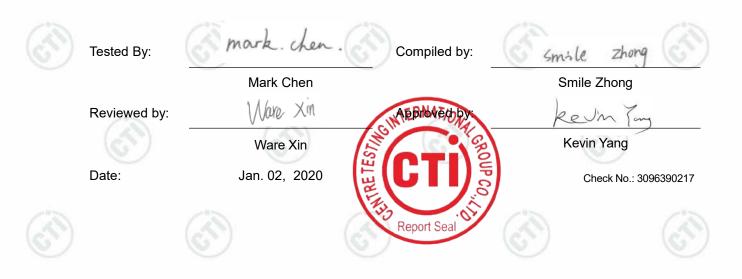


Page 1 of 89

TEST REPORT

Product	(25
Trade mark	
Model/Type reference	:
Serial Number	:
Report Number	:
FCC ID	:
Date of Issue:	:
Test Standards	13
Test result	6

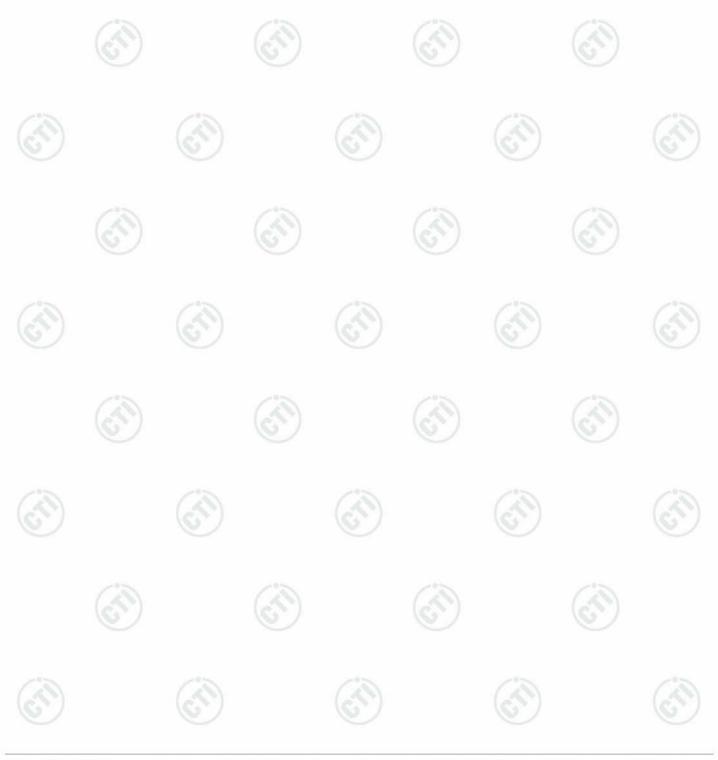
2.0CH SOUNDBAR SYSTEM


- BOMAKER
- Tapio I, Tapio II
- N/A
- EED32L00319902
- 2AS9DTAPI01
- Jan. 02, 2020 47 CFR Part 15 Subpart C

Prepared for:

GuangDong Substanbo Technology Co., Ltd. 8F, Building D, Bantian International Center, Longgang District, Shenzhen, China.

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385


Hotline: 400-6788-333

Page 2 of 89

Version No.	Date	Description	
00	Jan. 02, 2020	Original	
			6

3 **Test Summary** Test Item **Test Requirement** Test method Result 47 CFR Part 15, Subpart C Section ANSI C63.10-2013 PASS Antenna Requirement 15.203/15.247 (c) AC Power Line Conducted 47 CFR Part 15, Subpart C Section ANSI C63.10-2013 PASS Emission 15.207 **Conducted Peak Output** 47 CFR Part 15, Subpart C Section ANSI C63.10-2013 PASS Power 15.247 (b)(1) 47 CFR Part 15, Subpart C Section 20dB Occupied Bandwidth ANSI C63.10-2013 PASS 15.247 (a)(1) **Carrier Frequencies** 47 CFR Part 15, Subpart C Section ANSI C63.10-2013 PASS Separation 15.247 (a)(1) 47 CFR Part 15, Subpart C Section Hopping Channel Number ANSI C63.10-2013 PASS 15.247 (b) 47 CFR Part 15, Subpart C Section **Dwell Time** ANSI C63.10-2013 PASS 15.247 (a)(1) 47 CFR Part 15, Subpart C Section **Pseudorandom Frequency** 15.247(b)(4)&TCB Exclusion List ANSI C63.10-2013 PASS Hopping Sequence (7 July 2002) **RF Conducted Spurious** 47 CFR Part 15, Subpart C Section ANSI C63.10-2013 PASS Emissions 15.247(d) **Radiated Spurious** 47 CFR Part 15, Subpart C Section ANSI C63.10-2013 PASS 15.205/15.209 emissions

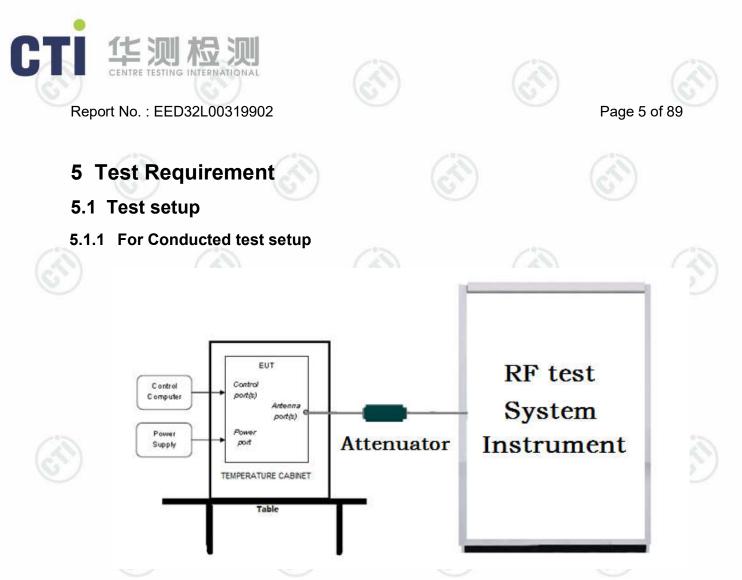
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

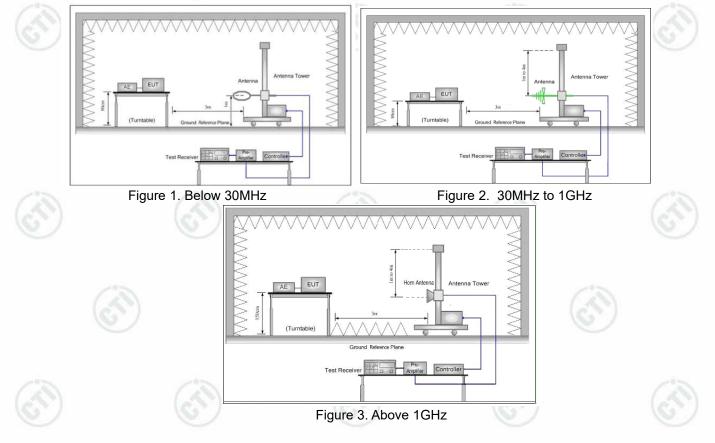
The tested samples and the sample information are provided by the client.

Model No.: Tapio I, Tapio II

Only the model Tapio I was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference model name.



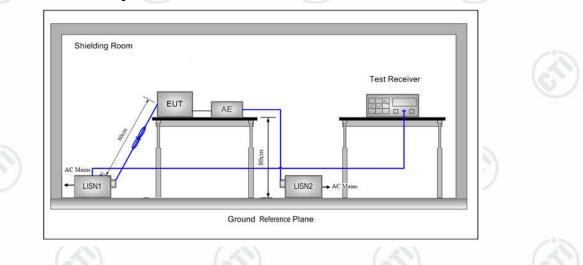
Page 4 of 89


4 Content 6 GENERAL INFORMATION......7 6.2 GENERAL DESCRIPTION OF EUT......7 6.9 Measurement Uncertainty(95% confidence levels, k=2)......9 Appendix A): 20dB Occupied Bandwidth......15

Hotline: 400-6788-333



5.1.2 For Radiated Emissions test setup Radiated Emissions setup:



5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environ	nent:	
Temperature:	24.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1010mbar	

5.3	3 Test Cond	dition	1				
S P	Test Mode	(e)	Tx/	Rx	Low(L)	RF Chan Middle(M	
81	GFSK/π/4DQPS DPSK(DH1,DH3,		2402MHz ~24	80 MHz	Channel 1 2402MHz	Channel 4 2441MH	0 Channel79
	(A)		(S)		61)		(SI)

6 General Information

6.1 Client Information

Applicant:		GuangDong Substanbo Technology Co., Ltd.
Address o	f Applicant:	8F, Building D, Bantian International Center, Longgang District, Shenzhen, China.
Manufactu	ırer:	HanHong Digital Technology Co., Ltd
Address o	f Manufacturer:	401, Building E, Yuxing Technology Park, Nanchang 3rd Industry Zone, Nanchang Community, Xixiang Street, Baoan District, Shenzhen City, China
Factory:		HanHong Digital Technology Co., Ltd
Address o	f Factory:	401, Building E, Yuxing Technology Park, Nanchang 3rd Industry Zone, Nanchang Community, Xixiang Street, Baoan District, Shenzhen City, China

6.2 General Description of EUT

Product Name:	2.0CH SOUND	BAR SYSTEM	
Model No.(EUT):	Tapio I , Tapio	П	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Test Model No.:	Tapio I	(L) (L)	6
Trade mark:	BOMAKER		\sim
EUT Supports Radios application:	BT 5.0 Dual mo	ode, 2402MHz to 2480MHz	
Power Supply:	Adapter	MODEL:TP04-190150E INPUT:100-240V~50/60Hz 1A Max OUTPUT:DC19V 1.5 A	
Sample Received Date:	Oct. 31, 2019		
Sample tested Date:	Oct. 31, 2019 to	o Dec. 06, 2019	

E)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	5.0 (BT 2.0+EDR)		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	G	2
Number of Channel:	79	G	с.),
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Test Power Grade:	GFSK: 9, π/4DQPSK: 9, 8DPSK:9		
Test Software of EUT:	MV_AP82xx_BP10xx_PC_Tools_V2.1.exe	13	
Antenna Type:	PCB Antenna	(3)	
Antenna Gain:	3.38dBi	\sim	
Test Voltage:	AC120V/60Hz		

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	G)

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd. Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. Page 9 of 89

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

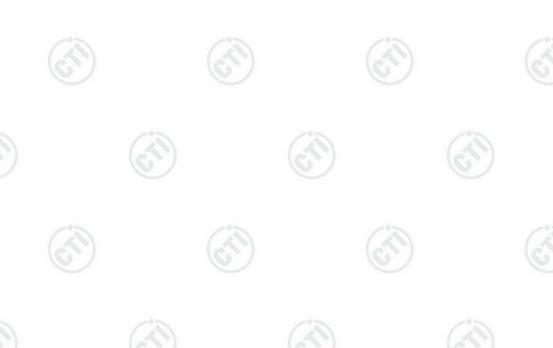
None.

