		VBW 3 MHz	Span 0 H Sweep 5 ms (8001 pts)	Iz

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 45 of 68

TRAFFIC

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 46 of 68

5.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 47 of 68

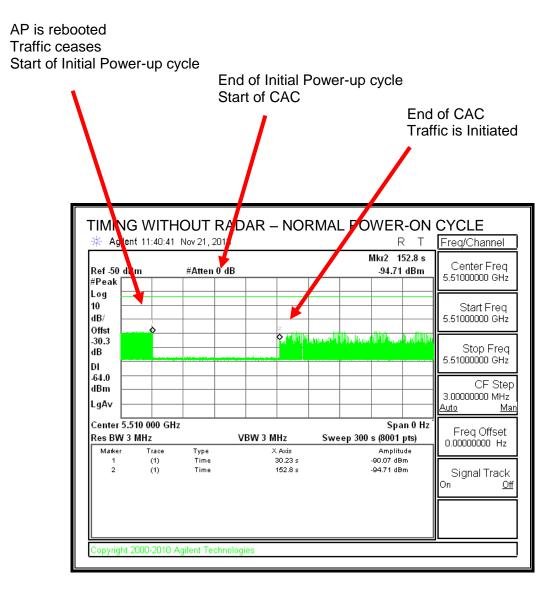
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.23	152.8	122.6	62.6

Radar Near Beginning of CAC

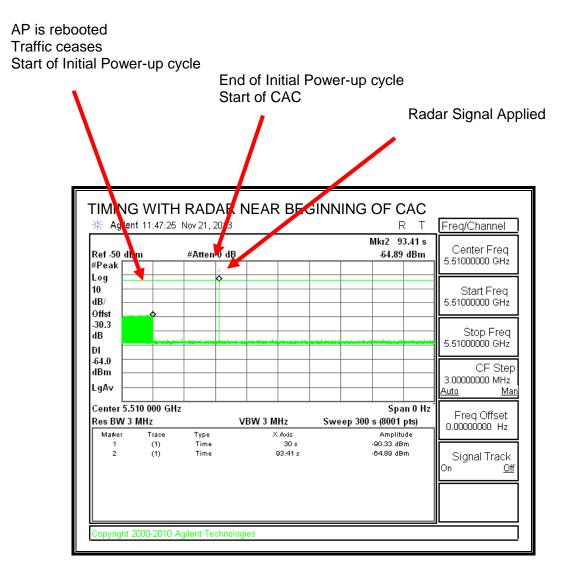
Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.0	93.41	63.4	0.8


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.3	151.8	121.5	58.9

QUALITATIVE RESULTS

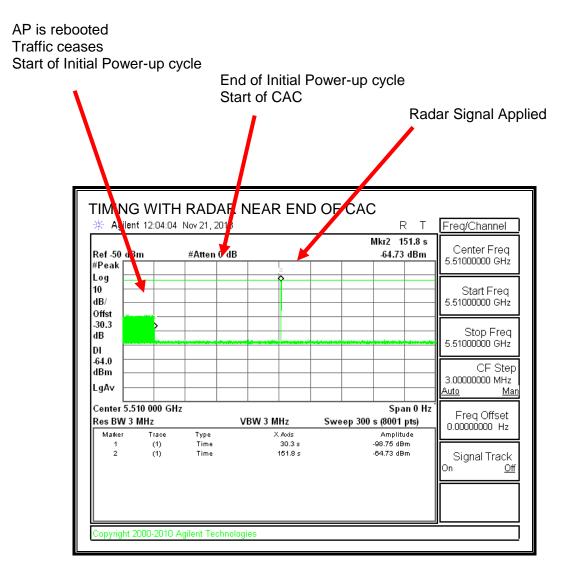
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		


TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 49 of 68

TIMING WITH RADAR NEAR BEGINNING OF CAC



No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 50 of 68

TIMING WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 51 of 68

OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

5.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

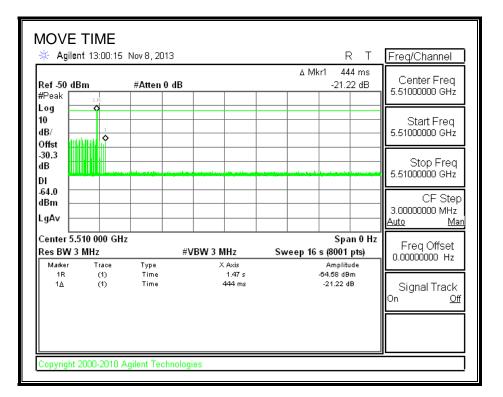
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

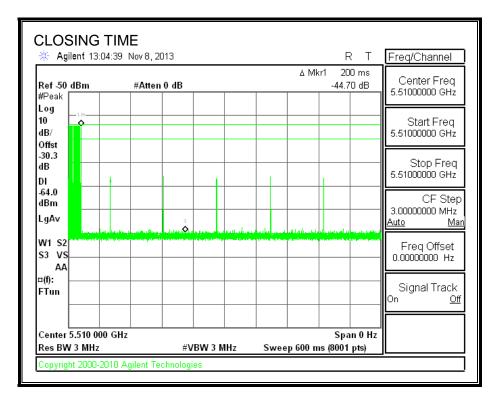
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.444	10

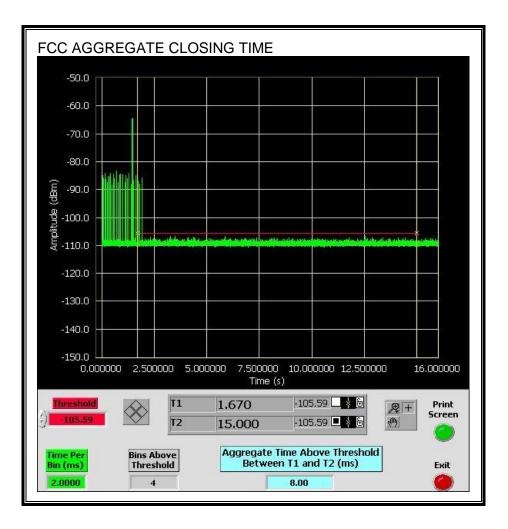
Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
8.0	60


Page 52 of 68

MOVE TIME

Page 53 of 68

CHANNEL CLOSING TIME

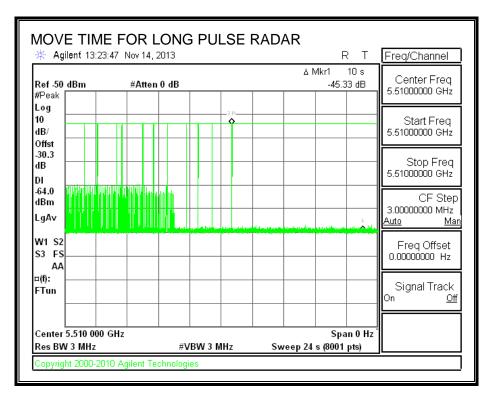


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 54 of 68

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 55 of 68

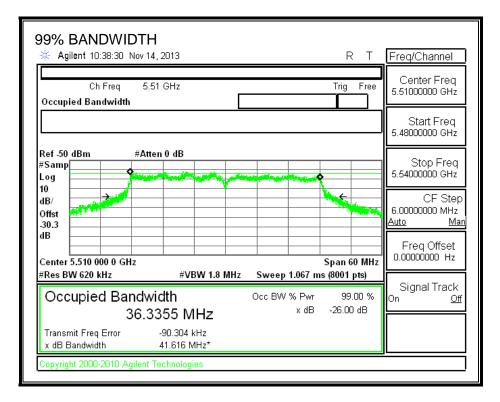
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 56 of 68

5.3.5. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30 minute observation time.

