

Test Report

Report No.:	MTi211206004-09E2
Date of issue:	Apr. 14, 2022
Applicant:	Shenzhen Gudsen Technology Co., LTD
Product:	R16 Direct Drive Wheel Base
Model(s):	R16, R21, R9, D05, D06, D07
FCC ID:	2AMJR-R1602

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

1. This test report shall not be partially reproduced without the written consent of the laboratory.

2. The test results in this test report are only responsible for the samples submitted

3. This test report is invalid without the seal and signature of the laboratory.

4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.

Any objection to this test report shall be submitted to the laboratory within
15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of EUT1.2 Description of test modes1.3 Measurement uncertainty	5
2	Summary of Test Result	7
3	Test Facilities and Accreditations	8
	3.1 Test laboratory	8
4	Equipment List	9
5	Test Result	10
	5.1 Antenna requirement	10
	5.2 AC power line conducted emissions	11
	5.3 6dB occupied bandwidth	
	5.4 Conducted peak output power	18
	5.5 Power spectral density test	
	5.6 Conducted emissions at the band edge	22
	5.7 Conducted spurious emissions	
	5.8 Duty Cycle	27
	5.9 Radiated spurious emission	28
Ρ	hotographs of the Test Setup	37
Ρ	hotographs of the EUT	38

Test Result Certification					
Applicant: Shenzhen Gudsen Technology Co., LTD					
Address: Room 1903-1904, Building 3, Nanshan Zhiyuan Chongwen P No. 3370 Liuxian Avenue, Nanshan District, Shenzhen					
Manufacturer:	Shenzhen Gudsen Technology Co., LTD				
Address:	Room 1903-1904, Building 3, Nanshan Zhiyuan Chongwen Park, No. 3370 Liuxian Avenue, Nanshan District, Shenzhen				
Product description					
Product name:	R16 Direct Drive Wheel Base				
Trademark:	MOZA				
Model name:	R16				
Serial Model:	R21, R9, D05, D06, D07				
Standards:	FCC 47 CFR Part 15 Subpart C				
Test method:	ANSI C63.10-2013				
Date of Test	Date of Test				
Date of test:	2021-12-28 ~2022-04-14				
Test result: Pass					

Test Engineer :

y An

(Danny Xu)

Reviewed By: :

loor chen

(Leon Chen)

Approved By: :

Tom Kue

(Tom Xue)

1 General Description

1.1 Description of EUT

Product name:	R16 Direct Drive Wheel Base	
Model name:	R16	
Series Model:	R21, R9, D05, D06, D07	
Model difference:	All the models are the same circuit and module, except the model name and color.	
Electrical rating:	Input: DC 36V/10A	
Hardware version:	V07	
Software version:	V1.1.8	
Adapter: Accessories: Adapter: Model: DYS6480-3601000P Input: 100-240V~ 50/60Hz 7.0A MAX Output: 36.0V=10.0A, 360.0W		
EUT serial number:	MTi211206004-09-S0001	
RF specification:		
Bluetooth version:	V5.0	
Operation frequency:	2402 MHz ~ 2480 MHz	
Modulation type: GFSK		
Antenna designation:	PCB antenna, antenna Gain: 0 dBi	
Max. peak conducted output power:	-2.24 dBm	

1.2 Description of test modes

1.2.1 Operation channel list

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.2 Test channels

Chanel	Frequency
Lowest (CH0)	2402MHz
Middle (CH19)	2440MHz
Highest (CH39)	2480MHz

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

1.2.3 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
Laptop	E485	/	Lenovo		

1.3 Measurement uncertainty

Parameter	Measurement uncertainty
AC power line conducted emission (9 kHz~30 MHz)	±2.5 dB
Occupied Bandwidth	±3 %
Conducted RF output power	±0.16 dB
Conducted spurious emissions	±0.21 dB
Radiated emission (9 kHz ~ 30 MHz)	±4.0 dB
Radiated emission (30 MHz~1 GHz)	±4.2 dB
Radiated emission (above 1 GHz)	±4.3 dB

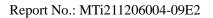
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	Pass
3	15.247(a)(2)	6dB occupied bandwidth	Pass
4	15.247(b)(3)	Conducted peak output power	Pass
5	15.247(e)	Power Spectral Density	Pass
6	15.247(d)	Conducted emission at the band edge	Pass
7	15.247(d)	Conducted spurious emissions	Pass
8	/	Duty Cycle	Pass
9	15.247(d)	Radiated spurious emissions	Pass

Note: N/A means not applicable.