6.8 Other Information Requested by the Customer

None.


6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10⁻ ⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

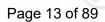


7 Equipment List

RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020		
emperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002	\odot	01-09-2019	01-08-2020		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY56376072	03-01-2019	02-29-2020		
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020		
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019	02-29-2020		
BT&WI-FI Automatic est software	JS Tonscend	JS1120-3		03-01-2019	02-29-2020		

		· · · · · · · · · · · · · · · · · · ·					
Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020		
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-13-2020		
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020		
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020		

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(A)	01-09-2019	01-08-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020



3M full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020	
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021	
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-21-2020	
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020	
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019	01-15-2020	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020	
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020	
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020	

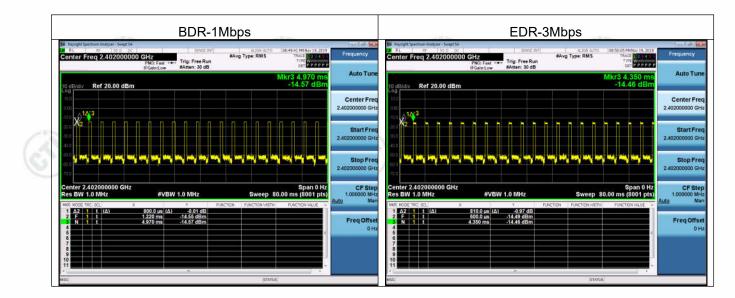
8 Radio Technical Requirements Specification

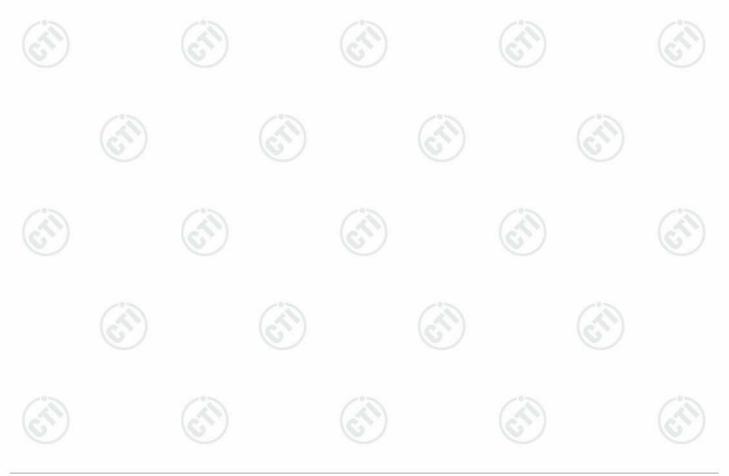
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

	Test requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
	Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
9	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
	Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
	Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
	Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)





Page 14 of 89

EUT DUTY CYCLE

	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BDR-1Mbps	0.8	3.75	21.3%
EDR-3Mbps	0.81	3.75	21.6%

Page 15 of 89

Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1),

20 dB Bandwidth : For reporting purposes only.

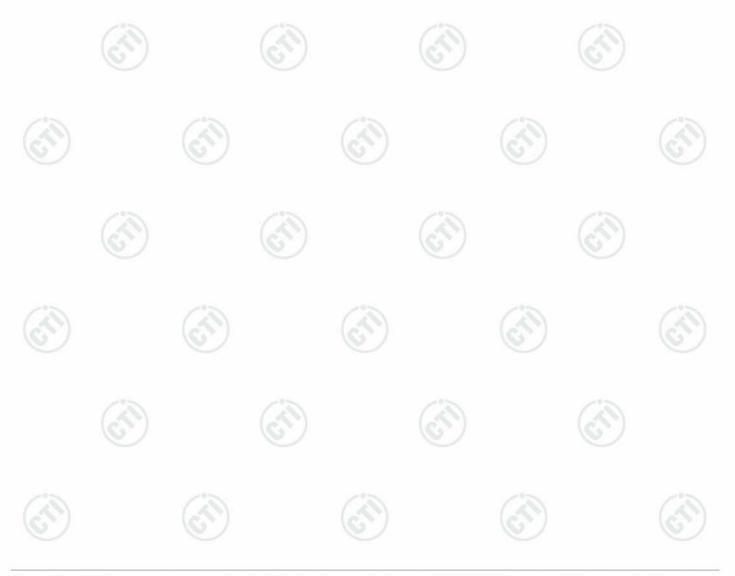
Occupied Bandwidth(99%) : For reporting purposes only.

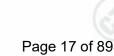
Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

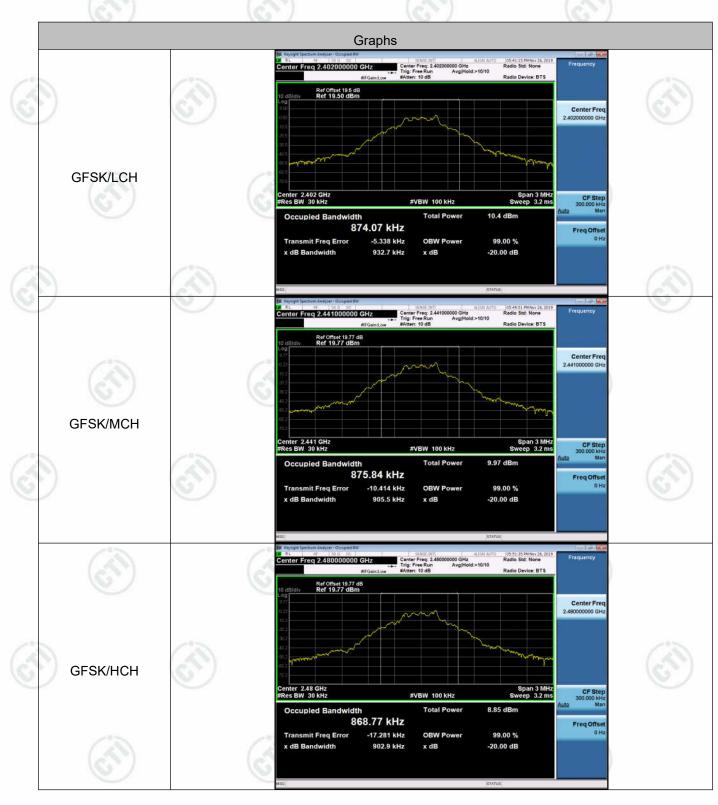
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100kHz, VBW = 300kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.
- 6.

Test Setup




Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	1.113	0.87407	PASS
GFSK	мсн	1.097	0.87584	PASS
GFSK	нсн	1.100	0.86877	PASS
π /4DQPSK	LCH	1.384	1.1883	PASS
π /4DQPSK	МСН	1.376	1.1775	PASS
π /4DQPSK	нсн	1.371	1.1745	PASS
8DPSK	LCH	1.363	1.1770	PASS
8DPSK	МСН	1.354	1.1725	PASS
8DPSK	нсн	1.342	1.1708	PASS



)

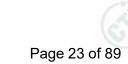
Test Graph

Page 18 of 89

10 of 80

20dB Bandwidth:

Page 21 of 89



Page 22 of 89

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit 🔿	> two-thirds of the 20 dB bandwidth

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = auto.
 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

Test Setup

Page 24 of 89

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.002	PASS
GFSK	МСН	0.998	PASS
GFSK	нсн	1.022	PASS
π/4DQPSK	LCH	0.994	PASS
π/4DQPSK	МСН	0.908	PASS
π/4DQPSK	нсн	1.066	PASS
8DPSK	LCH	1.158	PASS
8DPSK	МСН	0.960	PASS
8DPSK	НСН	0.984	PASS

Test Graph

Page 26 of 89



Page 27 of 89

Page 28 of 89

Appendix C): Dwell Time

Test Limit

According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = auto

Test Setup

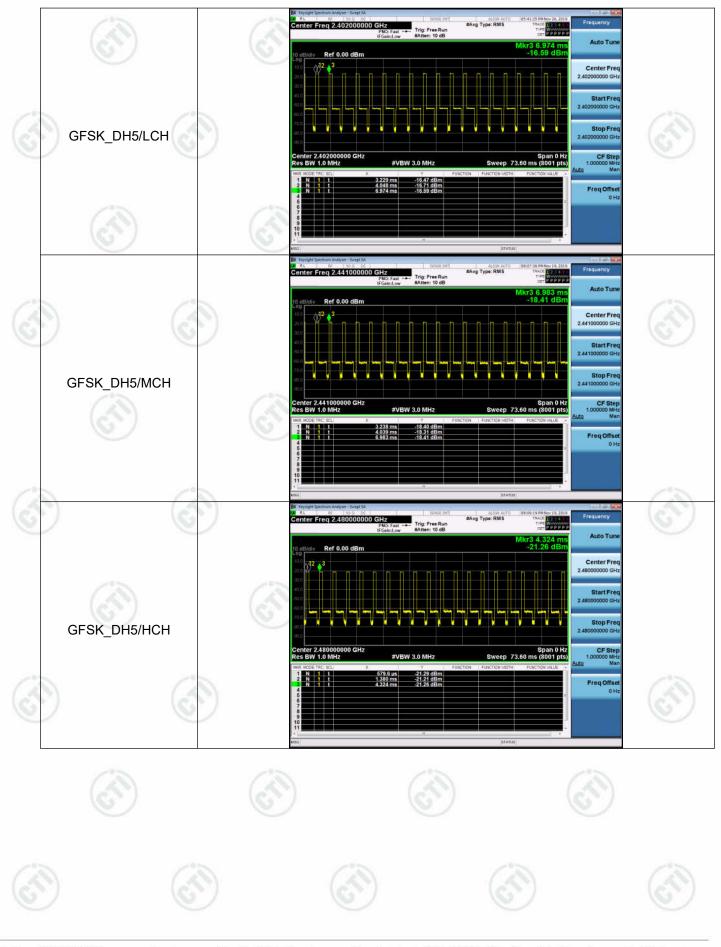
Page 29 of 89

Result Table

				(S) (S)			(S)	
	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
12	GFSK	DH1	LCH	0.358467	320	0.115	0.29	PASS
6	GFSK	DH1	МСН	0.358467	320	0.115	0.29	PASS
	GFSK	DH1	НСН	0.358467	320	0.115	0.29	PASS
	GFSK	DH3	LCH	1.62386	160	0.26	0.65	PASS
	GFSK	DH3	МСН	1.6226	160	0.26	0.65	PASS
	GFSK	DH3	НСН	1.62387	160	0.26	0.65	PASS
	GFSK	DH5	LCH	0.8188	106.7	0.087	0.22	PASS
	GFSK	DH5	МСН	0.8004	106.7	0.085	0.21	PASS
A	GFSK	DH5	НСН	0.8004	106.7	0.085	0.21	PASS

