

FCC Test Report

Application No.: DNT2409290342R2251-03864

Applicant: Guangzhou Xinchen Intelligent Technology Co., Ltd

Room 499, Room A161, No.89 Yanling Road, Tianhe District, Guangzhou,

Address of Applicant:

China

EUT Description: Life is for Fun Series TWS Wireless Earbuds

Model No.: L99

FCC ID: 2BB2Y-L99

Power Supply: DC 3.7V From Battery

Charging Voltage: DC 5V

Trade Mark: /

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2024/10/8

Date of Test: 2024/10/09 to 2024/10/20

Date of Issue: 2024/10/24

Test Result: PASS

Prepared By: Wayne . Jon (Testing Engineer)

Reviewed By: _____ (Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

Report No.: DNT2409290342R2251-03864

Date: October 24, 2024

Page: 2/65

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Oct.24, 2024	Valid	Original Report

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 3 / 65

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2013	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2013	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10: 2013	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2013	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2013	Clause 3.11	N/A

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: October 24, 2024

Page: 4/65

Contents

1 Test S	Summary	3
2 Gener	eral Information	5
2.1	Test Location	5
2.2	General Description of EUT	6
2.3	Channel List	7
2.4	Test Environment and Mode	8
2.5	Power Setting of Test Software	9
2.6	Description of Support Units	9
2.7	Test Facility	9
2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
2.9	Equipment List	11
2.10	Assistant equipment used for test	12
3 Test re	results and Measurement Data	13
3.1	Antenna Requirement	13
3.2	20dB Emission Bandwidth	14
3.3	Conducted Output Power	15
3.4	Carrier Frequencies Separationy	16
3.5	Dwell Time	17
3.6	Hopping Channel Number	18
3.7	Band-edge for RF Conducted Emissions	19
3.8	RF Conducted Spurious Emissions	20
3.9	Radiated Spurious Emissions	21
3.10	Restricted bands around fundamental frequency	29
3.11	AC Power Line Conducted Emissions	33
4 Apper	endix	35
Appen	ndix A: 20dB Emission Bandwidth	
Appen	ndix B: Maximum conducted output power	39
Appen	ndix C: Carrier frequency separation	43
Appen	ndix D: Dwell Time	45
Appen	ndix F: Number of hopping channels	46
	ndix F: Band edge measurements	
Appen	ndix F: Conducted Spurious Emission	

Report No.: DNT2409290342R2251-03864

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 6 / 65

2.2 General Description of EUT

Manufacturer:	Guangzhou Xinchen Intelligent Technology Co., Ltd
Address of Manufacturer:	Room 499, Room A161, No.89 Yanling Road, Tianhe District, Guangzhou, China
Test EUT Description:	Life is for Fun Series TWS Wireless Earbuds
Model No.:	L99
Additional Model(s):	7
Chip Type:	AB5656C
Serial number:	PR2409290342R2251
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
Trade Mark:	
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK
Sample Type:	□ Portable Device, □ Module, □ Mobile Device
Antenna Type:	☐ External, ☑ Integrated
Antenna Ports:	
Antonno Cointe	⊠ Provided by applicant
Antenna Gain*:	1.7dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

^{*}Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 7 / 65

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
. 8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: DNT2409290342R2251-03864

Date: October 24, 2024 Page: 8 / 65

2.4 5Test Environment and Mode

Operating Environment:			
Temperature:	20~25.0 °C		
Humidity:	45~56 % RH		
Atmospheric Pressure:	101.0~101.30 KPa		
Test mode:			
Transmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

Report No.: DNT2409290342R2251-03864

Date: October 24, 2024 Page: 9 / 65

2.5 Power Setting of Test Software

Software Name	\bigcirc , \bigcirc ,	BT_Tool_v1.1.2	O, O , O
Frequency(MHz)	2402	2441	2480
GFSK Setting	2	2	2
π/4-DQPSK Setting	2	2	2
8DPSK	2	2	2

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	4 0 14 1950 4 5 14	9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

Page: 10 / 65

No.	Item	Measurement Uncertainty		
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
	0, 0, 0, 0, 0,	± 4.8dB (Below 1GHz)		
0	Dedicted Environmen	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
	of of of of	± 5.02dB (Above 18GHz)		

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024

Page: 11 / 65

2.9 Equipment List

For Connect EUT Antenna Terminal Test							
Description	Manufacturer	Model	Serial Number	Cal date	Due date		
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24		
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24		
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24		
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24		
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24		
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA		
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA		
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24		
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24		
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24		

	Test Equipment for Conducted Emission									
Description	Description Manufacturer Model Serial Number Cal Date Due D									
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23					
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23					
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23					

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 12 / 65

Test E	quipment for I	Radiated Emi	ssion(Above	1000MHz	<u>z</u>)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

