

FCC Test Report

Report No.: AGC02931240301FR02

FCC ID	:	2BLTR-AND1
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	4G LTE IP Radio
BRAND NAME	:	ТҮТЕСН
MODEL NAME	:	IP-66
APPLICANT	:	Quanzhou RadioBoss Technology Co., Ltd
DATE OF ISSUE	:	Jan. 16, 2025
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Jan. 16, 2025	Valid	Initial Release	

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	
2.2 Test Frequency List	
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Special Accessories	7
2.6 Equipment Modifications	7
2.7 Antenna Requirement	7
3. Test Environment	
3.1 Address of the Test Laboratory	
3.2 Test Facility	
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Use	
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used In Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	
6. Duty Cycle Measurement	
7. RF Output Power Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	
8. 6dB Bandwidth Measurement	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8.4 Measurement Results	
9. Power Spectral Density Measurement	
9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Results	
10. Conducted Band Edge and Out-of-Band Emissions	
10.1 Provisions Applicable	

10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Results	
11. Radiated Spurious Emission	
11.1 Measurement Limit	
11.2 Measurement Procedure	
11.3 Measurement Setup (Block Diagram of Configuration)	
11.4 Measurement Result	
12. AC Power Line Conducted Emission Test	
12.1 Measurement Limit	
12.2 Measurement Setup (Block Diagram of Configuration)	
12.3 Preliminary Procedure of Line Conducted Emission Test	
12.4 Final Procedure of Line Conducted Emission Test	
12.5 Measurement Results	
Appendix I: Photographs of Test Setup	

1. General Information

Applicant	Quanzhou RadioBoss Technology Co., Ltd
Address	No.8, Chuangzao Road, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian
Manufacturer	Quanzhou RadioBoss Technology Co., Ltd
Address	No.8, Chuangzao Road, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian
Factory	Quanzhou RadioBoss Technology Co., Ltd
Address	No.8, Chuangzao Road, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian
Product Designation	4G LTE IP Radio
Brand Name	ТҮТЕСН
Test Model	IP-66
Series Model(s)	N/A
Difference Description	N/A
Date of receipt of test item	Mar. 04, 2024
Date of Test	Mar. 04, 2024~Jan. 16, 2025
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-BLE-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Bibo zhang Prepared By Bibo Zhang Jan. 16, 2025 (Project Engineer) Calvin Lin **Reviewed By** Calvin Liu Jan. 16, 2025 (Reviewer) Approved By 106 Angela Li Jan. 16, 2025 (Authorized Officer)

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2402MHz-2480MHz
Bluetooth Version	V4.2
Modulation Type	BLE GFSK 1Mbps GFSK 2Mbps
Number of channels	40
Carrier Frequency of Each Channel	40 Channels (37 Data channels + 3 advertising channels)
Channel Separation	2 MHz
Maximum Transmitter Power	Bluetooth LE (1Mbps): 6.177dBm
Hardware Version	V2.0
Software Version	PU562WAE3C_KT5508_starlight_istar two_V01_20180813
Antenna Designation	PIFA Antenna
Antenna Gain	-0.9dBi
Power Supply	DC 3.7V 6000mAh by battery or DC 5V from adapter

2.2 Test Frequency List

Frequency Band	Channel Number	Test Frequency		
	0	2402 MHz		
	1	2404 MHz		
	:	:		
2400~2483.5MHz	19	2440MHz		
	:	:		
	38	2478 MHz		
	39	2480 MHz		
Note: f = 2402 + 2*k MHz, k = 0,, 39 f is the operating frequency (MHz); k is the operating channel.				

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2BLTR-AND1**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules

2.5 Special Accessories

Not available for this EUT intended for grant.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

2.7 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is -0.9dBi.

3. Test Environment

3.1 Address of the Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range ($^\circ\!\mathbb{C}$)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.7V

3.4 Measurement Uncertainty

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty	
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$	
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$	
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$	
Uncertainty of total RF Power, Conducted	$U_c = \pm 0.8 \text{ dB}$	
Uncertainty of RF Power Density, Conducted	$U_c = \pm 2.6 \text{ dB}$	
Uncertainty of Spurious Emissions, Conducted	$U_c = \pm 2 \%$	
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$	
Uncertainty of Dwell Time	$U_c = \pm 2 \%$	

3.5 List of Equipment Use

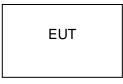
• F	RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31	
	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024-05-24	2025-05-23	
	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2024-02-01	2025-01-31	
	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2024-02-01	2025-01-31	
	AGC-ER-A001	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-09-21	2025-09-20	
	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2023-06-01	2024-05-31	
\square	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2024-05-23	2025-05-22	
\square	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A	
	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A	
) a diata d Ora unia							
	adiated Spurio	SUS EMISSION			1			
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23	
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31	
	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27	
	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2023-03-23	2024-03-22	
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30	
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23	
	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03	
	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2024-07-24	2026-07-23	
	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31	
	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22	
\bowtie	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	

• A	AC Power Line Conducted Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02	
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2024-05-28	2025-05-27	
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2025-06-08	
\boxtimes	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024-06-02	
\square	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2024-05-28	2025-05-27	

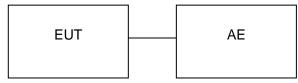
• Tes	Test Software								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information				
\boxtimes	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71				
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A				
\boxtimes	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6				
\square	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0				

4.System Test Configuration

4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

Conducted Emission Configure:

4.4 Equipment Used In Tested System

The following peripheral devices and interface cables were connected during the measurement:

Test Accessories Come From The Laboratory No. Equipment Manufacturer Model No. **Specification Information** Cable 1 Phone N/A Xiaomi MI 10 --Input(AC):100V-240V 50/60Hz 2.4A 2 Huawei HW-200440C00 Adapter --Output(DC):USB-C(5V/3A)

☑ Test Accessories Come From The Manufacturer

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1	Battery	Quanzhou RadioBoss Technology Co.,Ltd	BATT-78	DC 3.7V 6000mAh	
2	Charger			Input: DC 5V Output: DC 4.2A 0.1A	

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(3)	RF Output Power	Pass
3	§15.247 (a)(2)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.209	Radiated Emission& Band Edge	Pass
7	§15.207	AC Power Line Conducted Emission	Pass

5. Description of Test Modes

	Summary Table of Test Cases				
Test Item	Data Rate / Modulation				
Test tient	Bluetooth–LE(1Mbps)/GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps(Battery powered or AC/DC adapter)				
Radiated & Conducted Test Cases	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps(Battery powered or AC/DC adapter)				
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps(Battery powered or AC/DC adapter)				
AC Conducted Emission	Mode 1: Bluetooth Link + Battery + USB Cable (Charging from AC Adapter)				