Test Graph

Page 31 of 89



Page 32 of 89

Appendix D): Hopping Channel Number

Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

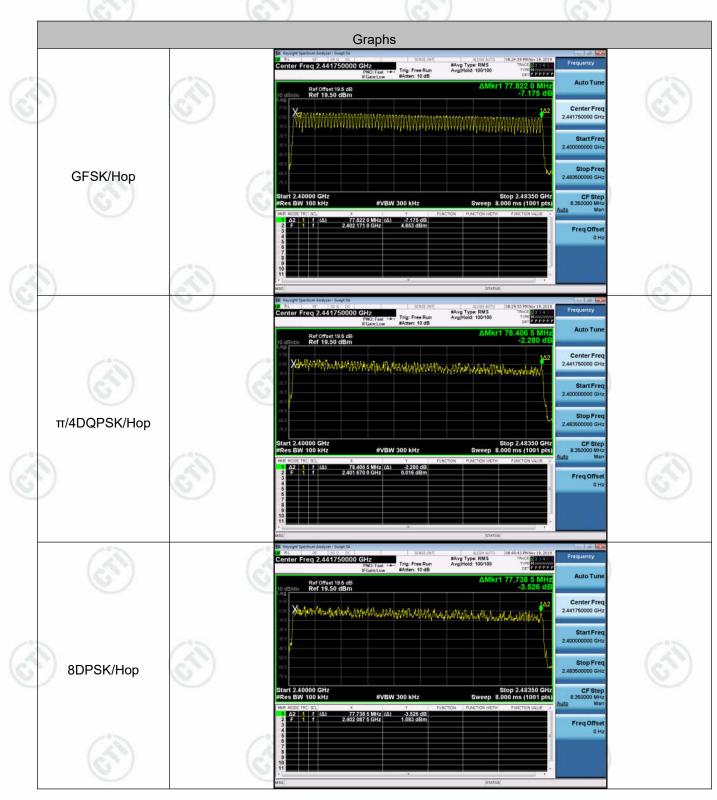
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4.Max hold, view and count how many channel in the band.

Test Setup

Page 34 of 89

Result Table

(67)	(C)		(67)
Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS



(

Test Graph

Page 36 of 89

Appendix E): Conducted Peak Output Power

Test Limit

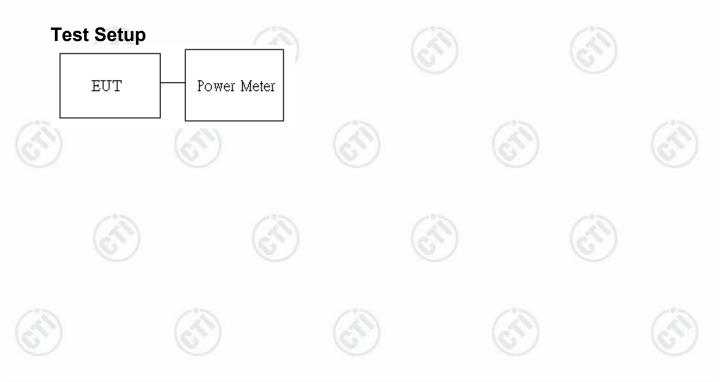
According to §15.247(b)(1).

Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

 Limit
 Antenna not exceed 6 dBi : 21dBm


 Limit
 Antenna with DG greater than 6 dBi : 21dBm

 [Limit = 30 - (DG - 6)]

Average output power : For reporting purposes only.

Test Procedure

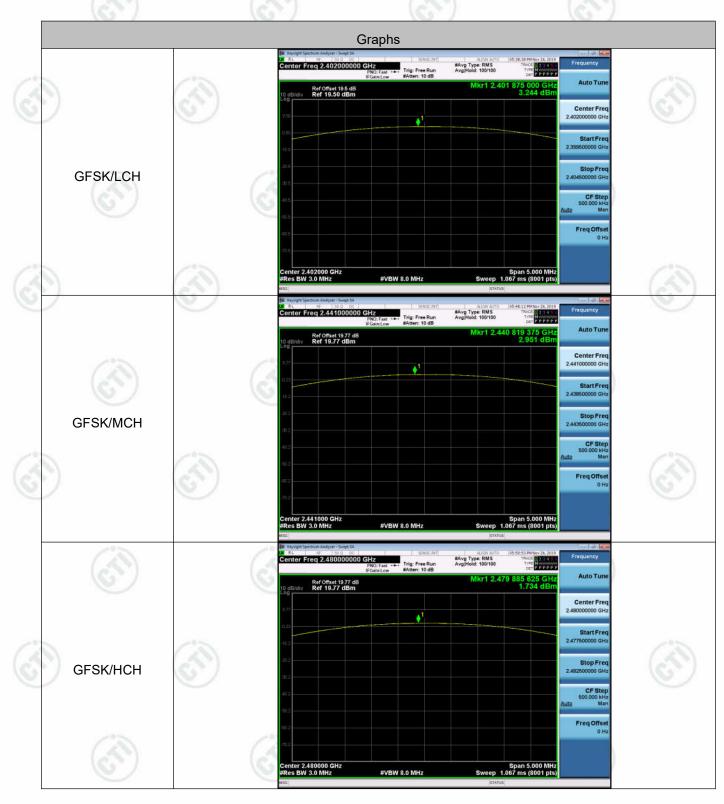
- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Report No. : EED32L00319902

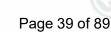
Page 37 of 89

Result Table

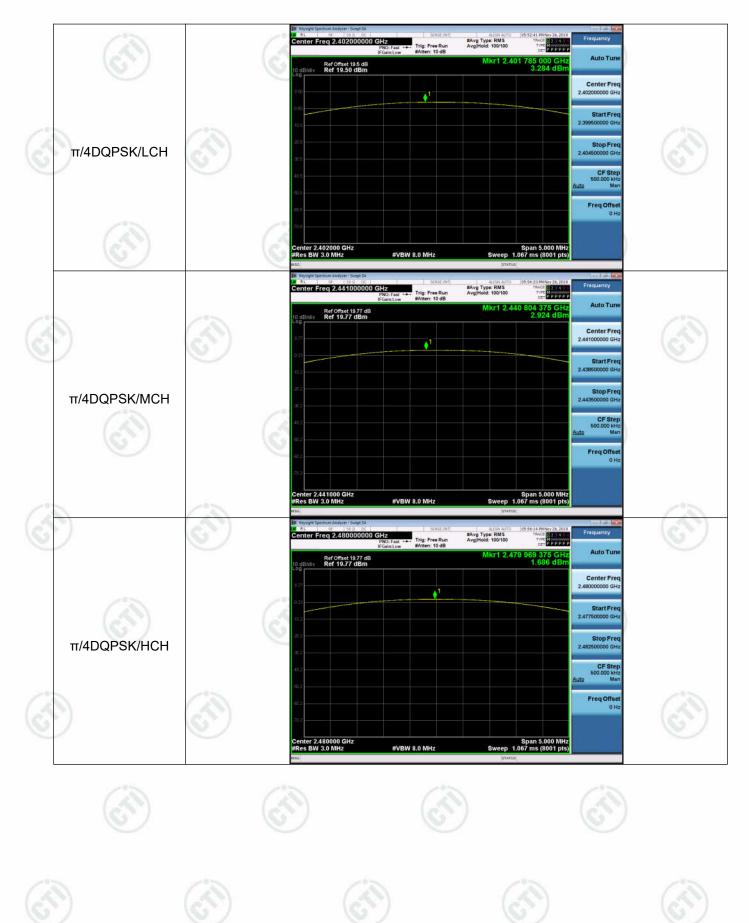
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	3.244	PASS
GFSK	МСН	2.951	PASS
GFSK	НСН	1.734	PASS
π/4DQPSK	LCH	3.284	PASS
π/4DQPSK	МСН	2.924	PASS
π/4DQPSK	НСН	1.686	PASS
8DPSK	LCH	3.298	PASS
8DPSK	MCH	2.891	PASS
8DPSK	НСН	1.712	PASS



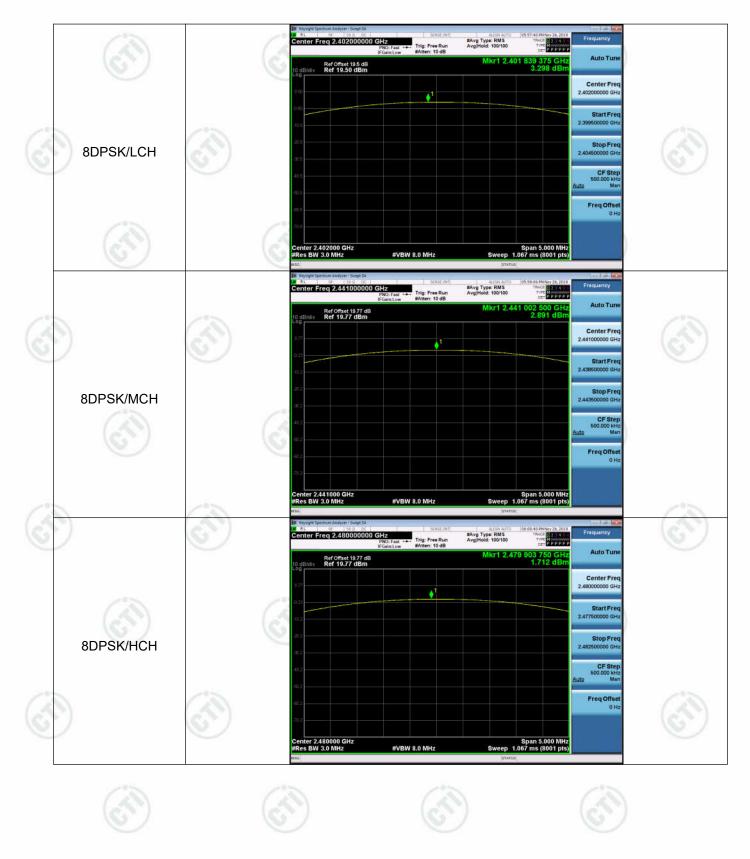
3)