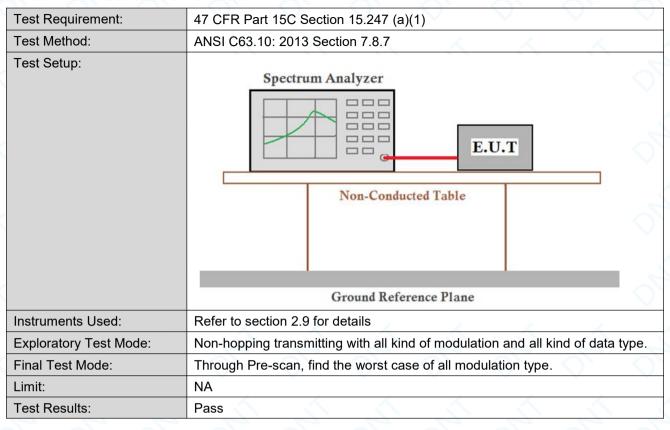
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Page: 13/65

Date: October 24, 2024

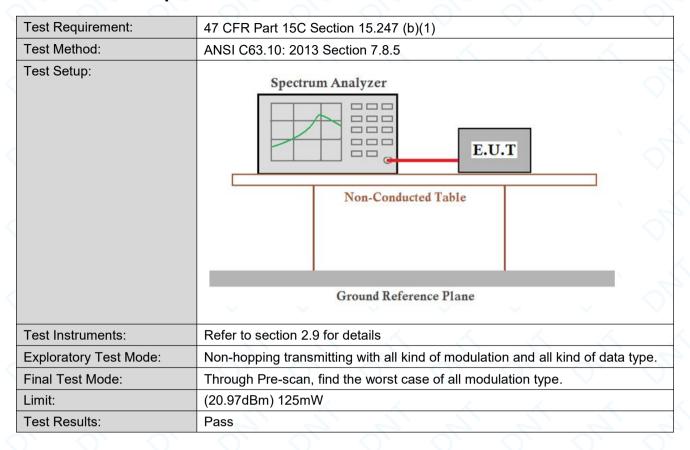
15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.7dBi.