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. 3. The battery is full-charged during the test.
- For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 4. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

	• Tx Test	C Rx Test					
Ch	annel ()		- -				
PH	SALANDERS	Constant of the					
Pa	vload Length 37		-				
	tern PRBS9	State of the	-				
		Start					
Pac	ket Count	1. 10 A. 19 A.				Clear Log	
	A STATE				1011 -	A State	

Software Setting Diagram

6. Duty Cycle Measurement

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Operating mode	T(µs)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
BLE_1Mbps	383.7	61	2.15	2.61

Remark:

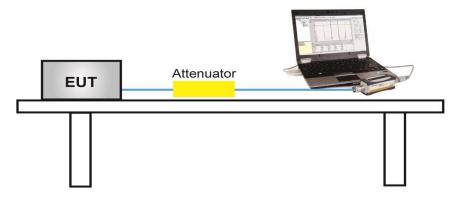
- 1. Duty Cycle factor = $10 * \log (1/ \text{Duty cycle})$
- 2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value
- The test plots as follows:

Bluetooth–LE for 1Mbps	Bluetooth–LE for 2Mbps
Centrel Fred 2-30200000 Ch2, fair Trig Free Run Braint ov Trig Free Run Braint ov <t< td=""><td>Auto Tune enter Freq gooodo GHz Star Freq gooodo GHz Stop Freq gooodo GHz CF Step Man Treq Offset 0 Hz</td></t<>	Auto Tune enter Freq gooodo GHz Star Freq gooodo GHz Stop Freq gooodo GHz CF Step Man Treq Offset 0 Hz

7. RF Output Power Measurement

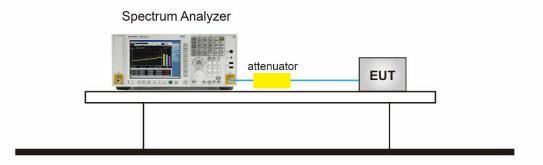
7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

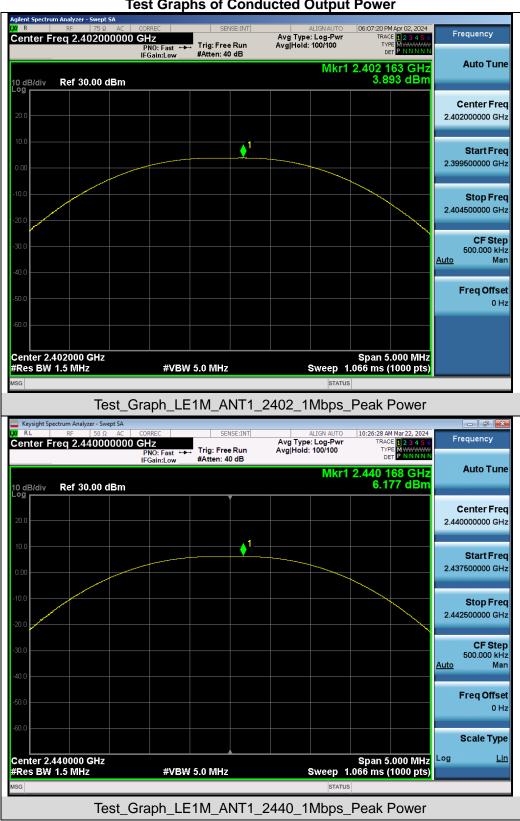

7.2 Measurement Procedure

For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.1 Method Max peak power:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the RBW≥DTS bandwidth
- 3. Set the VBW \geq [3 × RBW].
- 4. Span≥[3 × RBW].
- 5. Sweep= auto couple.
- 6. Detector Function= Peak.
- 7. Trace mode= Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- For Average power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G:
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 2. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.


7.3 Measurement Setup (Block Diagram of Configuration)

For Average power test setup


For peak power test setup

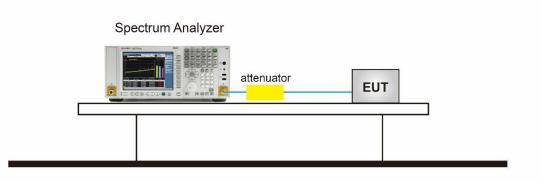
7.4 Measurement Result

Test Data of Conducted Output Power						
Test Mode	Test Frequency (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail		
	2402	3.893	≪30	Pass		
GFSK_1Mbps	2440	6.177	≪30	Pass		
	2480	5.079	≤30	Pass		

Test Graphs of Conducted Output Power

Keysight Spectrum Analyzer - Swept SA					×
IM RF 50 Ω AC Center Freq 2.480000000		AL		Mar 22, 2024 E 1 2 3 4 5 6 Frequenc	У
Center 11eq 2.40000000	PNO: Fast +++ Trig: Free	Run Avg Hold: 1	00/100 TYP		
	IFGain:Low #Atten: 40				Tune
10 dB/div Ref 30.00 dBm			Mkr1 2.479 8	79 dBm	
				Center	Freq
20.0				2.48000000) GHz
10.0	1			Start	Fred
0.00				2.477500000	
0.00					
-10.0					_
				2.482500000	
-20.0				2.482500000	GHZ
~					
-30.0				500.000	Step
				Auto	Man
-40.0					
				FreqO	ffset
-50.0					0 Hz
-60.0					
-80.0				Scale	Туре
Center 2.480000 GHz	43/DW/ 5 0 B4U-		Span 5.	.000 MHz Log	Lin
#Res BW 1.5 MHz	#VBW 5.0 MHz	5	weep 1.066 ms (
MSG			STATUS		
Test_C	Graph_LE1M_A	NT1_2480_1M	/lbps_Peak F	Power	