Page 38 of 89

Test Graph



Report No. : EED32L00319902



Page 40 of 89

Report No. : EED32L00319902

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit		-20 dBc		
9	6	6.	6	0

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

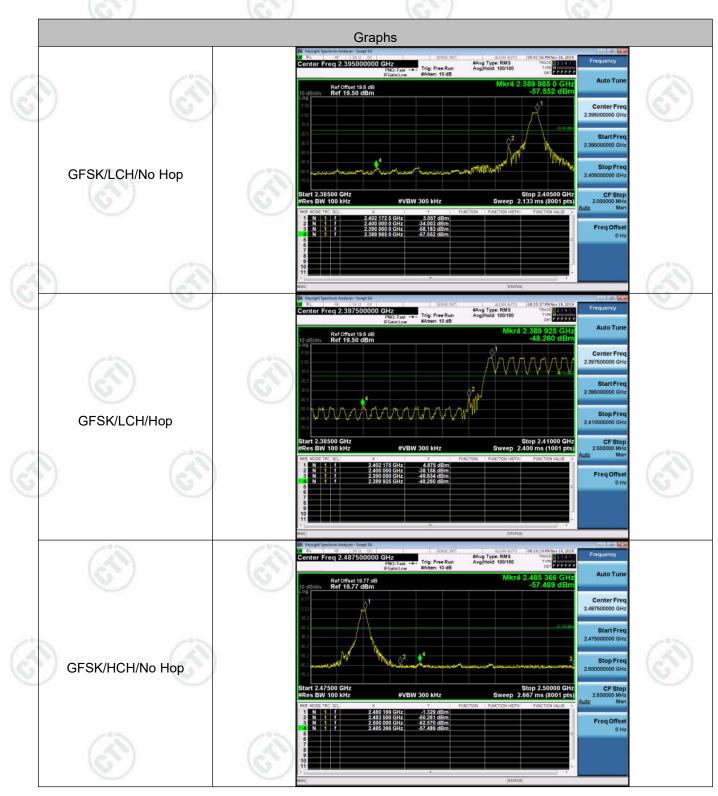
Report No. : EED32L00319902

Page 42 of 89

	Result Table)						
S)	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
	GFSK	LCH	2402	3.057	Off	-57.552	-16.94	PASS
	GFSK	LCH	2402	4.875	On	-48.260	-15.13	PASS
	OFOK		2400	-1.329	Off	-57.489	-21.33	PASS
	GFSK	КНСН	2480	-0.497	On	-53.132	-20.5	PASS
		QPSK LCH	0.400	4.214	Off	-56.874	-15.79	PASS
	π/4DQPSK		2402	4.533	On	-48.369	-15.47	PASS
2			0400	-1.313	Off	-57.432	-21.31	PASS
2	π/4DQPSK	НСН	2480	-1.080	On	-54.115	-21.08	PASS
			0400	4.860	Off	-57.524	-15.14	PASS
	8DPSK	LCH	2402	4.815	On	-49.627	-15.19	PASS
			0400	-1.127	Off	-58.436	-21.13	PASS
	8DPSK	HCH	2480	-0.611	On	-53.135	-20.61	PASS

S

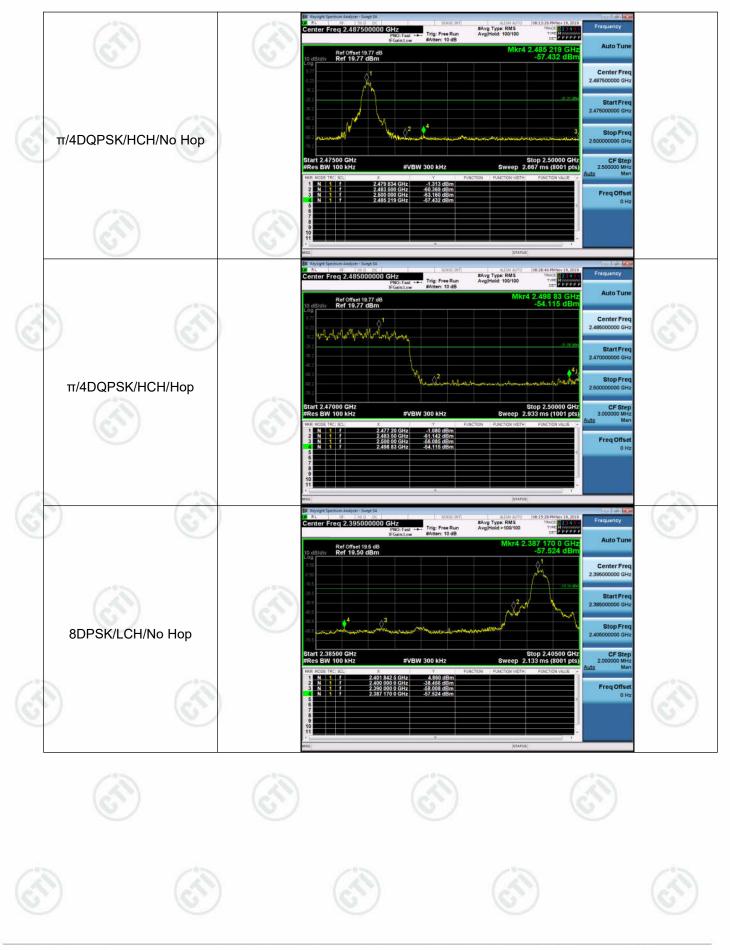
3



 (\mathcal{S})

Test Graph

Page 44 of 89



Page 45 of 89



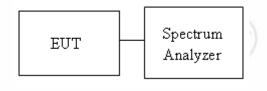


Page 46 of 89

Appendix G): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),


Limit		-20 dBc		
6	0	©	(c)	(C)

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

Test Setup

Report No. : EED32L00319902

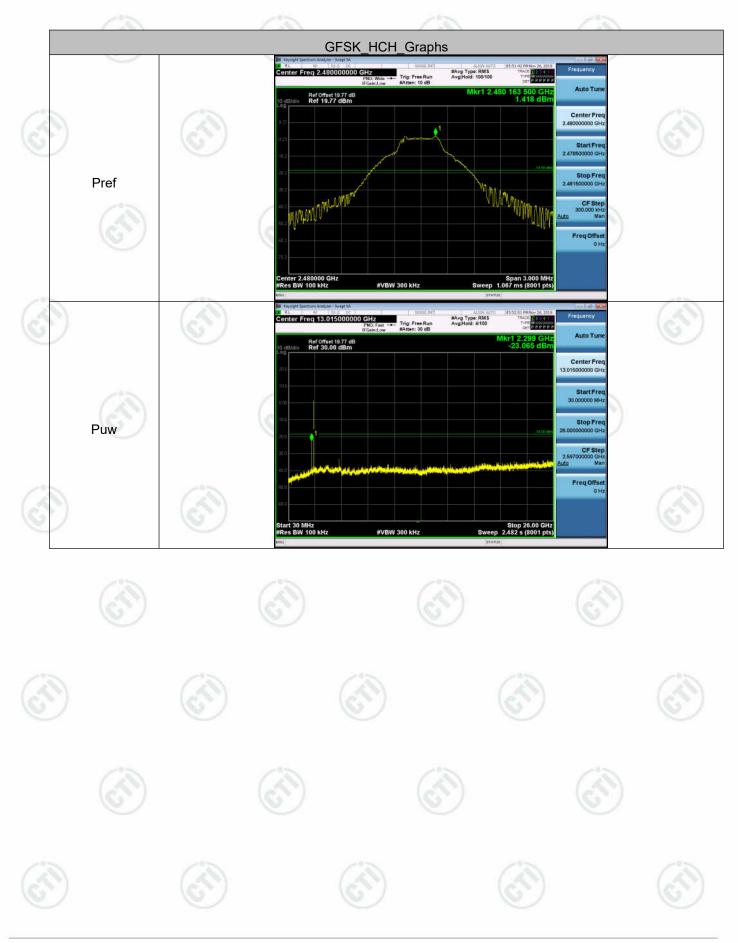
Result Table

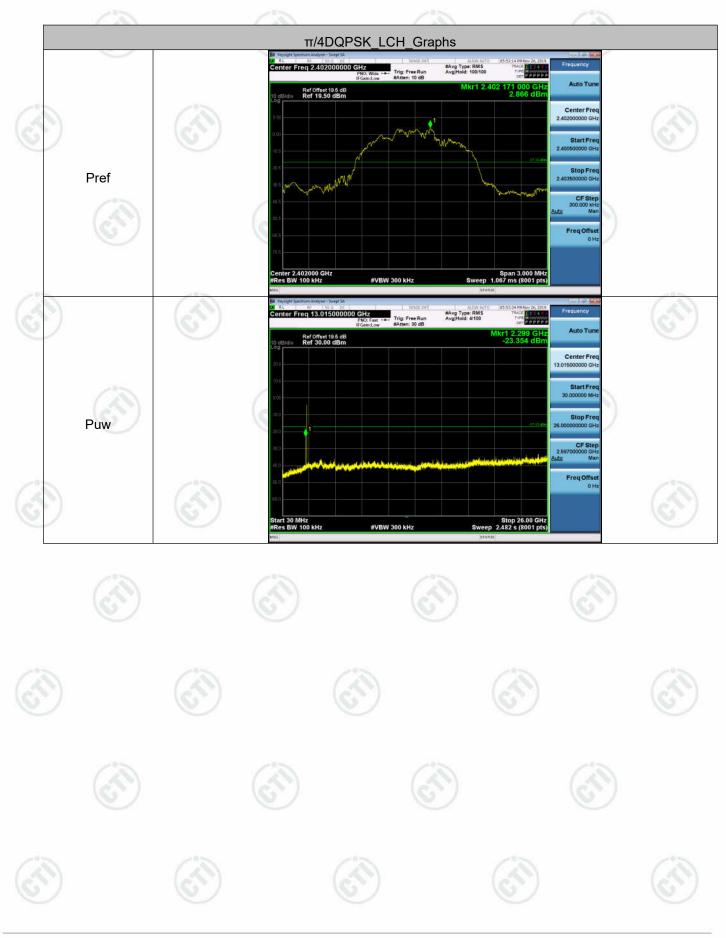
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	3.032	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	2.628	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	1.418	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	2.866	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	2.601	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	1.294	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	3.01	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	МСН	2.535	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	1.405	<limit< td=""><td>PASS</td></limit<>	PASS