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 14 / 65

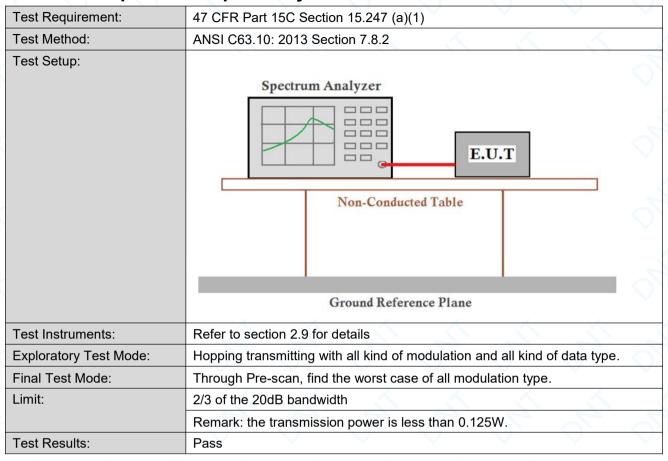
3.2 20dB Emission Bandwidth



The detailed test data see: Appendix A

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 15 / 65

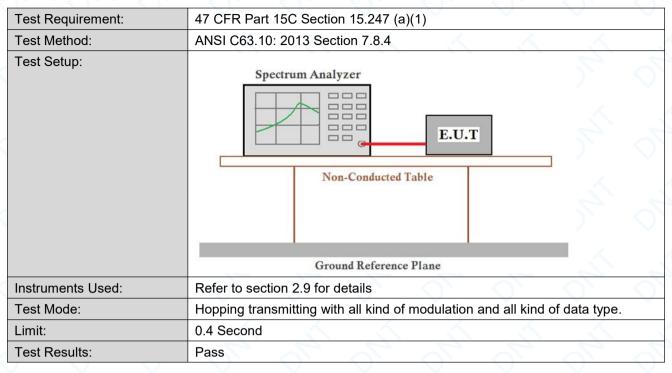
3.3 Conducted Output Power



The detailed test data see: Appendix B

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 16 / 65

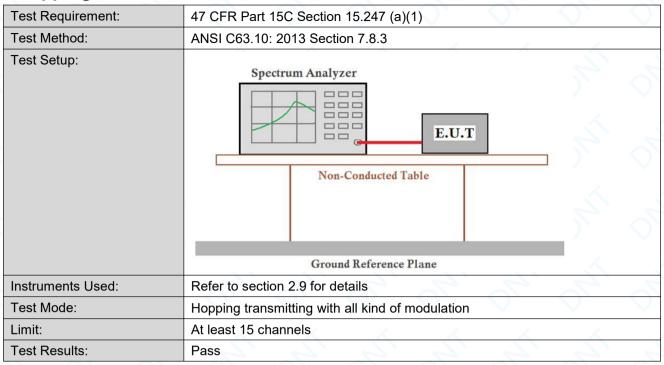
3.4 Carrier Frequencies Separationy



The detailed test data see: Appendix C

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 17 / 65

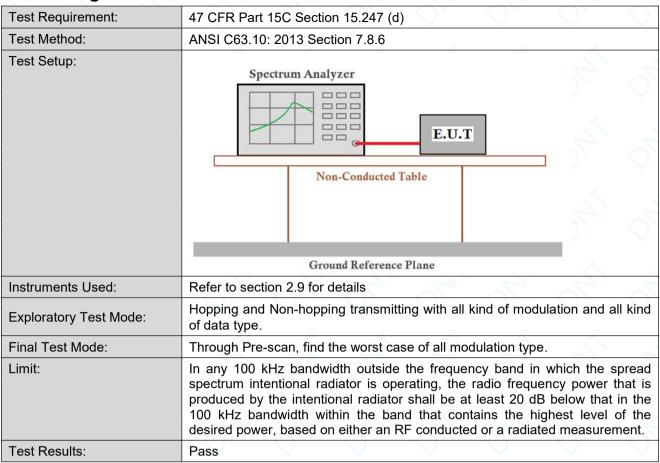
3.5 Dwell Time



The detailed test data see: Appendix D

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 18 / 65

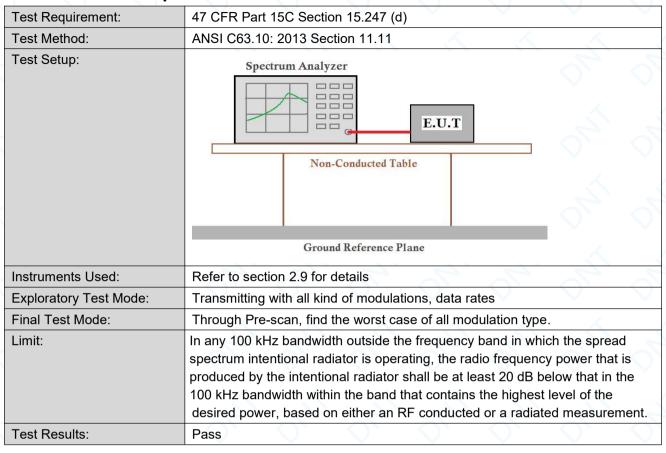
3.6 Hopping Channel Number



The detailed test data see: Appendix E

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 19 / 65

3.7 Band-edge for RF Conducted Emissions



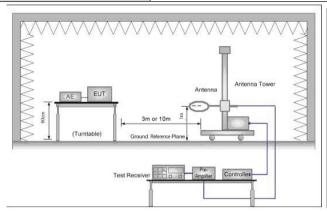
The detailed test data see: Appendix F

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 20 / 65

3.8 RF Conducted Spurious Emissions

The detailed test data see: Appendix G

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 21 / 65


3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20	05		~
Test Method:	ANSI C63.10: 2013 Sect	ion 11.12			
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	6
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average
				≥1/T (DC<0.98)	
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- <	-<	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	6-7	30
	1.705MHz-30MHz	30		<u> </u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lir	nit

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 22

/ 65

Test Setup:

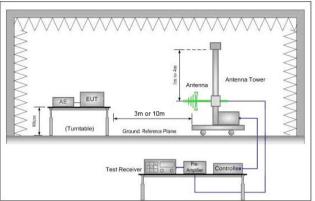


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

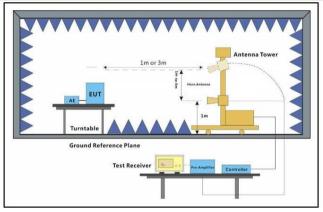


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for

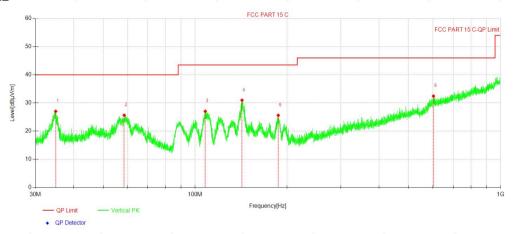
Dongguan DN Testing Co., Ltd.

Report No.: DNT2409290342R2251-03864

Date: October 24, 2024 Page: 23

/ 65

	Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Test Configuration:	 Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



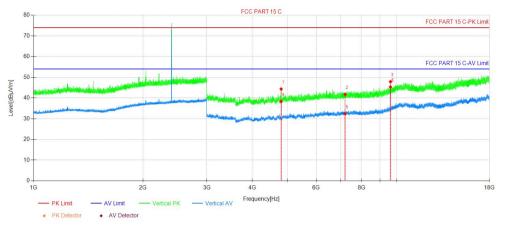
Report No.: DNT2409290342R2251-03864 Date: October 24, 2024


Page: 24 / 65

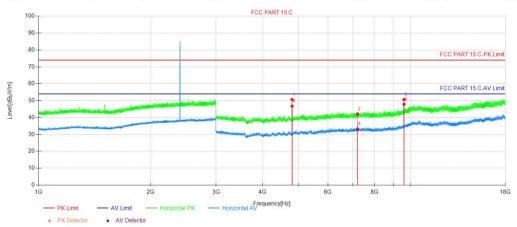
Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	34.94	36.37	-9.35	27.02	40.00	12.98	100	39	QP	Vertical
2	58.57	34.25	-8.61	25.64	40.00	14.36	100	229	QP	Vertical
3	107.96	38.50	-11.46	27.04	43.50	16.46	100	39	QP	Vertical
4	142.37	39.30	-8.32	30.98	43.50	12.52	100	360	QP	Vertical
5	187.16	35.84	-10.23	25.61	43.50	17.89	100	86	QP	Vertical
6	603.11	31.68	0.76	32.44	46.00	13.56	100	154	QP	Vertical