8. 6dB Bandwidth Measurement

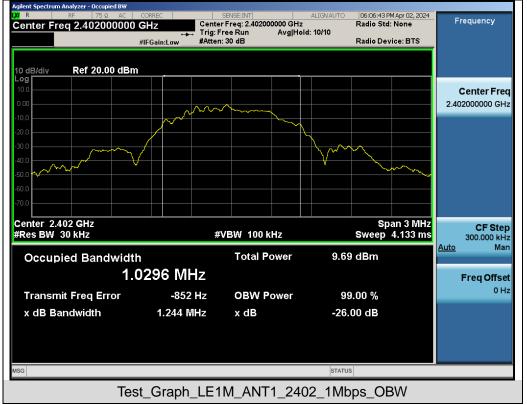

8.1 Provisions Applicable

The minimum 6dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

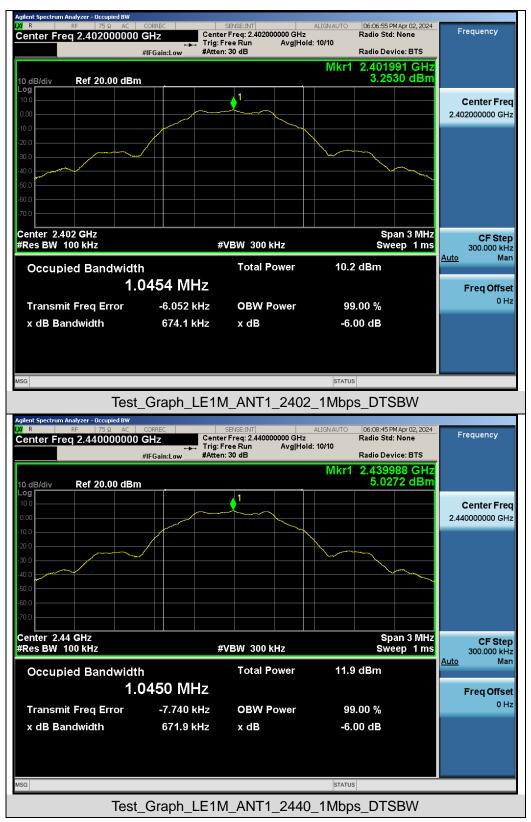
- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.

8.3 Measurement Setup (Block Diagram of Configuration)



8.4 Measurement Results

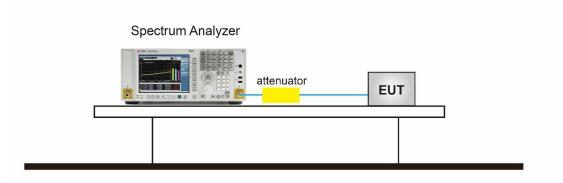
	Test Data of Occupied Bandwidth and DTS Bandwidth							
Test Mode	Test Frequency (MHz)	Occupied Bandwidth (MHz)	DTS BW (MHz)	DTS BW Limits	Pass or Fail			
	2402	1.030	0.674	≥0.5	Pass			
GFSK_1Mbps	2440	1.030	0.672	≥0.5	Pass			
	2480	1.027	0.674	≥0.5	Pass			
				≥0.5				
GFSK_2Mbps				≥0.5				
				≥0.5				



Test Graphs of DTS Bandwidth

Center Freq 2.480000000 G	- Trig:F	SENSE:INT er Freq: 2.480000000 GH Free Run Avg H n: 30 dB	old:>10/10	06:09:34 PM Apr 02, 202 Radio Std: None Radio Device: BTS 2.479991 GH: 4.0276 dBn	Frequency
Log 10.0 0.00 -10.0 -20.0 -30.0 -40.0					Center Freq 2.480000000 GHz
-00.0 -00.0 -70.0 Center 2.48 GHz #Res BW 100 kHz	#	WBW 300 kHz		Span 3 MH Sweep 1 m	5 300.000 kHz
	413 MHz	Total Power) dBm	Auto Man Freq Offset 0 Hz
Transmit Freq Error x dB Bandwidth	-7.926 kHz 673.9 kHz	OBW Power x dB		0.00 % 00 dB	0 Hz
^{MSG}	Graph_LE1N	//_ANT1_248	status 80_1Mbp		

9. Power Spectral Density Measurement

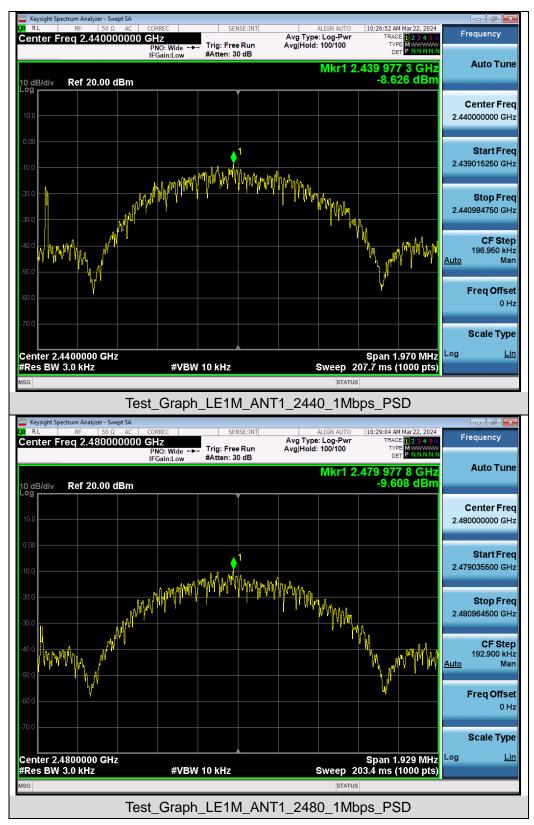

9.1 Provisions Applicable

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.2 Measurement Procedure

- The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz in order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

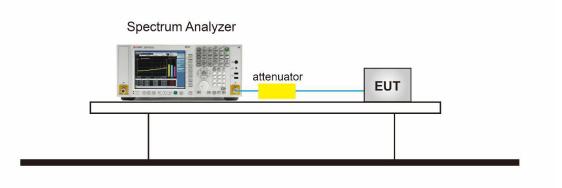
9.3 Measurement Setup (Block Diagram of Configuration)


9.4 Measurement Results

Test Data of Conducted Output Power Spectral Density						
Test Mode	Test Frequency (MHz)	Limit (dBm/3kHz)	Pass or Fail			
	2402	-10.904	≪8	Pass		
GFSK_1Mbps	2440	-8.626	≪8	Pass		
	2480	-9.608	≪8	Pass		

Test Graphs of Conducted Output Power Spectral Density

10. Conducted Band Edge and Out-of-Band Emissions


10.1 Provisions Applicable

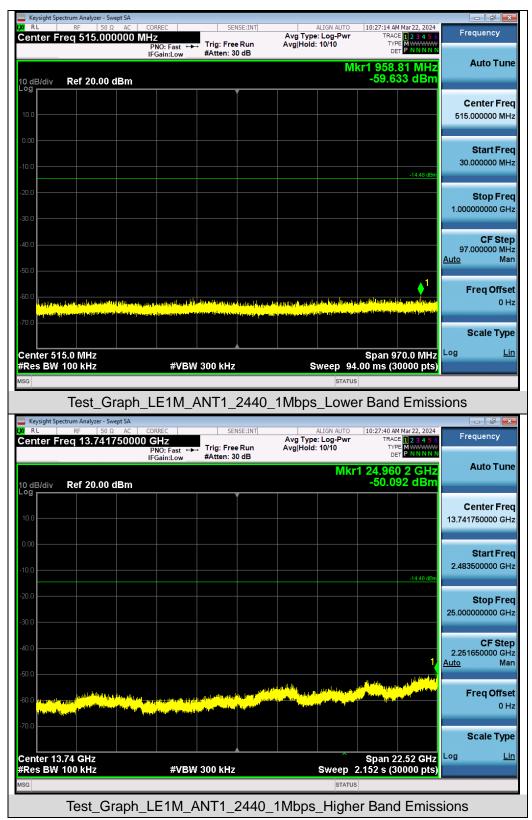
The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