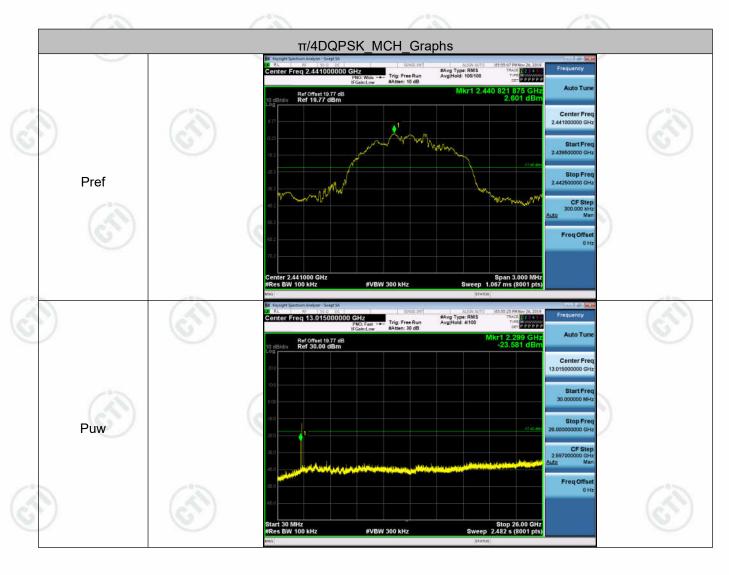


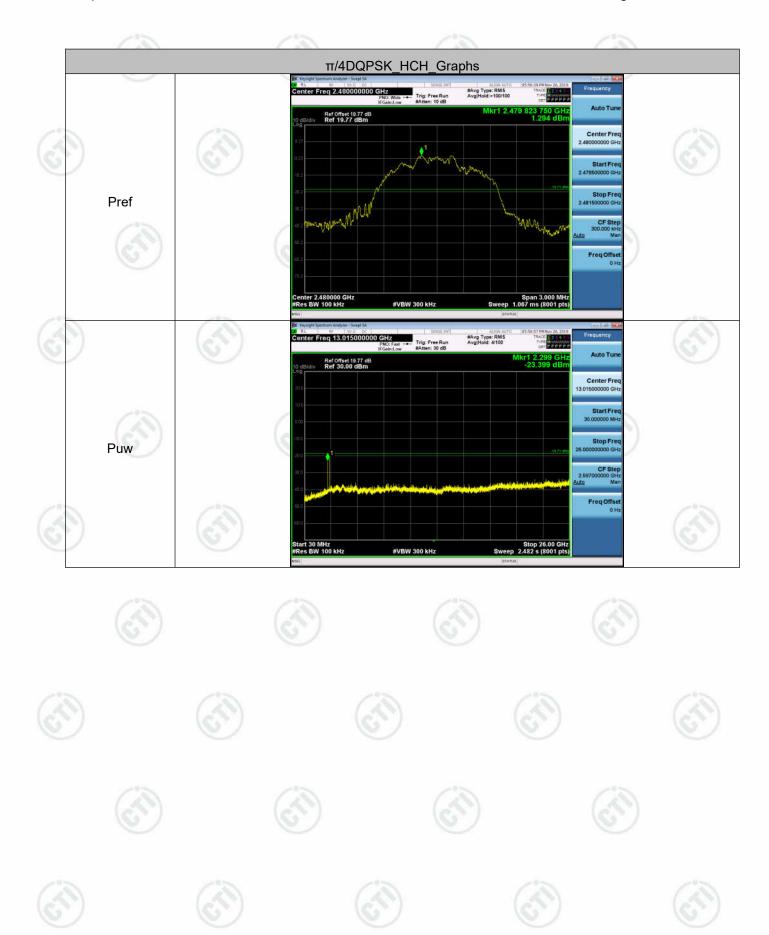
C

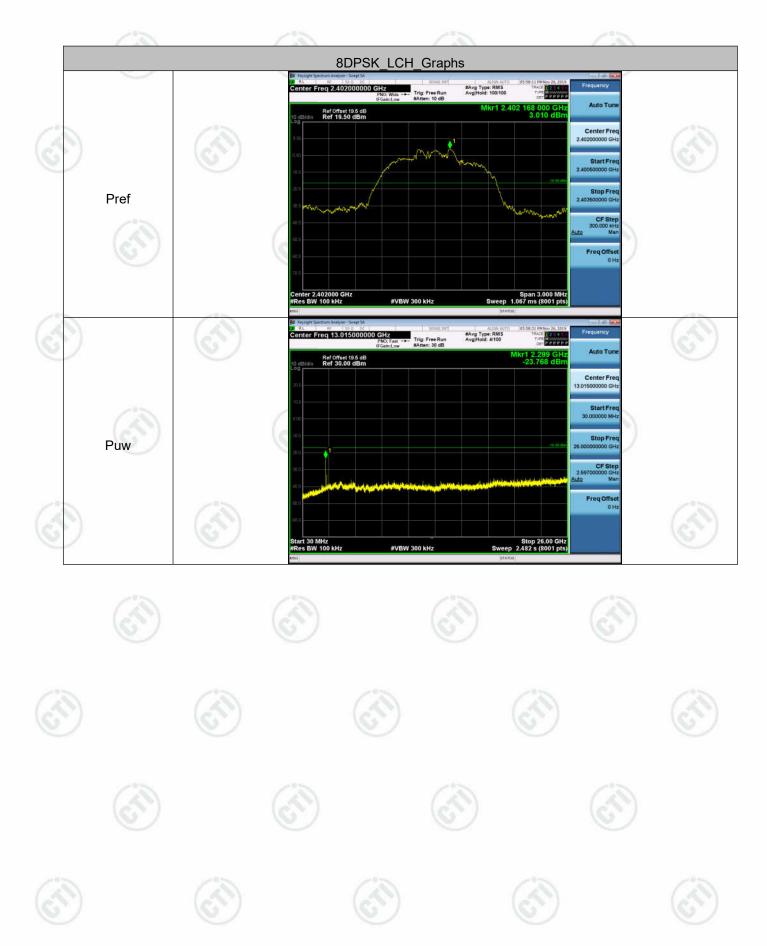
Test Graph

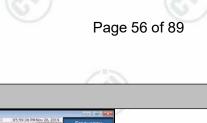












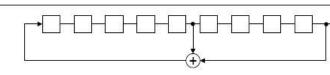




Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom orderec list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77	7 64	8 73	16 75 1

Each frequency used equally on the average by each transmitter.

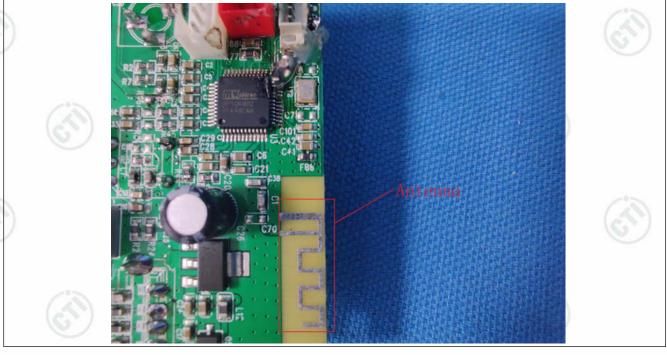
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32L00319902

Appendix I) Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

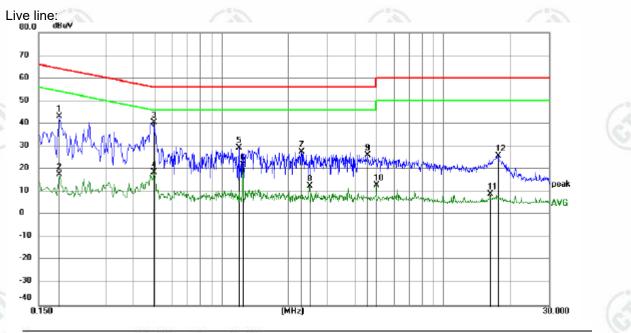
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.38dBi.

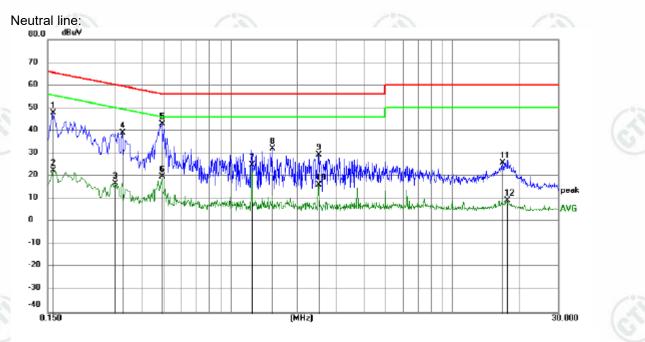
Appendix J) AC Power Line Conducted Emission

	Test Procedure:	Test frequency range :150KHz	-30MHz						
		1) The mains terminal disturba	ance voltage test was	conducted in a shiel	ded room.				
R)		2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. Th power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connec multiple power cables to a single LISN provided the rating of the LISN was not							
		 exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 							
		4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.							
		5) In order to find the maximu		ive positions of equ according to ANSI	uipment ar				
	(\mathcal{S})	conducted measurement.							
	Limit:	conducted measurement.	Limit (d	(Gr)					
	Limit:		G	(Gr)					
	Limit:	conducted measurement.	Limit (d	IBuV)					
<u>(</u>	Limit:	conducted measurement. Frequency range (MHz)	Limit (d Quasi-peak	BuV) Average					

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1860	33.24	10.01	43.25	64.21	-20.96	peak		_
2	í.	0.1860	7.77	10.01	17.78	54.21	-36.43	AVG		_
3	*	0.4965	30.44	10.00	40.44	56.06	-15.62	peak		_
4		0.4965	8.55	10.00	18.55	46.06	-27.51	AVG		
5		1.1985	19.53	9.89	29.42	56.00	-26.58	peak		
6		1.2480	12.09	9,89	21.98	46.00	-24.02	AVG		_
7		2.2965	17.76	9.83	27.59	56.00	-28.41	peak		_
8		2.4945	2.92	9.83	12.75	46.00	-33.25	AVG		
9		4.5510	16.32	9.83	26.15	56.00	-29.85	peak		_
10	5	4.9875	3.27	9.83	13.10	46.00	-32.90	AVG		
11		16.1655	-0.92	9.97	9.05	50.00	-40.95	AVG		_
12	}	17.7450	15.95	9.95	25.90	60.00	-34.10	peak		_