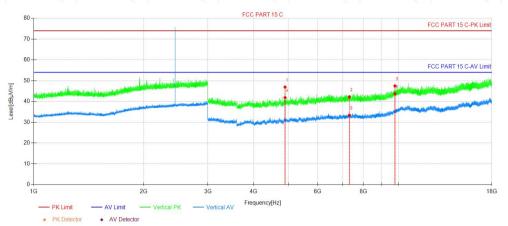


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	41.46	29.92	-8.58	21.34	40.00	18.66	100	32	QP	Horizontal
2	65.22	29.35	-9.35	20.00	40.00	20.00	100	171	QP	Horizontal
3	144.94	36.84	-8.17	28.67	43.50	14.83	100	360	QP	Horizontal
4	187.35	36.05	-10.25	25.80	43.50	17.70	100	324	QP	Horizontal
5	442.05	30.76	-3.00	27.76	46.00	18.24	100	134	QP	Horizontal
6	723.24	32.34	2.62	34.96	46.00	11.04	100	140	QP	Horizontal

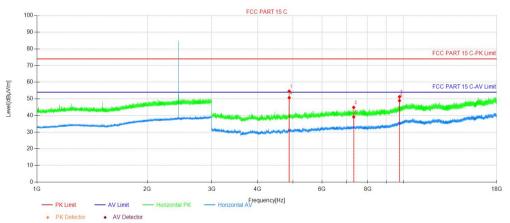


Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 25 / 65

For above 1GHz DH5 2402MHz


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4804.59	48.95	-4.61	44.34	74.00	29.66	150	306	Peak	Vertical
2	7206.21	43.47	-1.76	41.71	74.00	32.29	150	252	Peak	Vertical
3	9607.83	47.01	0.87	47.88	74.00	26.12	150	14	Peak	Vertical
4	4804.59	42.91	-4.61	38.30	54.00	15.70	150	306	AV	Vertical
5	7206.21	34.16	-1.76	32.40	54.00	21.60	150	306	AV	Vertical
6	9608.58	44.44	0.88	45.32	54.00	8.68	150	14	AV	Vertical

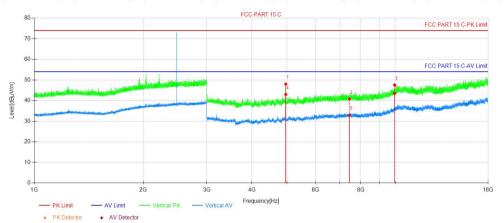
-											
	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	4803.84	55.24	-4.61	50.63	74.00	23.37	150	128	Peak	Horizon
	2	7206.21	43.89	-1.76	42.13	74.00	31.87	150	51	Peak	Horizon
	3	9607.83	49.80	0.87	50.67	74.00	23.33	150	8	Peak	Horizon
	4	4804.59	51.39	-4.61	46.78	54.00	7.22	150	292	AV	Horizon
	5	7206.21	35.01	-1.76	33.25	54.00	20.75	150	292	AV	Horizon
	6	9608.58	47.00	0.88	47.88	54.00	6.12	150	8	AV	Horizon


Report No.: DNT2409290342R2251-03864 Date: October 24, 2024

DH5 2441MHz

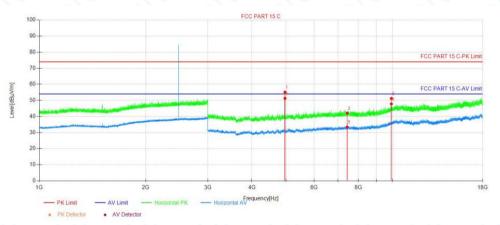
Page: 26 / 65

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	51.62	-4.72	46.90	74.00	27.10	150	300	Peak	Vertical
2	7323.21	43.65	-1.49	42.16	74.00	31.84	150	149	Peak	Vertical
3	9763.83	45.82	1.64	47.46	74.00	26.54	150	356	Peak	Vertical
4	4882.59	46.56	-4.72	41.84	54.00	12.16	150	312	AV	Vertical
5	7323.21	34.87	-1.49	33.38	54.00	20.62	150	51	AV	Vertical
6	9764.58	42.03	1.64	43.67	54.00	10.33	150	356	AV	Vertical



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	59.29	-4.72	54.57	74.00	19.43	150	283	Peak	Horizon
2	7323.21	46.35	-1.49	44.86	74.00	29.14	150	37	Peak	Horizon
3	9763.83	49.59	1.64	51.23	74.00	22.77	150	51	Peak	Horizon
4	4882.59	55.39	-4.72	50.67	54.00	3.33	150	300	AV	Horizon
5	7323.96	40.64	-1.49	39.15	54.00	14.85	150	51	AV	Horizon
6	9764.58	47.28	1.64	48.92	54.00	5.08	150	51	AV	Horizon