10.2 Measurement Procedure

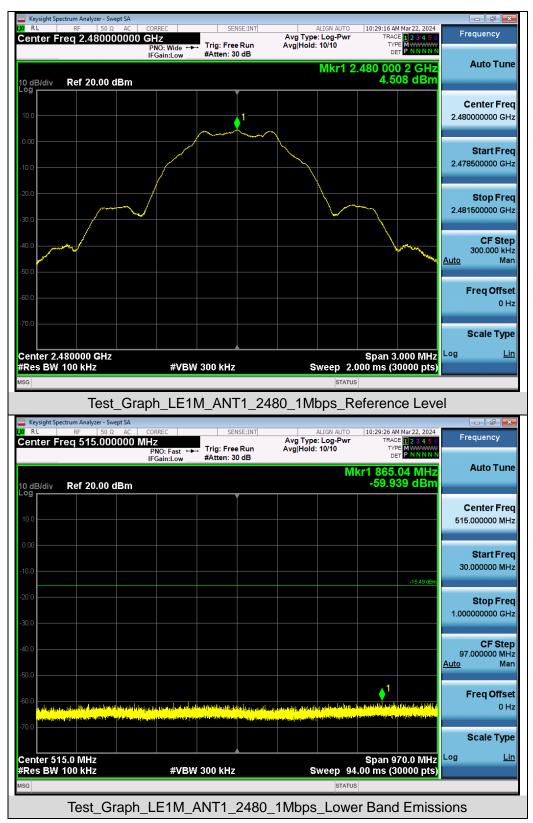
- Reference level measurement
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \ge 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize
- Emission level measurement
- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

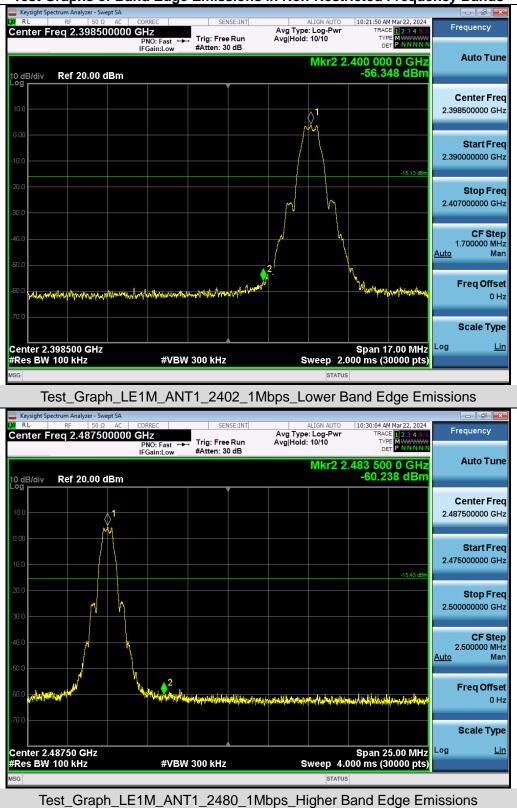
10.3 Measurement Setup (Block Diagram of Configuration)

10.4 Measurement Results



Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands





🔤 Keysight Spectrum Analyzer - Swept SA											
Center	RF 50 S			SEN	NSE:INT		ALIGN AUTO		Mar 22, 2024	Frequenc	у
Contor	1100 15.750	F	PNO: Fast 🔸	Trig: Free #Atten: 3		Avg Hold:		TYP			
		I	Gain:Low	#Atten: 3	U db					Auto 1	Tune
							MKr		95 GHz 93 dBm	, late	ano
10 dB/div Log	Ref 20.00	dBm						-50.5	as abiii		
					Í					Center	Frea
10.0										13.750000000	
0.00											
										Start	Freq
-10.0										2.50000000	GHz
									-15.49 dBm		
-20.0										Stop	Fred
										25.000000000	
-30.0										20.000000000	OTIZ
-40.0										2.250000000	Step
									1	Auto	Man
-50.0											
					ر المکر ر	and the later of the	ە. ئىرىلەرمىدىرى	and an and a store			
-60.0 <mark></mark>	dina da a di bindibina da		i li la institute di la constata	Jak ullahanitad	h dha la an	and the second s	and and a second se	Contraction of the local division of the loc	http://www.internationality.com	Freq O	
محمد بالحاد	alle state and a state of the s	and the state of the	a and a second	lices and in a contract of the second se	The state						0 Hz
-70.0											
										Scale	Гуре
				, <u> </u>				0		Log	Lin
	Center 13.75 GHz Span 22.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.152 s (30000 pts)										
MSG	STATUS										
	Test_Graph_LE1M_ANT1_2480_1Mbps_Higher Band Emissions										

Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

R

11. Radiated Spurious Emission

11.1 Measurement Limit

• FCC Part 15.209 Limit in the below table to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

- 8. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 9. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 10. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 11. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum ParameterSettingStart ~Stop Frequency9kHz~150kHz/RB 200Hz for QPStart ~Stop Frequency150kHz~30MHz/RB 9kHz for QPStart ~Stop Frequency30MHz~1000MHz/RB 120kHz for QPStart ~Stop Frequency1GHz~26.5GHzStart ~Stop Frequency1MHz/3MHz for Peak, 1MHz/3MHz for Average

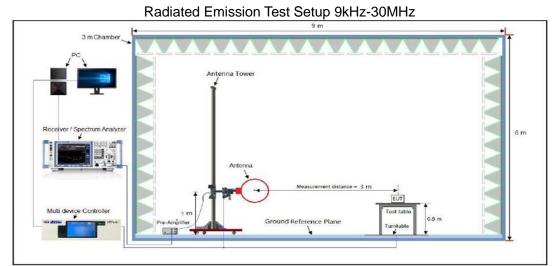
The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting		
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP		
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP		

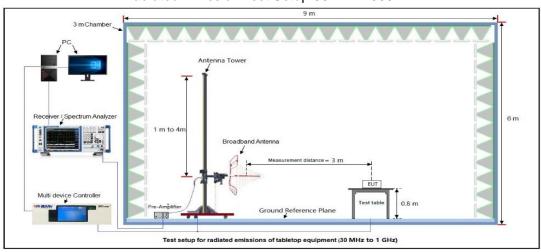
Quasi-Peak Measurements below 1GHz

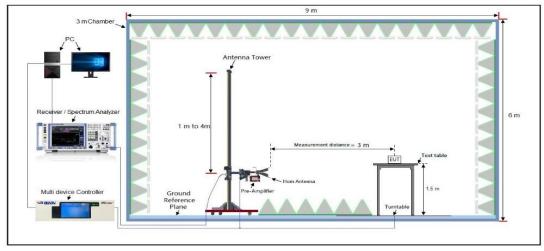
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

• Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

• Average Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. $VBW \ge [3 \times RBW]$
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.