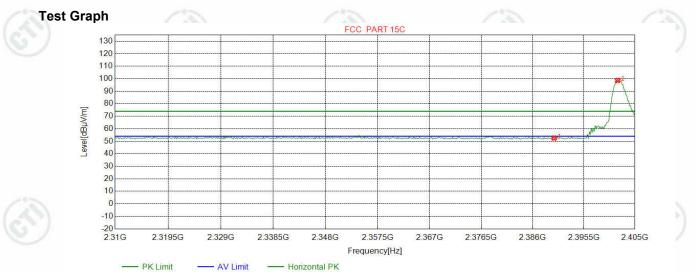
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	37.70	9.98	47.68	65.52	-17.84	peak	
2		0.1590	12.61	9.98	22.59	55.52	-32.93	AVG	
3		0.3030	6.88	10.10	16.98	50.16	-33.18	AVG	
4		0.3255	28.88	10.07	38.95	59.57	-20.62	peak	
5	*	0.4920	32.81	10.00	42.81	56.13	-13.32	peak	
6		0.4920	9.81	10.00	19.81	46.13	-26.32	AVG	
7		1.2480	15.08	9,89	24.97	46.00	-21.03	AVG	
8		1.5450	22.26	9.87	32.13	56.00	-23.87	peak	
9		2.4945	19.62	9.83	29.45	56.00	-26.55	peak	
10		2.4945	6.36	9.83	16.19	46.00	-29.81	AVG	
11		16.7549	15.75	9.96	25.71	60.00	-34.29	peak	
12		17.5694	-0.51	9.95	9.44	50.00	-40.56	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	- 21
		Above 1GHz	Peak	1MHz	3MHz	Peak	1
2	6	Above IGH2	Peak	1MHz	10Hz	Average	0
)	Test Procedure:	 Below 1GHz test procedur a. The EUT was placed on at a 3 meter semi-anech determine the position of b. The EUT was set 3 meter was mounted on the top c. The antenna height is vare determine the maximum polarizations of the anter antenna was tuned to table was turned from 0 e. The test-receiver system Bandwidth with Maximut f. Place a marker at the end frequency to show comproduct bands. Save the spectrue for lowest and highest comproduct and set of the set	re as below: a the top of a ro- noic camber. The form of the highest ra- ers away from o of a variable-h- aried from one a value of the fi- nna are set to ission, the EUT to heights from degrees to 360 n was set to Per- m Hold Mode. and of the restrice bliance. Also ma um analyzer plo-	otating table he table wa adiation. the interfer- meter to fo eld strength make the n was arran 1 meter to 0 degrees t eak Detect	e 0.8 meter is rotated 3 ence-receinna tower. ur meters h. Both hor neasureme ged to its 4 meters a o find the i Function a	rs above the g 360 degrees to ving antenna, above the gro izontal and ve ent. worst case an and the rotata maximum read nd Specified ne transmit s in the restric	o whi ertica d th ble ding
		 Above 1GHz test procedure g. Different between above to fully Anechoic Chamber metre(Above 18GHz the h. b. Test the EUT in the location measurem Transmitting mode, and j. Repeat above procedure 	e is the test site per and change e distance is 1 pwest channel nents are perfo found the X ax	e form table meter and , the Highes rmed in X, kis positioni	0.8 metre table is 1.5 st channel Y, Z axis p ng which i	to 1.5 metre). positioning for t is worse cas	
	Limit:	Frequency	Limit (dBuV	1		nark	
		30MHz-88MHz	40.0			eak Value	
			101	5	Quasi-pe		
		88MHz-216MHz	43.	5	guasi-po	eak value	
		88MHz-216MHz 216MHz-960MHz	43.9			eak Value	
		200) (Quasi-pe		
		216MHz-960MHz 960MHz-1GHz	46.0		Quasi-pe Quasi-pe	eak Value	
		216MHz-960MHz	46.0 54.0	0 0 0	Quasi-pe Quasi-pe Averag	eak Value eak Value	

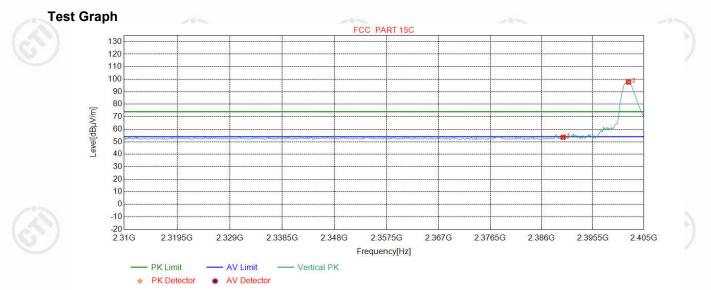


Page 64 of 89

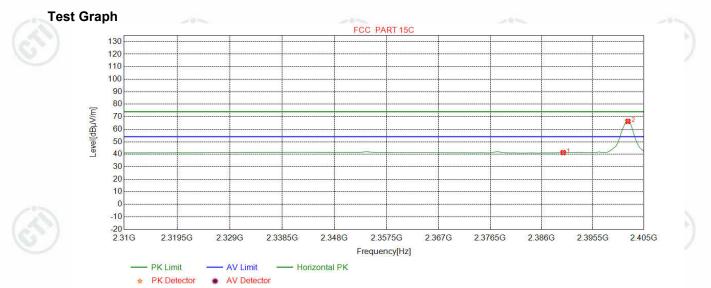
Test plot as follows:

* AV Detector

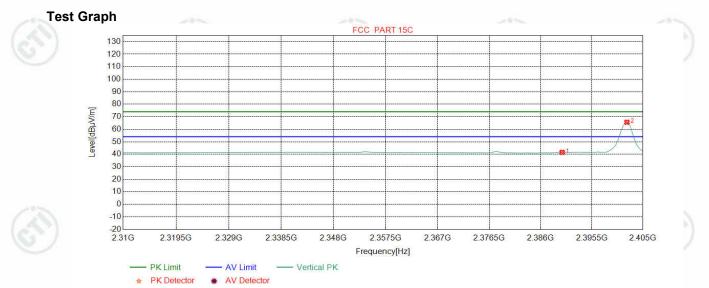
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.36	52.54	74.00	21.46	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	95.48	98.62	74.00	-24.62	Pass	Horizontal
3)	6	R)	-	(\mathcal{C})		6)		(5)



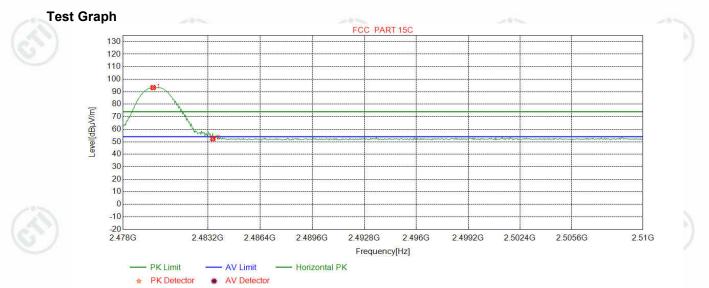
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.33	53.51	74.00	20.49	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	94.55	97.69	74.00	-23.69	Pass	Vertical
100							100			100



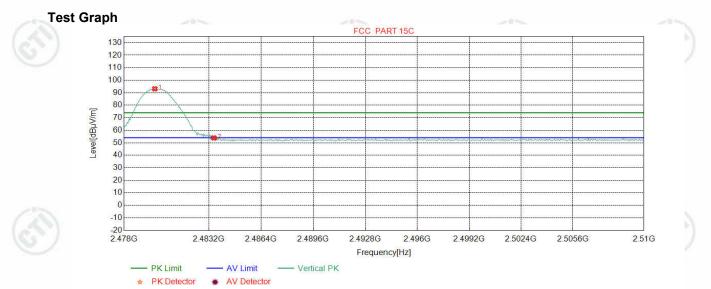
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.16	41.34	54.00	12.66	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	63.14	66.28	54.00	-12.28	Pass	Horizontal
100				•			10.00		•	



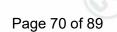
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.33	41.51	54.00	12.49	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	62.47	65.61	54.00	-11.61	Pass	Vertical
100							1000			

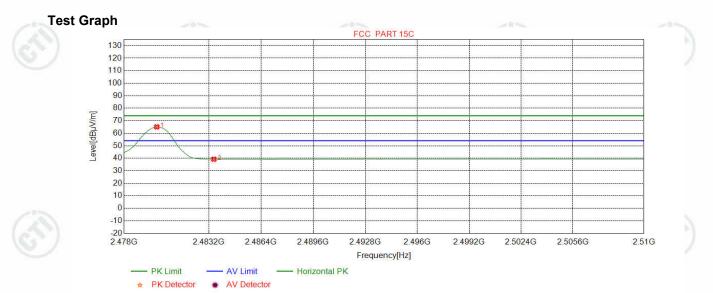


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8423	32.37	13.39	-42.39	89.93	93.30	74.00	-19.30	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.10	52.46	74.00	21.54	Pass	Horizontal
1	V.			•		•		1 C	•	1.0



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8824	32.37	13.39	-42.39	89.74	93.11	74.00	-19.11	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.48	53.84	74.00	20.16	Pass	Vertical
100				•		•		10 C		1.0

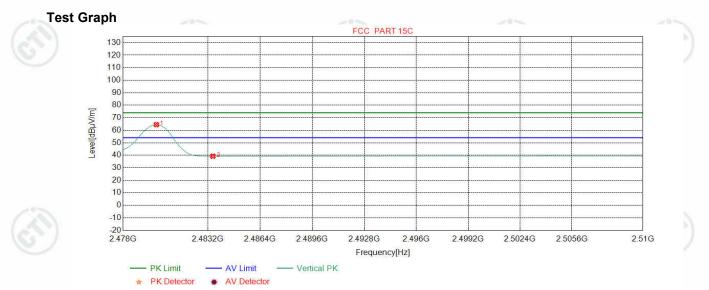




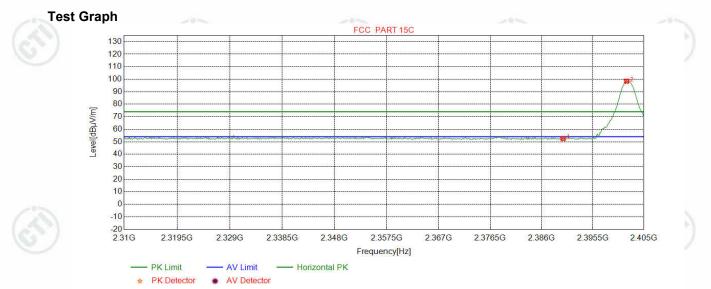
Mode:GFSK TransmittingChannel:2480Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	61.69	65.06	54.00	-11.06	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	35.89	39.25	54.00	14.75	Pass	Horizontal
100		100					1000			

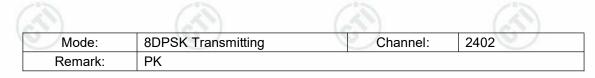


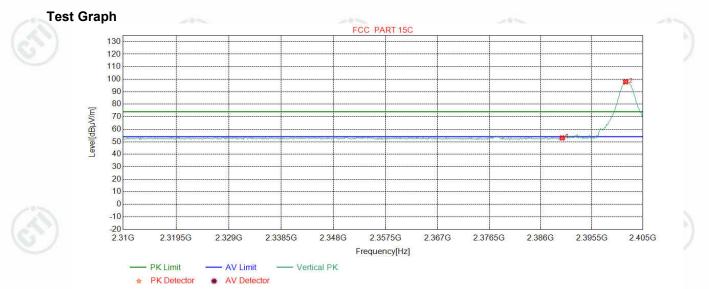


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-42.39	61.12	64.49	54.00	-10.49	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	35.88	39.24	54.00	14.76	Pass	Vertical
10	2			•			1000		•	100