Report No.: DNT2409290342R2251-03864


Page: 27 / 65

DH5 2480MHz

Date: October 24, 2024

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4960.59	52.83	-4.86	47.97	74.00	26.03	150	295	Peak	Vertical
2	7440.22	42.12	-1.34	40.78	74.00	33.22	150	34	Peak	Vertical
3	9919.84	45.30	2.26	47.56	74.00	26.44	150	7	Peak	Vertical
4	4960.59	47.84	-4.86	42.98	54.00	11.02	150	313	AV	Vertical
5	7440.22	34.14	-1.34	32.80	54.00	21.20	150	62	AV	Vertical
6	9920.59	41.20	2.27	43.47	54.00	10.53	150	7	AV	Vertical

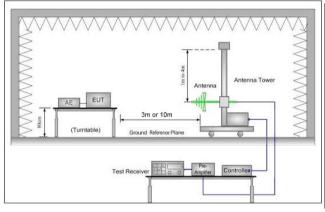
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	59.99	-4.86	55.13	74.00	18.87	150	291	Peak	Horizon
2	7440.22	43.46	-1.34	42.12	74.00	31.88	150	39	Peak	Horizon
3	9919.84	48.96	2.26	51.22	74.00	22.78	150	2	Peak	Horizon
4	4960.59	56.14	-4.86	51.28	54.00	2.72	150	291	AV	Horizon
5	7440.22	34.76	-1.34	33.42	54.00	20.58	150	56	AV	Horizon
6	9920.59	45.53	2.27	47.80	54.00	6.20	150	12	AV	Horizon

Report No.: DNT2409290342R2251-03864

Page: 28 / 65

Date: October 24, 2024

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 29 / 65

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12								
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
Limit:	Frequency	Limit (dBuV/m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak							
	88MHz-216MHz	43.5	Quasi-peak							
	216MHz-960MHz	46.0	Quasi-peak							
	960MHz-1GHz	54.0	Quasi-peak							
	Ab 4011-	54.0	Average Value							
	Above 1GHz	74.0	Peak Value							
Test Setup:										

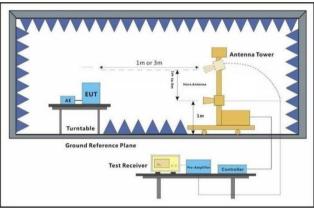


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

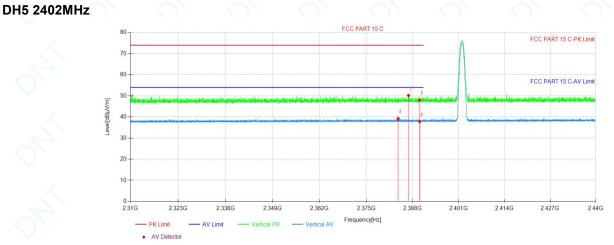
Test Procedure:

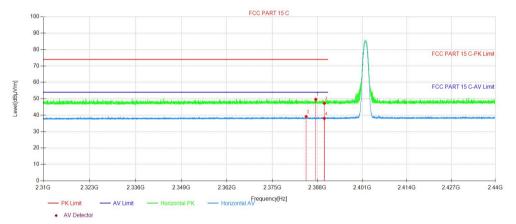
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
 - Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz

Dongguan DN Testing Co., Ltd.

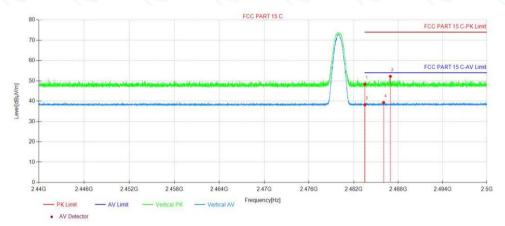

Report No.: DNT	2409290342R2251-03864	Date: October 24, 2024	Page: 30 / 6
	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 		OF OF
	 RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak 	VE 1000 WI12	
	 Sweep time = auto Trace mode = max hold Average Measurements A RBW = 1 MHz 	bove 1000MHz	
	• VBW ≥ 1/T, when duty minimum	ty cycle is no less than 98 percent cycle is less than 98 percent when the transmitter is on and is transmitted the tested mode of operation.	re T is the
Exploratory Test Mode:	Transmitting with all kind of modu Transmitting mode.	ılations, data rates.	0 0
Final Test Mode:	Pretest the EUT Transmitting mo Through Pre-scan, find the DH5 type. Only the worst case is recorded i	of data type is the worst case of al	ll modulation
Instruments Used:	Refer to section 2.9 for details	A A A	
Test Results:	Pass		P (P)


Report No.: DNT2409290342R2251-03864

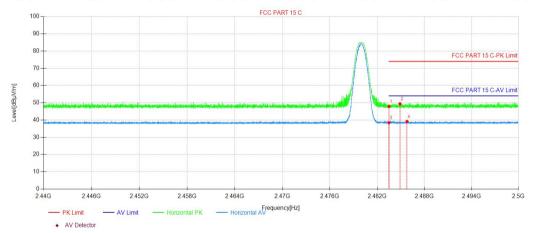
Date: October 24, 2024 Page: 31 / 65

Test Date

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2386.88	50.94	-0.81	50.13	74.00	23.87	150	160	Peak	Vertical
2	2390.01	48.81	-0.80	48.01	74.00	25.99	150	251	Peak	Vertical
3	2383.96	40.06	-0.82	39.24	54.00	14.76	150	216	AV	Vertical
4	2390.01	38.65	-0.80	37.85	54.00	16.15	150	124	AV	Vertical