Aglient 12:41:	56 Nov 8, 2013	R T	Freq/Channe
-50 dBm	#Atten 0 dB	∆ Mkr1 1.8 ks -42.58 dB	Center Fre
ak 🛛			3.31000000 01
-1R			Start Fre
t i			─
′ <mark> </mark>			- Stop Fre 5.5100000 Gi
P			CF S
v			3.00000000 MI <u>Auto</u>
S2 FS			Freq Offse
n			Signal Tra
ter 5.510 000	GHz	Span 0 H	z

Page 57 of 68

5.3.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5528	36	36.336	99.1	80

DETECTION BANDWIDTH PROBABILITY

DETECTION BANK	OWIDTH PROBABI	LITY RESULTS		
Detection Bandy	width Test Results			
FCC Type 1 Way	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5492	10	10	100	FL
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	
5511	10	10	100	
5512	10	10	100	
5513	10	10	100	
5514	10	10	100	
5515	10	10	100	
5516	10	10	100	
5517	10	10	100	
5518	10	10	100	
5519	10	10	100	
5520	10	10	100	
5521	10	10	100	
5522	10	10	100	
5523	10	10	100	
5524	10	10	100	
5525	10	10	100	
5526	10	10	100	
5527	10	10	100	
5528	10	10	100	FH

Page 59 of 68

5.3.7. IN-SERVICE MONITORING

RESULTS

CC Radar Test Summ	Detection	1 1	D	
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	37	100.00	70	Pass

Page 60 of 68

TYPE 1 DETECTION PROBABILITY

1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst			
Trial	Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	Yes		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	Yes		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 61 of 68

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	4.7	191.00	29	Yes
2002	1.3	189.00	26	Yes
2003	1.5	184.00	24	Yes
2004	1.3	181.00	24	Yes
2005	1.9	182.00	27	Yes
2006	1.5	157.00	25	Yes
2007	2.8	159.00	24	Yes
2008	3.1	164.00	26	Yes
2009	4	153.00	28	Yes
2010	4.5	186.00	27	Yes
2011	2	225.00	27	Yes
2012	3.3	224.00	25	Yes
2013	2.3	212.00	25	Yes
2014	2.8	210.00	28	Yes
2015	1	174.00	26	Yes
2016	2.3	198.00	26	Yes
2017	3.2	214.00	29	Yes
2018	4.4	195.00	23	Yes
2019	2.9	167.00	28	Yes
2020	1.9	158.00	27	Yes
2021	1	208.00	25	Yes
2022	2.9	154.00	27	Yes
2023	3.2	184.00	23	Yes
2024	1.9	221.00	23	Yes
2025	4.4	166.00	23	Yes
2026	3.2	188.00	26	Yes
2027	1.4	182.00	29	Yes
2028	4.3	176.00	23	Yes
2029	2.3	155.00	29	Yes

Page 62 of 68

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	10	351.00	16	Yes
3002	9.1	301.00	16	Yes
3003	5.6	321.00	17	Yes
3004	5.8	367.00	17	Yes
3005	8.4	483.00	16	Yes
3006	8.6	485.00	16	Yes
3007	7.2	276.00	17	Yes
3008	9.9	348.00	18	Yes
3009	8.5	333.00	18	Yes
3010	5.6	317.00	18	Yes
3011	10	446.00	17	Yes
3012	6.6	462.00	16	Yes
3013	9.4	420.00	18	Yes
3014	7.3	369.00	18	Yes
3015	9.6	309.00	17	Yes
3016	5.1	378.00	18	Yes
3017	5.1	356.00	18	Yes
3018	7.3	276.00	17	Yes
3019	7.8	408.00	17	Yes
3020	6.8	393.00	16	Yes
3021	9.3	416.00	17	Yes
3022	8.4	284.00	18	Yes
3023	6.4	424.00	18	Yes
3024	6.8	412.00	16	Yes
3025	8.4	392.00	18	Yes
3026	7.9	450.00	16	Yes
3027	5.4	316.00	16	Yes
3028	9.1	427.00	18	Yes
3029	6	379	16	Yes
3030	5.1	286	18	Yes