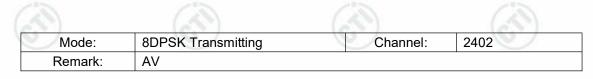


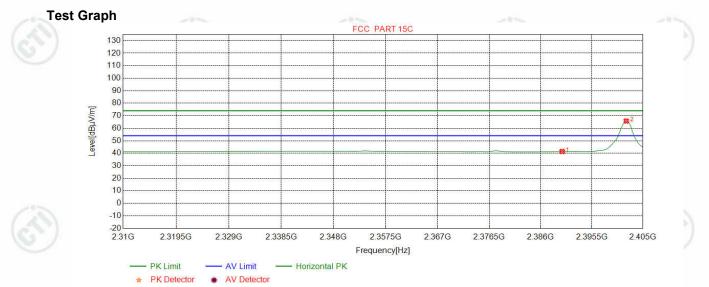
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.35	52.53	74.00	21.47	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	95.29	98.43	74.00	-24.43	Pass	Horizontal
100							1000			



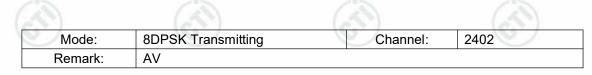


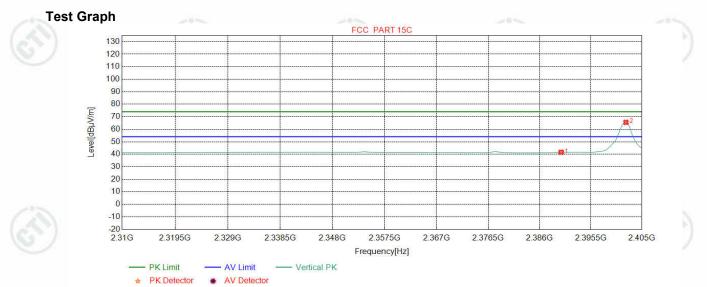
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.89	53.07	74.00	20.93	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	94.76	97.90	74.00	-23.90	Pass	Vertical
100		100					1000			




(A

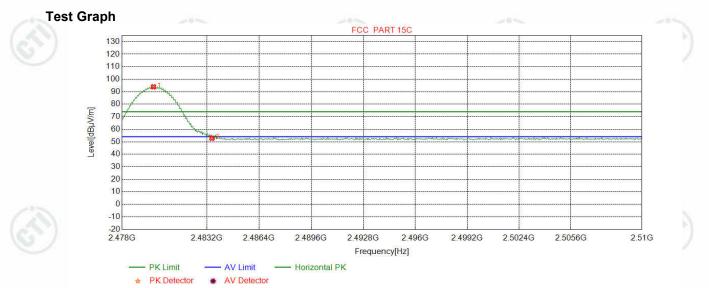
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.24	41.42	54.00	12.58	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	62.61	65.75	54.00	-11.75	Pass	Horizontal
1.0				•			1000		•	100



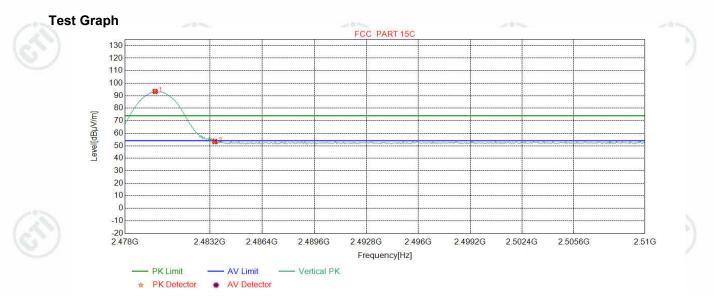


Report No. : EED32L00319902

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.41	41.59	54.00	12.41	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	62.38	65.52	54.00	-11.52	Pass	Vertical
100	2						1000			



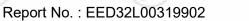
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9224	32.37	13.39	-42.39	90.52	93.89	74.00	-19.89	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.46	52.82	74.00	21.18	Pass	Horizontal
1	V			•				1 C	•	1.0

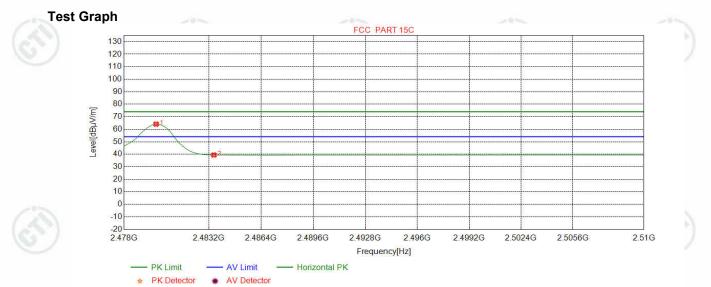


Page 77 of 89

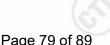
Mode:8DPSK TransmittingChannel:2480Remark:PK

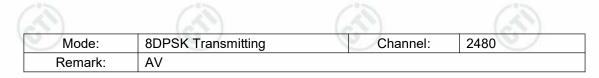
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8423	32.37	13.39	-42.39	90.04	93.41	74.00	-19.41	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.97	53.33	74.00	20.67	Pass	Vertical
1.0	2			•			1000			100

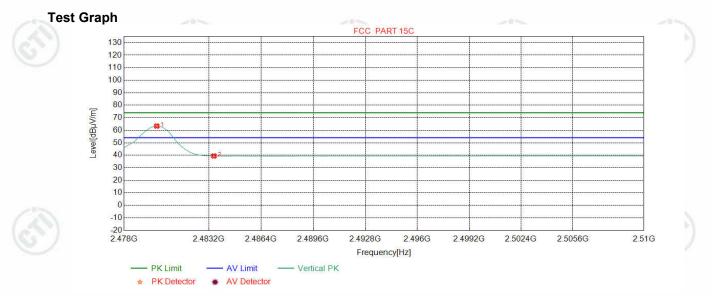




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	60.68	64.05	54.00	-10.05	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.07	39.43	54.00	14.57	Pass	Horizontal
1	V	1		•					•	




Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 79 of 89

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	59.98	63.35	54.00	-9.35	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.05	39.41	54.00	14.59	Pass	Vertical
100										100

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix L) Radiated Spurious Emissions

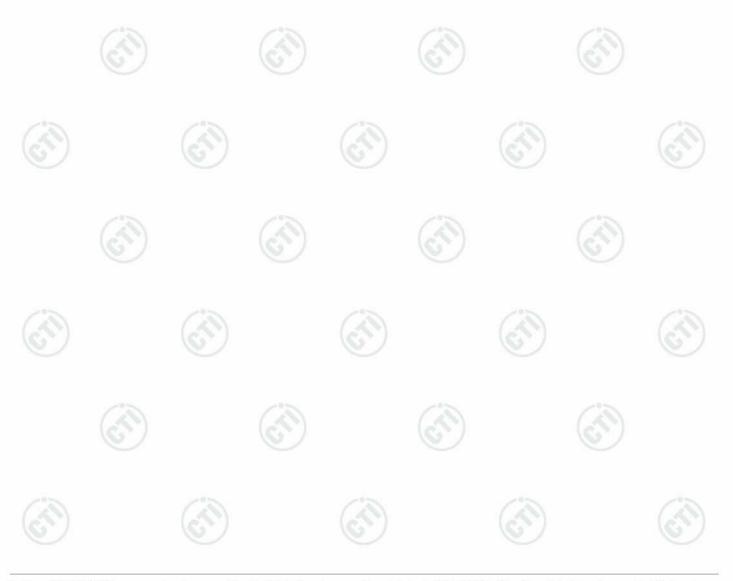
Receiver Setup:	6	0			6	
	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
(0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	
Test Procedure:	(621)	C	20		(6))	

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Limit: Field strength Limit Measurement Remark Frequency (microvolt/meter) (dBuV/m) distance (m) 0.009MHz-0.490MHz 2400/F(kHz) 300 --0.490MHz-1.705MHz 24000/F(kHz) 30 4 -1.705MHz-30MHz 30 30 _ _ 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 3 150 43.5 Quasi-peak 216MHz-960MHz 46.0 3 200 Quasi-peak 960MHz-1GHz 500 54.0 3 Quasi-peak Above 1GHz 500 54.0 Average 3 Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.
- j. Repeat above procedures until all frequencies measured was complete.