11.3 Measurement Setup (Block Diagram of Configuration)

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

11.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

			Radia	ted Emiss	ion Test Res	ults at 30MH	z-1GHz			
EUT N	lame	4G	LTE IP Radio			Model Name		IP-66		
Temp	erature	22.9 °C Relative Humidity 56.9%		56.9%						
Press	ure	960	hPa			Test Volta	age	DC 3.7V by battery		
Test N	lode	Мос	de 2			Antenna	Polarity	Horizontal		
	130				FCC Part 15	C				
	120									
	110 100									
	90 80									
	[ɯ///ˈɡp] eoei[dp] eoei 50									
	40									
	30 20	×			And mark	Verman Markan	~ million and a second share	with the second states and the second		
	10									
	-10 -10			100M					16	
					Frequency[H	z]				
	-	QP Lim QP Dete								
Final	Peak Dat	a List								
NO.	Frec [MH:		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	36.7	9	24.28	14.02	40.00	15.72	100	310	Horizontal	
2	121.1	18	22.99	14.15	43.50	20.51	100	210	Horizontal	
3	185.	2	24.32	14.47	43.50	19.18	100	280	Horizontal	
4	374.3	35	24.12	19.15	46.00	21.88	100	290	Horizontal	
5	602.	3	30.64	24.34	46.00	15.36	100	290	Horizontal	
6	982.5	54	34.94	30.05	54.00	19.06	100	330	Horizontal	

			Radia	ted Emiss	ion Test Res	ults at 30MHz	z-1GHz		
	lame	4G	LTE IP Radio			Model Na	me	IP-66	
Temp	erature	re 22.9°C Relative Humidity		56.9%					
Press	ure	960	hPa			Test Volta	ige	DC 3.7V by battery	
Test N	lode	Мо	Mode 2 Antenna Polarity Vertical						
								·	
	130 120				FCC Part 15C				
	120								
	100								
	90 80								
[w,	70								
Level[dBµV/m]	60								
Leve	50								
	40 30	*					5		
	20	$\sqrt{1}$		mm	Amanan	more manufacture the second	all and a second second and a second s		
	10								
	-10								
	30M			100M	Frequency[Hz]			1G	
	QP L # QP D		Vertical PK						
Final	Peak Dat	a List							
NO.	Frec [MH:		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	44.5	5	33.63	14.78	40.00	6.37	100	120	Vertical
2	74.6	2	21.24	11.83	40.00	18.76	100	220	Vertical
3	120.2	21	23.66	14.11	43.50	19.84	100	170	Vertical
4	371.4	4	24.73	19.09	46.00	21.27	100	220	Vertical
	1			+			1		
5	609.0)9	29.62	24.42	46.00	16.38	100	310	Vertical

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 2 is the worst case and recorded in the report.

Radiated Emissions Test Results for Above 1GHz

EUT Name		4G LTE IP Radio		Model Name IP-66		
Temperature		22.9℃		Relative Humidity 56.9%		
Pressure	9	960hPa		Test Voltage	DC 3.7V b	y battery
Test Mode	1	Mode 1		Antenna Polarity	Horizontal	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804.000	49.38	0.08	49.46	74.00	-24.54	peak
4804.000	40.12	0.08	40.2	54.00	-13.80	AVG
7206.000	48.77	2.21	50.98	74.00	-23.02	peak
7206.000	40.39	2.21	42.6	54.00	-11.40	AVG
Remark:						
		or + Cable Loss – P				
EUT Name		4G LTE IP Radio		Model Name	IP-66	
EUT Name Temperature		4G LTE IP Radio 22.9℃		Model Name Relative Humidity	IP-66 56.9%	
	•					by battery
Temperature	9	2 2.9℃		Relative Humidity	56.9%	by battery
Temperature Pressure		22.9℃ 960hPa		Relative Humidity Test Voltage	56.9% DC 3.7V b	by battery
Temperature Pressure	9	22.9°C 960hPa Mode 1	Emission Level	Relative Humidity Test Voltage	56.9% DC 3.7V b	Value
Temperature Pressure Test Mode	e 2	22.9°C 960hPa Mode 1		Relative Humidity Test Voltage Antenna Polarity	56.9% DC 3.7V b Vertical Margin (dB)	
Temperature Pressure Test Mode Frequency	Meter Reading	22.9°C 960hPa Mode 1 Factor	Level	Relative Humidity Test Voltage Antenna Polarity Limits	56.9% DC 3.7V b Vertical Margin	Value
Temperature Pressure Test Mode Frequency (MHz)	Meter Reading (dBµV)	22.9°C 960hPa Mode 1 Factor (dB)	Level (dBµV/m)	Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m)	56.9% DC 3.7V b Vertical Margin (dB)	Value Type
Temperature Pressure Test Mode Frequency (MHz) 4804.000	Meter Reading (dBµV) 50.13	22.9 °C 960hPa Mode 1 Factor (dB) 0.08	Level (dBµV/m) 50.21	Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m) 74.00	56.9% DC 3.7V b Vertical Margin (dB) -23.79	Value Type peak
Temperature Pressure Test Mode Frequency (MHz) 4804.000 4804.000	Meter Reading (dBµV) 50.13 39.74	22.9°C 960hPa Mode 1 Factor (dB) 0.08 0.08	Level (dBµV/m) 50.21 39.82	Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m) 74.00 54.00	56.9% DC 3.7V b Vertical Margin (dB) -23.79 -14.18	Value Type peak AVG
Temperature Pressure Test Mode Frequency (MHz) 4804.000 4804.000 7206.000 7206.000 Remark:	Meter Reading (dBµV) 50.13 39.74 49.12 39.70	22.9 °C 260hPa Mode 1 Factor (dB) 0.08 0.08 2.21	Level (dBµV/m) 50.21 39.82 51.33 41.91	Limits (dBµV/m) 74.00 74.00 74.00 74.00	56.9% DC 3.7V b Vertical Margin (dB) -23.79 -14.18 -22.67	Value Type peak AVG peak