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2387.53	50.48	-0.80	49.68	74.00	24.32	150	178	Peak	Horizon
2	2390.01	48.07	-0.80	47.27	74.00	26.73	150	97	Peak	Horizon
3	2384.75	39.97	-0.82	39.15	54.00	14.85	150	287	AV	Horizon
4	2390.01	38.83	-0.80	38.03	54.00	15.97	150	147	AV	Horizon



Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 32 / 65

DH5 2480MHz

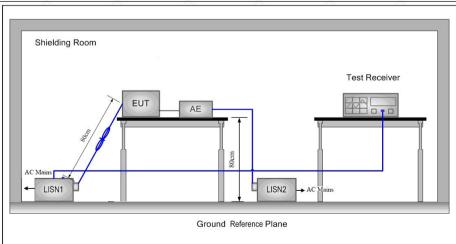
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.51	48.59	-0.29	48.30	74.00	25.70	150	206	Peak	Vertical
2	2486.94	52.46	-0.26	52.20	74.00	21.80	150	145	Peak	Vertical
3	2483.51	38.49	-0.29	38.20	54.00	15.80	150	81	AV	Vertical
4	2486.03	39.61	-0.27	39.34	54.00	14.66	150	242	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	48.12	-0.29	47.83	74.00	26.17	150	252	Peak	Horizon
2	2484.90	49.67	-0.27	49.40	74.00	24.60	150	20	Peak	Horizon
3	2483.50	38.68	-0.29	38.39	54.00	15.61	150	100	AV	Horizon
4	2485.79	39.44	-0.27	39.17	54.00	14.83	150	11	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.


2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 33 / 65

3.11 AC Power Line Conducted Emissions

ANSI C63.10: 2013							
ANSI C03. 10. 2013		X X					
150kHz to 30MHz							
(1411)	Limit (c	dBuV)					
Frequency range (MHZ)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
* Decreases with the logarith	nm of the frequency.						
room. 2) The EUT was connected Impedance Stabilization Net impedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip wisingle LISN provided the ration 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN 1 unit under test and bonded to mounted on top of the ground between the closest points of the EUT and associated equals of the interest and all of the interest.	to AC power source throwork) which provides a 5 es of all other units of the bonded to the ground reference plane, with a vertical ground reference plane was placed 0.8 m from to a ground reference plane. This conference plane and reference plane. This conference plane are was bonded to the hour and reference plane are was placed 0.8 m from the plane. This conference plane are plane was at least 0.8 m and the EU tipment was at least 0.8 m are mission, the relative potential provides the plane was bonded to the EU tipment was at least 0.8 m are emission, the relative potential provides the plane was bonded to the EU tipment was at least 0.8 m are emission, the relative potential provides and the EU tipment was at least 0.8 m are emission, the relative potential provides and the EU tipment was at least 0.8 m are emission, the relative potential provides and the EU tipment was at least 0.8 m are emission, the relative potential provides and the EU tipment was at least 0.8 m are emission, the relative potential provides and the EU tipment was at least 0.8 m are emission, the relative potential provides and the EU tipment was at least 0.8 m are emission, the relative potential provides are provided and the EU tipment was at least 0.8 m are emission.	eugh a LISN 1 (Line i0Ω/50μH + 5Ω linear e EUT were connected to eference ag measured. A ple power cables to a exceeded. It table 0.8m above the gement, the EUT was erence plane. The rear ference plane. The orizontal ground the boundary of the ne for LISNs distance was T. All other units of m from the LISN 2. ositions of					
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarith 1) The mains terminal disturtion. 2) The EUT was connected Impedance Stabilization Net impedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the rational ground reference plane. And placed on the horizontal ground reference plane. And placed on the horizontal ground reference plane. The LISN 1 unit under test and bonded to mounted on top of the ground between the closest points of the EUT and associated equal in order to find the maximum equipment and all of the interest.	Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was of the firetest of the firetest was of the firetest					

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Dongguan DN Testing Co., Ltd.

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 34 / 65

Charge + Transmitting mode.

Final Test Mode: Through Pre-scan, find the the worst case.