Report No. : EED32L00319902

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

:		GFSK T	ransmitting)			Channel:		2441	
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
47.8498	13.20	0.78	-32.12	39.85	21.71	40.00	18.29	Pass	Н	PK
96.2576	10.40	1.13	-32.07	44.72	24.18	43.50	19.32	Pass	Н	PK
308.3208	13.38	2.08	-31.88	46.42	30.00	46.00	16.00	Pass	Н	PK
458.6859	16.34	2.55	-31.84	46.50	33.55	46.00	12.45	Pass	Н	PK
576.7467	18.53	2.88	-31.98	42.23	31.66	46.00	14.34	Pass	Н	PK
974.9715	22.55	3.75	-30.95	36.18	31.53	54.00	22.47	Pass	Н	PK
104.9885	10.95	1.20	-32.06	40.34	20.43	43.50	23.07	Pass	V	PK
208.8859	11.13	1.71	-31.94	43.98	24.88	43.50	18.62	Pass	V	PK
287.1727	12.94	2.02	-31.89	44.31	27.38	46.00	18.62	Pass	V	PK
467.9018	16.49	2.58	-31.87	42.16	29.36	46.00	16.64	Pass	V	PK
649.9890	19.40	3.10	-32.07	41.07	31.50	46.00	14.50	Pass	V	PK
974.9715	22.55	3.75	-30.95	35.17	30.52	54.00	23.48	Pass	V	PK
	[MHz] 47.8498 96.2576 308.3208 458.6859 576.7467 974.9715 104.9885 208.8859 287.1727 467.9018 649.9890	Freq. [MHz]Factor [dB]47.849813.2096.257610.40308.320813.38458.685916.34576.746718.53974.971522.55104.988510.95208.885911.13287.172712.94467.901816.49649.989019.40	Freq. [MHz]Factor [dB]loss [dB]47.849813.200.7896.257610.401.13308.320813.382.08458.685916.342.55576.746718.532.88974.971522.553.75104.988510.951.20208.885911.131.71287.172712.942.02467.901816.492.58649.989019.403.10	Freq. [MHz]Factor [dB]loss [dB]gain [dB]47.849813.200.78-32.1296.257610.401.13-32.07308.320813.382.08-31.88458.685916.342.55-31.84576.746718.532.88-31.98974.971522.553.75-30.95104.988510.951.20-32.06208.885911.131.71-31.94287.172712.942.02-31.89467.901816.492.58-31.87649.989019.403.10-32.07	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dB]47.849813.200.78-32.1239.8596.257610.401.13-32.0744.72308.320813.382.08-31.8846.42458.685916.342.55-31.8446.50576.746718.532.88-31.9842.23974.971522.553.75-30.9536.18104.988510.951.20-32.0640.34208.885911.131.71-31.9443.98287.172712.942.02-31.8742.16649.989019.403.10-32.0741.07	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV]47.849813.200.78-32.1239.8521.7196.257610.401.13-32.0744.7224.18308.320813.382.08-31.8846.4230.00458.685916.342.55-31.8446.5033.55576.746718.532.88-31.9842.2331.66974.971522.553.75-30.9536.1831.53104.988510.951.20-32.0640.3420.43208.885911.131.71-31.9443.9824.88287.172712.942.02-31.8944.3127.38467.901816.492.58-31.8742.1629.36649.989019.403.10-32.0741.0731.50	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV]Limit 	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV/n]Limit [dBµV/m]Margin [dB]Result47.849813.200.78-32.1239.8521.7140.0018.29Pass96.257610.401.13-32.0744.7224.1843.5019.32Pass308.320813.382.08-31.8846.4230.0046.0016.00Pass458.685916.342.55-31.8446.5033.5546.0012.45Pass576.746718.532.88-31.9842.2331.6646.0014.34Pass974.971522.553.75-30.9536.1831.5354.0022.47Pass104.988510.951.20-32.0640.3420.4343.5018.62Pass208.885911.131.71-31.9443.9824.8843.5018.62Pass287.172712.942.02-31.8944.3127.3846.0018.62Pass467.901816.492.58-31.8742.1629.3646.0016.64Pass649.989019.403.10-32.0741.0731.5046.0014.50Pass	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity47.849813.200.78-32.1239.8521.7140.0018.29PassH96.257610.401.13-32.0744.7224.1843.5019.32PassH308.320813.382.08-31.8846.4230.0046.0016.00PassH458.685916.342.55-31.8446.5033.5546.0012.45PassH576.746718.532.88-31.9842.2331.6646.0014.34PassH974.971522.553.75-30.9536.1831.5354.0022.47PassH104.988510.951.20-32.0640.3420.4343.5018.62PassV208.885911.131.71-31.9443.9824.8843.5018.62PassV287.172712.942.02-31.8944.3127.3846.0018.62PassV467.901816.492.58-31.8742.1629.3646.0016.64PassV649.989019.403.10-32.0741.0731.5046.0014.50PassV

Transmitter Emission above 1GHz

Mode	:		GFSK T	ransmitting	1			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3203.0135	33.28	4.64	-42.00	50.83	46.75	74.00	27.25	Pass	Н	PK
2	4241.0827	34.14	4.50	-40.84	49.10	46.90	74.00	27.10	Pass	Н	PK
3	4804.1203	34.50	4.55	-40.66	64.11	62.50	74.00	11.50	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	55.18	56.28	74.00	17.72	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	50.15	53.66	74.00	20.34	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	46.30	52.00	74.00	22.00	Pass	Н	PK
7	4804.0403	34.50	4.55	-40.66	42.59	40.98	54.00	13.02	Pass	Н	AV
8	2195.5196	31.97	3.65	-42.52	56.30	49.40	74.00	24.60	Pass	V	PK
9	3959.0639	33.77	4.34	-40.87	49.83	47.07	74.00	26.93	Pass	V	PK
10	4804.1203	34.50	4.55	-40.66	64.53	62.92	74.00	11.08	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	52.03	53.13	74.00	20.87	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	52.43	55.94	74.00	18.06	Pass	V	PK
13	12010.0000	39.31	7.60	-41.21	44.95	50.65	74.00	23.35	Pass	V	PK
14	4804.1103	34.50	4.55	-40.66	41.77	40.16	54.00	13.84	Pass	V	AV

						1			12		
Mode	:		GFSK T	ransmitting	9			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1992.4993	31.65	3.46	-42.61	58.22	50.72	74.00	23.28	Pass	Н	PK
2	3081.0054	33.23	4.76	-42.07	49.83	45.75	74.00	28.25	Pass	Н	PK
3	4882.1255	34.50	4.81	-40.60	59.62	58.33	74.00	15.67	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.92	48.75	50.10	74.00	23.90	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	49.04	52.84	74.00	21.16	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	46.48	52.41	74.00	21.59	Pass	Н	PK
7	4881.3955	34.50	4.81	-40.60	40.50	39.21	54.00	14.79	Pass	Н	AV
8	2952.1952	33.12	4.41	-42.15	50.45	45.83	74.00	28.17	Pass	V	PK
9	3795.0530	33.64	4.37	-41.21	49.39	46.19	74.00	27.81	Pass	V	PK
10	4882.1255	34.50	4.81	-40.60	62.48	61.19	74.00	12.81	Pass	V	PK
11	7323.0000	36.42	5.85	-40.92	51.50	52.85	74.00	21.15	Pass	V	PK
12	9764.0000	37.71	6.71	-40.62	52.54	56.34	74.00	17.66	Pass	V	PK
13	12205.0000	39.42	7.67	-41.16	45.22	51.15	74.00	22.85	Pass	V	PK
14	4881.6055	34.50	4.81	-40.60	41.13	39.84	54.00	14.16	Pass	V	AV

Page 83 of 89

	20 B Mar						8 mil		20 B Mar		
Mode	:		GFSK T	ransmitting	9			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2993.7994	33.19	4.53	-42.12	50.77	46.37	74.00	27.63	Pass	Н	PK
2	4092.0728	33.93	4.32	-40.80	49.37	46.82	74.00	27.18	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	61.65	60.44	74.00	13.56	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	47.94	49.51	74.00	24.49	Pass	н	PK
5	9920.0000	37.77	6.79	-40.48	46.30	50.38	74.00	23.62	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	46.36	52.64	74.00	21.36	Pass	Н	PK
7	4959.4206	34.50	4.82	-40.53	40.16	38.95	54.00	15.05	Pass	Н	AV
8	2920.7921	33.07	4.39	-42.16	50.38	45.68	74.00	28.32	Pass	V	PK
9	3579.0386	33.46	4.38	-41.65	48.89	45.08	74.00	28.92	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	61.99	60.78	74.00	13.22	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	49.92	51.49	74.00	22.51	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	46.91	50.99	74.00	23.01	Pass	V	PK
13	12400.0000	39.54	7.86	-41.12	47.23	53.51	74.00	20.49	Pass	V	PK
14	4959.4107	34.50	4.82	-40.53	40.55	39.34	54.00	14.66	Pass	V	AV

			1000			100					
Mode:			8DPSK Transmitting					Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2958.3958	33.13	4.43	-42.14	50.99	46.41	74.00	27.59	Pass	н	PK
2	3758.0505	33.61	4.35	-41.28	49.57	46.25	74.00	27.75	Pass	Н	PK
3	4804.1203	34.50	4.55	-40.66	60.87	59.26	74.00	14.74	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	50.55	51.65	74.00	22.35	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	48.44	51.95	74.00	22.05	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	46.34	52.04	74.00	21.96	Pass	Н	PK
7	4803.4803	34.50	4.55	-40.66	40.58	38.97	54.00	15.03	Pass	н	AV
8	3203.0135	33.28	4.64	-42.00	51.89	47.81	74.00	26.19	Pass	V	PK
9	3842.0561	33.67	4.36	-41.10	49.13	46.06	74.00	27.94	Pass	V	PK
10	4804.1203	34.50	4.55	-40.66	60.14	58.53	74.00	15.47	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	48.40	49.50	74.00	24.50	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	48.79	52.30	74.00	21.70	Pass	V	PK
13	12010.0000	39.31	7.60	-41.21	45.61	51.31	74.00	22.69	Pass	V	PK
14	4803.4203	34.50	4.55	-40.66	40.00	38.39	54.00	15.61	Pass	V	AV

Page 84 of 89

Mode:			8DPSK Transmitting					Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3187.0125	33.27	4.63	-42.00	49.70	45.60	74.00	28.40	Pass	н	PK
2	3963.0642	33.77	4.34	-40.86	49.31	46.56	74.00	27.44	Pass	Н	PK
3	4882.0000	34.50	4.81	-40.60	60.45	59.16	74.00	14.84	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.92	46.43	47.78	74.00	26.22	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	47.47	51.27	74.00	22.73	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	45.74	51.67	74.00	22.33	Pass	н	PK
7	4881.5055	34.50	4.81	-40.60	40.61	39.32	54.00	14.68	Pass	Н	AV
8	2599.5600	32.56	4.10	-42.34	54.01	48.33	74.00	25.67	Pass	V	PK
9	3199.0133	33.28	4.65	-42.00	54.84	50.77	74.00	23.23	Pass	V	PK
10	4882.1255	34.50	4.81	-40.60	58.62	57.33	74.00	16.67	Pass	V	PK
11	7323.0000	36.42	5.85	-40.92	48.56	49.91	74.00	24.09	Pass	V	PK
12	9764.0000	37.71	6.71	-40.62	49.37	53.17	74.00	20.83	Pass	V	PK
13	12205.0000	39.42	7.67	-41.16	45.93	51.86	74.00	22.14	Pass	V	PK
14	4881.5455	34.50	4.81	-40.60	40.23	38.94	54.00	15.06	Pass	V	AV

Mode:			8DPSK Transmitting					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3202.0135	33.28	4.64	-42.00	49.71	45.63	74.00	28.37	Pass	Н	PK
2	4205.0803	34.09	4.48	-40.83	48.87	46.61	74.00	27.39	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	60.00	58.79	74.00	15.21	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	48.52	50.09	74.00	23.91	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	45.95	50.03	74.00	23.97	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	47.57	53.85	74.00	20.15	Pass	Н	PK
7	4959.4207	34.50	4.82	-40.53	39.50	38.29	54.00	15.71	Pass	Н	AV
8	2194.9195	31.97	3.65	-42.52	60.14	53.24	74.00	20.76	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	63.25	62.04	74.00	11.96	Pass	V	PK
10	4960.1307	34.50	4.82	-40.53	63.25	62.04	74.00	11.96	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	48.07	49.64	74.00	24.36	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	45.74	49.82	74.00	24.18	Pass	V	PK
13	12400.0000	39.54	7.86	-41.12	47.31	53.59	74.00	20.41	Pass	V	PK
14	4959.4307	34.50	4.82	-40.53	39.99	38.78	54.00	15.22	Pass	V	AV

Report No. : EED32L00319902

Page 85 of 89

Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Note:

Hotline: 400-6788-333

www.cti-cert.com E-mail: info@cti-cert.com

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.