RESULT: Pass

Radiated Emissions Test Results for Above 1GHz

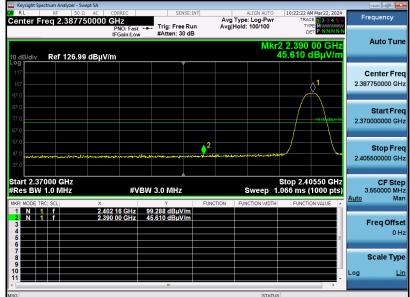
EUT Name		4G LTE IP Radio Mo		Model Name	IP-66	IP-66		
Temperature		22.9 ℃			Relative Humidity 56.9%			
Pressure 960hPa			°a		Test Voltage	DC 3.7	7V by b	attery
Test Mode Mode 2			2		Antenna Polarity	Horizo	ntal	
Frequency	Mete Readii		Factor	Emission Level	Limits	Margir	ו	Value Type
(MHz)	(dBµ∖	/)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		туре
4882.000	50.36	6	0.14	50.50	74.00	-23.50)	peak
4882.000	41.22	2	0.14	41.36	54.00	-12.64	1	AVG
7323.000	50.12	2	2.36	52.48	74.00	-21.52	2	peak
7323.000	41.36	5	2.36	43.72	54.00	-10.28	3	AVG
Remark:								
EUT Name		4G LT	E IP Radio		Model Name	IP-66		
EUT Name Temperature	•	4G LT 22.9℃			Model Name Relative Humidity			
	•					56.9%	7V by b	attery
Temperature	•	22.9 ℃	Pa		Relative Humidity	56.9%	7V by b	attery
Temperature Pressure	e Mete Readii	22.9℃ 960hP Mode r	Pa		Relative Humidity Test Voltage	56.9%	7V by ba al	Value
Temperature Pressure Test Mode	Mete	22.9°C 960hP Mode r ng	2 2	Emission	Relative Humidity Test Voltage Antenna Polarity	2 56.9% DC 3.7 Vertica	7V by ba al	
Temperature Pressure Test Mode Frequency	Mete Readi	22.9℃ 960hP Mode r ng /)	Pa 2 Factor	Emission Level	Relative Humidity Test Voltage Antenna Polarity Limits	v 56.9% DC 3.7 Vertica Margir	7V by b al	Value
Temperature Pressure Test Mode Frequency (MHz)	Mete Readii (dBµ\	22.9℃ 960hP Mode r ng /) 5	Pa 2 Factor (dB)	Emission Level (dBµV/m)	Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m)	v 56.9% DC 3.7 Vertica Margir (dB)	7V by bi al	Value Type
Temperature Pressure Test Mode Frequency (MHz) 4882.000	Mete Readin (dBµ\ 51.36	22.9℃ 960hP Mode r ng /) 6	2 2 Factor (dB) 0.14	Emission Level (dBµV/m) 51.50	Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m) 74.00	v 56.9% DC 3.7 Vertica Margir (dB) -22.50	7V by ba al n) 3	Value Type peak
Temperature Pressure Test Mode Frequency (MHz) 4882.000 4882.000	Mete Readii (dBµ\ 51.36 40.28	22.9°C 960hP Mode r ng /) 5 3	Pa 2 Factor (dB) 0.14 0.14	Emission Level (dBµV/m) 51.50 40.42	Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m) 74.00 54.00	v 56.9% DC 3.7 Vertica Margir (dB) -22.50 -13.58	7V by ba al n) 3	Value Type peak AVG
Temperature Pressure Test Mode Frequency (MHz) 4882.000 4882.000 7323.000	Mete Readii (dBµ\ 51.36 40.28 49.58	22.9°C 960hP Mode r ng /) 5 3	2 2 Factor (dB) 0.14 0.14 2.36	Emission Level (dBµV/m) 51.50 40.42 51.94	Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m) (dBµV/m) 54.00 74.00	v 56.9% DC 3.7 Vertica Margir (dB) -22.50 -13.58 -22.06	7V by ba al n) 3	Value Type peak AVG peak

RESULT: Pass

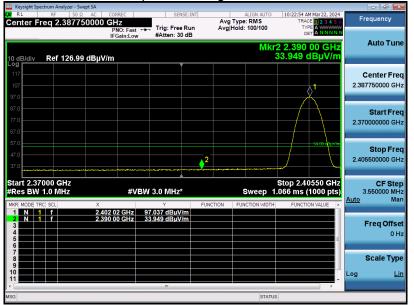
Radiated Emissions Test Results for Above 1GHz

Pressure 96	.9℃ 0hPa ode 3 Factor (dB) 0.22 0.22 2.64 2.64 + Cable Loss – Pre	Emission Level (dBµV/m) 49.85 40.54 52.00 43.89	Relative HumidityFest VoltageAntenna PolarityLimits(dBµV/m)74.0054.0074.0054.0054.00	56.9% DC 3.7V by b Horizontal Margin (dB) -24.15 -13.46 -22.00 -10.11	attery Value Type peak AVG peak AVG	
Test Mode Meter Reading Frequency Meter Reading (MHz) (dBµV) 4960.000 49.63 4960.000 40.32 7440.000 49.36 7440.000 41.25 Remark: Kemark	ode 3 Factor (dB) 0.22 0.22 2.64 2.64	Emission Level (dBµV/m) 49.85 40.54 52.00 43.89	Limits (dBµV/m) 74.00 54.00 74.00	Horizontal Margin (dB) -24.15 -13.46 -22.00	Value Type peak AVG peak	
Frequency Meter Reading (MHz) (dBμV) 4960.000 49.63 4960.000 40.32 7440.000 49.36 7440.000 41.25 Remark:	Factor (dB) 0.22 0.22 2.64 2.64	Emission Level (dBµV/m) 49.85 40.54 52.00 43.89	Limits (dBµV/m) 74.00 54.00 74.00	Margin (dB) -24.15 -13.46 -22.00	Type peak AVG peak	
Frequency Reading (MHz) (dBμV) 4960.000 49.63 4960.000 40.32 7440.000 49.36 7440.000 41.25 Remark:	(dB) 0.22 0.22 2.64 2.64	Level (dBµV/m) 49.85 40.54 52.00 43.89	(dBµV/m) 74.00 54.00 74.00	(dB) -24.15 -13.46 -22.00	Type peak AVG peak	
Frequency Reading (MHz) (dBμV) 4960.000 49.63 4960.000 40.32 7440.000 49.36 7440.000 41.25 Remark:	(dB) 0.22 0.22 2.64 2.64	Level (dBµV/m) 49.85 40.54 52.00 43.89	(dBµV/m) 74.00 54.00 74.00	(dB) -24.15 -13.46 -22.00	Type peak AVG peak	
4960.000 49.63 4960.000 40.32 7440.000 49.36 7440.000 41.25 Remark:	0.22 0.22 2.64 2.64	49.85 40.54 52.00 43.89	74.00 54.00 74.00	-24.15 -13.46 -22.00	peak AVG peak	
4960.000 40.32 7440.000 49.36 7440.000 41.25 Remark:	0.22 2.64 2.64	40.54 52.00 43.89	54.00 74.00	-13.46 -22.00	AVG peak	
7440.000 49.36 7440.000 41.25 Remark:	2.64 2.64	52.00 43.89	74.00	-22.00	peak	
7440.000 41.25 Remark: 1	2.64	43.89				
Remark:			54.00	-10.11	AVG	
	+ Cable Loss – Pre	e-amplifier.				
Factor = Antenna Factor	+ Cable Loss – Pre	e-amplifier.				
	G LTE IP Radio 2.9℃		Model Name Relative Humidity	IP-66	56.9%	
•	960hPa		Fest Voltage		DC 3.7V by battery	
Test Mode Mc	ode 3	A	Antenna Polarity	Vertical		
Frequency Reading	Factor	Emission Level	Limits	Margin	Value	
(MHz) (dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4960.000 50.23	0.22	50.45	74.00	-23.55	peak	
4960.000 41.18	0.22	41.40	54.00	-12.60	AVG	
7440.000 48.36	2.64	51.00	74.00	-23.00	peak	
7440.000 40.01	2.64	42.65	54.00	-11.35	AVG	
Remark:						
Factor = Antenna Factor	+ Cable Loss - Pre	e-amplifier.				