Page 63 of 68

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	12.6	311.00	12	Yes
4002	10.2	285.00	12	Yes
4003	19.9	290.00	16	Yes
4004	15.8	345.00	16	Yes
4005	19.3	361.00	12	Yes
4006	18.9	425.00	12	Yes
4007	14.9	357.00	15	Yes
4008	12.8	446.00	15	Yes
4009	17.7	365.00	16	Yes
4010	14	414.00	16	Yes
4011	14.2	300.00	16	Yes
4012	16.6	354.00	14	Yes
4013	14	399.00	14	Yes
4014	16.1	258.00	16	Yes
4015	13.3	329.00	16	Yes
4016	11.9	268.00	16	Yes
4017	19.6	308.00	14	Yes
4018	16.9	441.00	14	Yes
4019	17.1	432.00	15	Yes
4020	17.6	405.00	12	Yes
4021	14	410.00	15	Yes
4022	17.2	483.00	15	Yes
4023	11.6	379.00	12	Yes
4024	18.4	494.00	14	Yes
4025	11.7	475.00	15	Yes
4026	18.6	461.00	16	Yes
4027	13.7	272.00	14	Yes
4028	16.7	377.00	15	Yes
4029	14.5	429.00	15	Yes
4030	10.8	390.00	12	Yes

Page 64 of 68

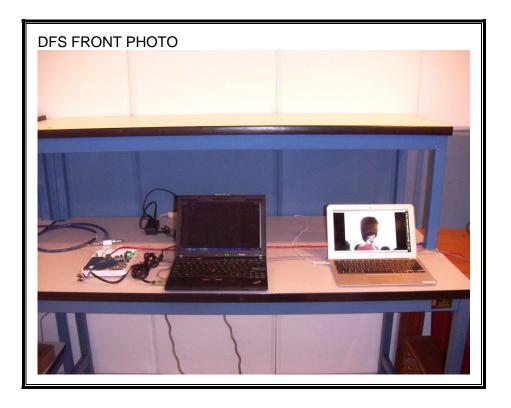
TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

Page 65 of 68

TYPE 6 DETECTION PROBABILITY


	t for FCC Hopping Rada					
1 us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop						
NTIA Aug	ust 2005 Hopping Se					
Trial	Starting Index	Signal Generator	Hops within	Successful		
Trial	Within Sequence	Frequency	Detection BW	Detection		
		(MHz)		(Yes/No)		
1	123	5492	5	Yes		
2	598	5493	11	Yes		
3	1073	5494	6	Yes		
4	1548	5495	8	Yes		
5	2023	5496	4	Yes		
6	2498	5497	7	Yes		
7	2973	5498	9	Yes		
8	3448	5499	7	Yes		
9	3923	5500	4	Yes		
10	4398	5501	7	Yes		
11	4873	5502	8	Yes		
12	5348	5503	8	Yes		
13	5823	5504	8	Yes		
14	6298	5505	7	Yes		
15	6773	5506	7	Yes		
16	7248	5507	8	Yes		
17	7723	5508	7	Yes		
18	8198	5509	12	Yes		
19	8673	5510	8	Yes		
20	9148	5511	9	Yes		
21	9623	5512	8	Yes		
22	10098	5513	7	Yes		
23	10573	5514	5	Yes		
24	11048	5515	6	Yes		
25	11523	5516	9	Yes		
26	11998	5517	10	Yes		
27	12473	5518	9	Yes		
28	12948	5519	12	Yes		
29	13423	5520	12	Yes		
30	13898	5521	2	Yes		
31	14373	5522	8	Yes		
32	14848	5523	8	Yes		
33	15323	5524	9	Yes		
34	15798	5525	7	Yes		
35	16273	5526	4	Yes		
36	16748	5527	7	Yes		
37	17223	5528	5	Yes		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 66 of 68

6. SETUP PHOTOS

DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 67 of 68

END OF REPORT

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 68 of 68