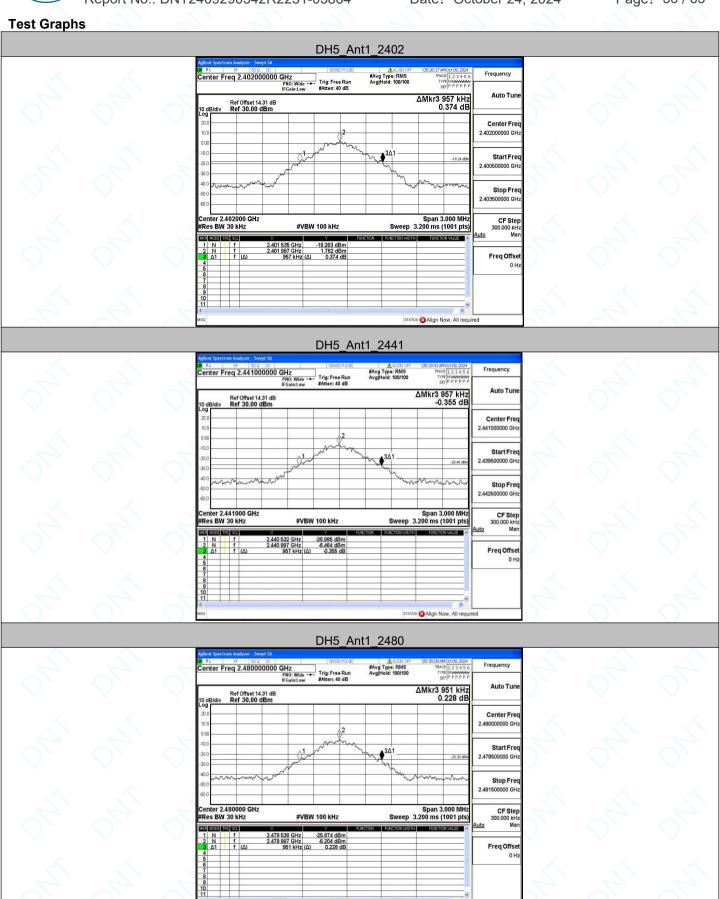
Instruments Used: Refer to section 2.9 for details

Test Results: NA

Note:The wireless function does not work while the prototype is charging.

Date: October 24, 2024 Page: 35 / 65

4 Appendix


Appendix A: 20dB Emission Bandwidth

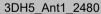
Test Result

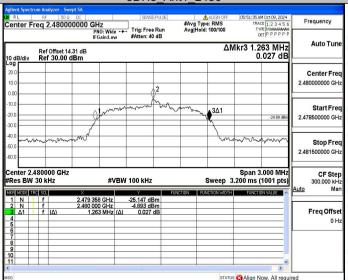
Test ivesuit							
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.957	2401.535	2402.492		
DH5	Ant1	2441	0.957	2440.532	2441.489	(-)-)
	_	2480	0.951	2479.538	2480.489		
/		2402	1.317	2401.337	2402.654	/	
2DH5	Ant1	2441	1.263	2440.370	2441.633	(
		2480	1.260	2479.373	2480.633		
		2402	1.254	2401.370	2402.624		
3DH5	Ant1	2441	1.272	2440.358	2441.630		
		2480	1.263	2479.358	2480.621	/	/

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 36 / 65

ATUS Align Now, All required

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 37 / 65 2DH5_Ant1_2402 RL RF 50.0 DC
enter Freq 2.402000000 GHz
PRO: Wide --If Gain.tow
#Atten: 40 dB #AUGN CF #Avg Type: RMS Avg|Hold: 100/100 Frequency ΔMkr3 1.317 MHz 0.004 dB Auto Tun Center Fred Start Fred 2.400500000 G Stop Fred Center 2.402000 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) CF Step 300.000 kHz #VBW 100 kHz Freq Offse STATUS Align Now, All required 2DH5_Ant1_2441 RL RF SD D D STATE FROM THE STATE OF THE STA #Avg Type: RMS Avg|Hold: 100/100 ΔMkr3 1.263 MHz 0.193 dB Ref Offset 14.31 dB Ref 30.00 dBm Center Free 2.441000000 GH Start Fred 2.439500000 GHz -25.31 dB Center 2.441000 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts CF Step 300.000 kHz #VBW 100 kHz Freq Offse STATUS Align Now, All required 2DH5_Ant1_2480 #Avg Type: RMS Avg|Hold: 100/100 Frequency Ref Offset 14.31 dB Ref 30.00 dBm Center Fred 2.480000000 GH Start Fred 2.478500000 GH Stop Freq Center 2.480000 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) CF Step 300,000 kH #VBW 100 kHz Freq Offse