<u>RESULT: Pass</u>


Note:

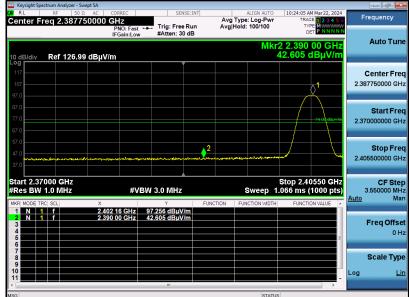
- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Limit-Emission Level.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

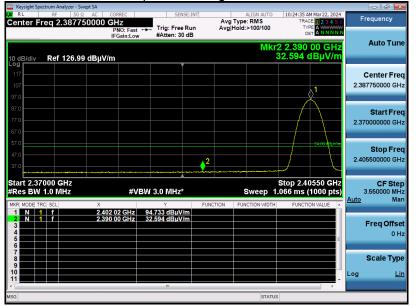


EUT Name	4G LTE IP Radio	Model Name	IP-66
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 1	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement


RESULT: Pass

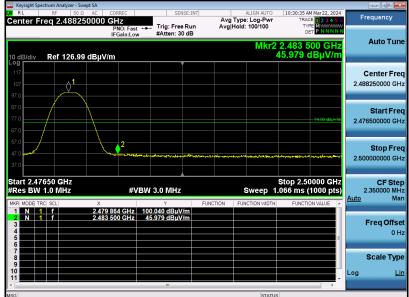

Band Edge Emission Test Results for Restricted Bands

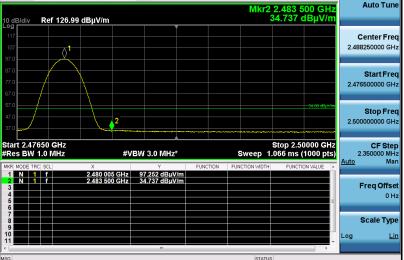
EUT Name	4G LTE IP Radio	Model Name	IP-66
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

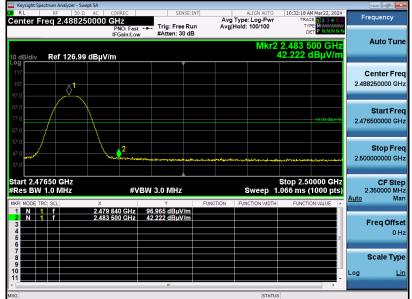



Frequency

Band Edge Emission Test Results for Restricted Bands

EUT Name	4G LTE IP Radio	Model Name	IP-66
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 3	Antenna Polarity	Horizontal

Test Graph for Peak Measurement


RESULT: Pass

Band Edge Emission	Test Results for Restricted Bands
---------------------------	-----------------------------------

EUT Name	4G LTE IP Radio	Model Name	IP-66
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.7V by battery
Test Mode	Mode 3	Antenna Polarity	Vertical

Test Graph for Peak Measurement

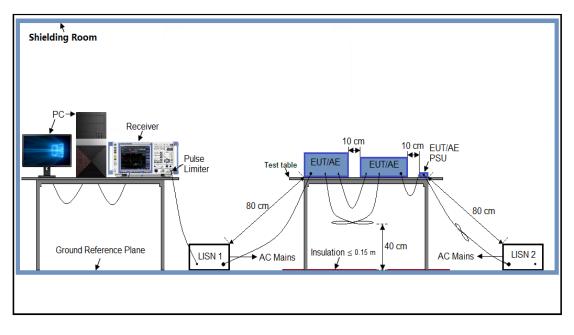
Test Graph for Average Measurement

RESULT: Pass

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

12. AC Power Line Conducted Emission Test

12.1 Measurement Limit


F	Maximum RF Line Voltage			
Frequency	Q.P. (dBµV)	Average (dBµV)		
150kHz~500kHz	66-56	56-46		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

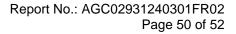
Note:

1. The lower limit shall apply at the transition frequency.

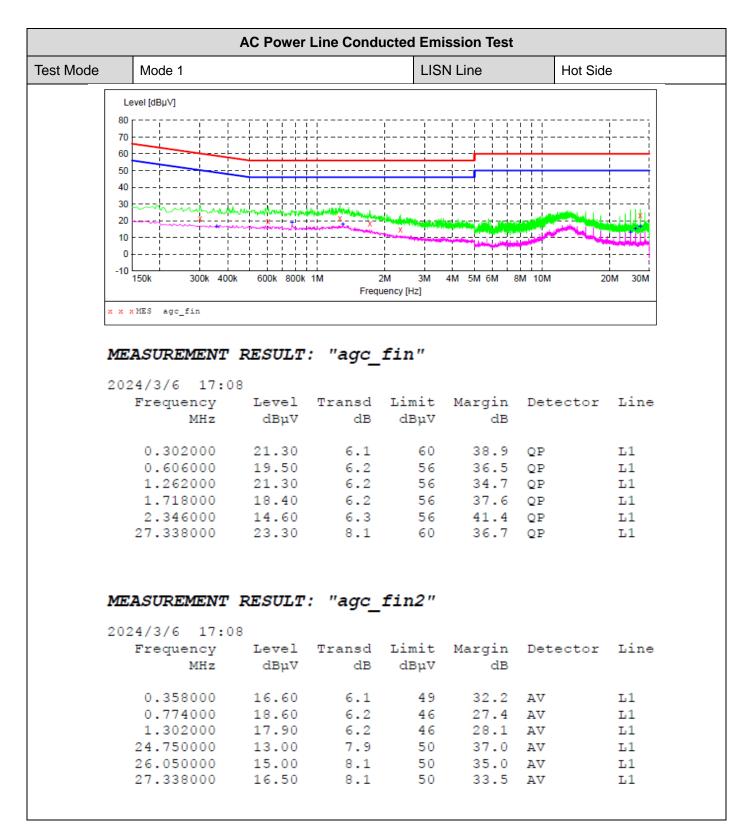
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2 Measurement Setup (Block Diagram of Configuration)