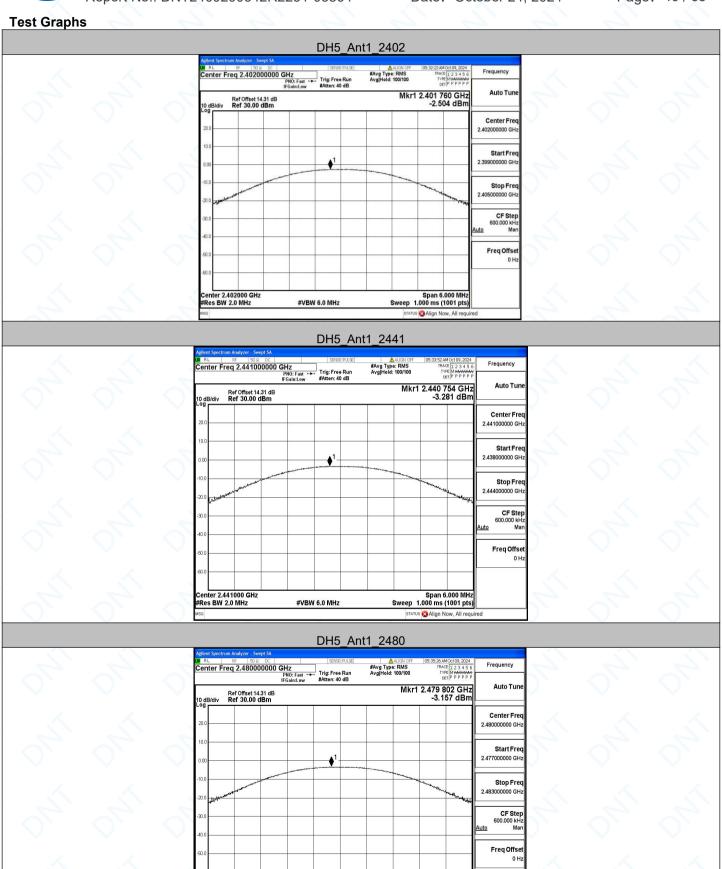

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 38 / 65 3DH5_Ant1_2402 RL 8F 502 0C


PITER FROM 2.402000000 GHz

PRO:Wide Trig: Free Run

| Fraint.low | #Atten: 40 dB #Avg Type: RMS Avg|Hold: 100/100 Auto Tun ΔMkr3 1.254 MHz -1.243 dB Center Fre 2.402000000 GH Start Fre 2.400500000 GH Stop Fred 2.403500000 GH Span 3.000 MHz Sweep 3.200 ms (1001 pts) #VBW 100 kHz STATUS Align Now, All required 3DH5_Ant1_2441 #Avg Type: RMS Avg|Hold: 100/100 Frequency Auto Tun ΔMkr3 1.272 MHz -0.032 dB Ref Offset 14.31 dB Ref 30.00 dBm Center Free 2.441000000 GH

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 39 / 65


Appendix B: Maximum conducted output power

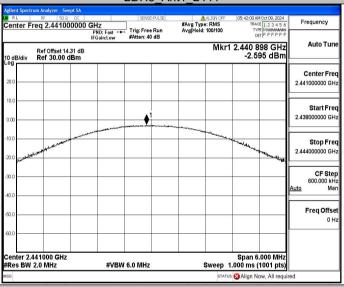
Test Result

i Cot i Couit					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	-2.50	≤20.97	PASS
DH5	Ant1	2441	-3.28	≤20.97	PASS
		2480	-3.16	≤20.97	PASS
		2402	-2.33	≤20.97	PASS
2DH5	Ant1	2441	-2.60	≤20.97	PASS
		2480	-2.70	≤20.97	PASS
		2402	-1.49	≤20.97	PASS
3DH5	Ant1	2441	-1.82	≤20.97	PASS
		2480	-2.02	≤20.97	PASS

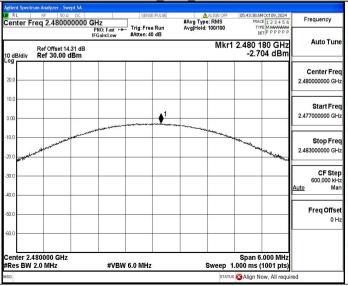
Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 40 / 65

#VBW 6.0 MHz

Span 6.000 MHz Sweep 1.000 ms (1001 pts)

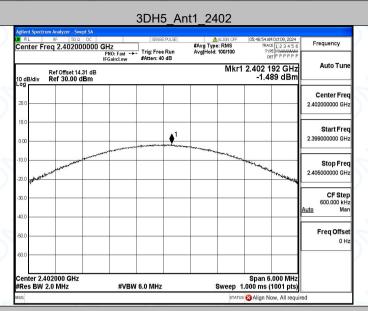

Center 2.480000 GHz #Res BW 2.0 MHz Report No.: DNT24092903

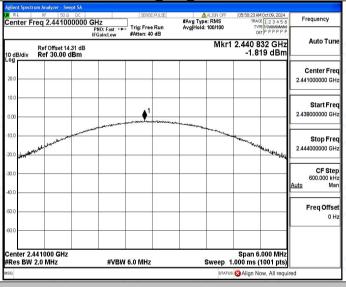
Report No.: DNT2409290342R2251-03864 Date: October 24, 2024


Page: 41/65

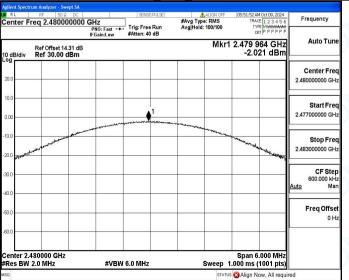
PRO | PRO

2DH5_Ant1_2441


2DH5_Ant1_2480


Report No.: DNT2409290

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024


Page: 42/65

3DH5_Ant1_2441

3DH5_Ant1_2480

Report No.: DNT2409290342R2251-03864 Date: October 24, 2024 Page: 43 / 65

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.008	≥0.957	PASS
2DH5	Ant1	Нор	1.014	≥0.878	PASS
3DH5	Ant1	Нор	0.986	≥0.848	PASS