12.3 Preliminary Procedure of Line Conducted Emission Test


- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


12.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

12.5 Measurement Results

RESULT: Pass

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

st Mode	Mode 1			LIS	SN Line	Neutra	al Side
Level	[dBµV]						
80 [
70 60				-iii -l			
50		-+					
40		- +!!- +				i i i 	·
30	- month						·
20	******	-++-++++++++++++++++++++++++++++++++	X	And the second s			· tite te t
10			_L	**************************************	- Jac - C - J - J - J 		FI-FFF
0	+	-+				┥ ╴ ┼ ╶ │╴ ╴	
-10	0k 300k 400k	600k 800k		2M 3M	4M 5M 6M 8	3M 10M 3	20M 30M
			Freq	uency [Hz]			
x x x ME	S agc_fin						
MEA	SUREMENT	RESULT	: "agc	fin"			
2024	/3/6 17:04	1					
	/ 5/ 0 1/.0						
	requency	Level	Transd		-	Detector	Line
			Transd dB	Limit dBµV	Margin dB	Detector	Line
F	requency MHz	Level dBµV	dB	dBµV	dB		
F	requency MHz 0.354000	Level dBµV 20.70	dB 6.1	dBµV 59	dB 38.2	QP	N
F	requency MHz	Level dBµV	dB 6.1 6.2	dBµV	dB 38.2 36.2		
F	requency MHz 0.354000 0.654000	Level dBµV 20.70 19.80	dB 6.1 6.2	dBµV 59 56	dB 38.2 36.2 34.7	QP QP	N N
F	requency MHz 0.354000 0.654000 1.222000 2.490000 6.070000	Level dBµV 20.70 19.80 21.30 15.10 21.20	dB 6.1 6.2 6.2 6.3 8.1	dBµV 59 56 56 56 60	dB 38.2 36.2 34.7 40.9 38.8	QP QP QP QP QP	N N N
F	requency MHz 0.354000 0.654000 1.222000 2.490000	Level dBµV 20.70 19.80 21.30 15.10	dB 6.1 6.2 6.2 6.3	dBµV 59 56 56 56	dB 38.2 36.2 34.7 40.9	QP QP QP QP	N N N
F 2 2	MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50	dB 6.1 6.2 6.2 6.3 8.1 8.2	dBµV 59 56 56 60 60	dB 38.2 36.2 34.7 40.9 38.8	QP QP QP QP QP	N N N N
F 2 2	requency MHz 0.354000 0.654000 1.222000 2.490000 6.070000	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50	dB 6.1 6.2 6.2 6.3 8.1 8.2	dBµV 59 56 56 60 60	dB 38.2 36.2 34.7 40.9 38.8	QP QP QP QP QP	N N N N
F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>mequency MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04</pre>	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT	dB 6.1 6.2 6.3 8.1 8.2 : "agc_	dBμV 59 56 56 60 60 fin2 "	dB 38.2 36.2 34.7 40.9 38.8 35.5	QP QP QP QP QP	N N N N
F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04 requency	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT Level	dB 6.1 6.2 6.3 8.1 8.2 : "agc_	dBµV 59 56 56 60 60 fin2" Limit	dB 38.2 36.2 34.7 40.9 38.8 35.5 Margin	QP QP QP QP QP	N N N N
F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>mequency MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04</pre>	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT	dB 6.1 6.2 6.3 8.1 8.2 : "agc_	dBµV 59 56 56 60 60 fin2" Limit	dB 38.2 36.2 34.7 40.9 38.8 35.5 Margin	QP QP QP QP QP	N N N N
F 2 2 MEA 2024 F	MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04 requency MHz	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT Level dBµV	dB 6.1 6.2 6.3 8.1 8.2 : "agc_ Transd dB	dBμV 59 56 56 60 60 fin2 " Limit dBμV	dB 38.2 36.2 34.7 40.9 38.8 35.5 Margin dB	QP QP QP QP QP QP	N N N N Line
F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04 requency	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT Level	dB 6.1 6.2 6.3 8.1 8.2 : "agc_ Transd dB 6.1	dBμV 59 56 56 60 60 fin2 " Limit dBμV 49	dB 38.2 36.2 34.7 40.9 38.8 35.5 Margin dB	QP QP QP QP QP QP	N N N N
F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04 requency MHz 0.354000	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT Level dBµV 16.60	dB 6.1 6.2 6.3 8.1 8.2 : "agc_ Transd dB 6.1 6.2	dBμV 59 56 56 56 60 60 60 fin2" Limit dBμV 49 46	dB 38.2 36.2 34.7 40.9 38.8 35.5 Margin dB 32.3	QP QP QP QP QP QP AV	N N N N Line
F 2 2 MEA 2024 F	requency MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04 requency MHz 0.354000 0.778000	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT Level dBµV 16.60 19.30	dB 6.1 6.2 6.2 6.3 8.1 8.2 : "agc_ Transd dB 6.1 6.2 6.2	dBμV 59 56 56 60 60 60 fin2" Limit dBμV 49 46 46	dB 38.2 36.2 34.7 40.9 38.8 35.5 Margin dB 32.3 26.7 29.0	QP QP QP QP QP QP AV	N N N N N N
F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>mequency MHz 0.354000 0.654000 1.222000 2.490000 6.070000 7.354000 SUREMENT /3/6 17:04 requency MHz 0.354000 0.778000 1.306000</pre>	Level dBµV 20.70 19.80 21.30 15.10 21.20 24.50 RESULT Level dBµV 16.60 19.30 17.00	dB 6.1 6.2 6.3 8.1 8.2 : "agc_ Transd dB 6.1 6.2 6.2 7.9	dBμV 59 56 56 60 60 60 fin2" Limit dBμV 49 46 46 50 50	dB 38.2 36.2 34.7 40.9 38.8 35.5 Margin dB 32.3 26.7 29.0 32.7	QP QP QP QP QP QP AV AV AV AV AV AV	N N N N N N N

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC02931240301AP01

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC02931240301AP02

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.