3 Test Facilities and Accreditations


3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 Equipment List

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2021/04/16	2022/04/15
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E135	Horn antenna	Schwarzbeck	BBHA 9170	00987	2021/05/30	2023/05/29
MTi-E136	Pre-amplifier	Space-Dtronics	EWLAN1840G -G45	210405001	2021/06/02	2022/06/01
MTi-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2021/06/23	2022/06/22
MTi-E067	RF Control Unit	Tonscend	JS0806-1	19D8060152	2021/06/02	2022/06/01
MTi-E068	RF Control Unit	Tonscend	JS0806-2	19D8060153	2021/06/02	2022/06/01
MTi-E069	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2021/06/02	2022/06/01
MTI-E010S	EMI Measurement Software	Farad	EZ-EMC Ver. EMEC-3A1	/	/	/
MTI-E014S		Tonscend	TS®JS1120 V2.6.88.0330	/	/	/

5 Test Result

5.1 Antenna requirement

15.203 requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the antenna of EUT

The antenna of EUT is PCB antenna (Antenna Gain: 0 dBi). which is no consideration of replacement.

5.2 AC power line conducted emissions

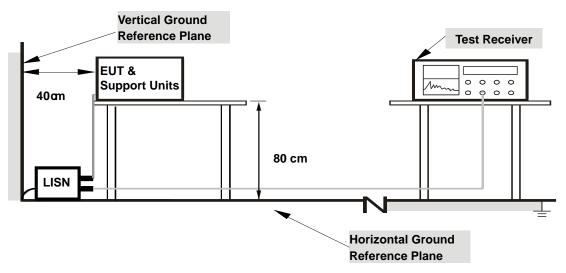
5.2.1 Limits

Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5	Average / 9 kHz	66 to 56	56 to 46
0.5 -5		56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

a) The test setup is refer to the standard ANSI C63.10-2013.


b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).

c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.

d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.

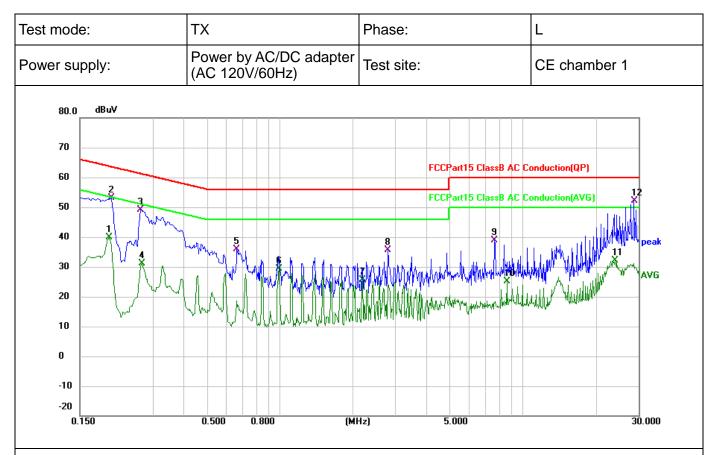
e) The test data of the worst-case condition(s) was recorded.

5.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

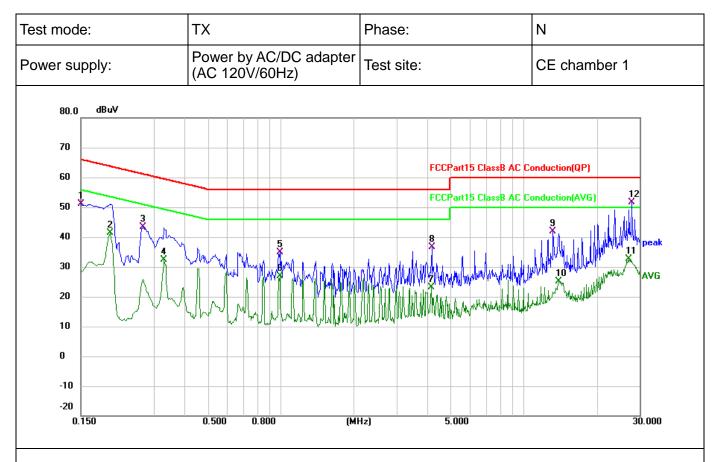
5.2.4 Test Result

Notes:

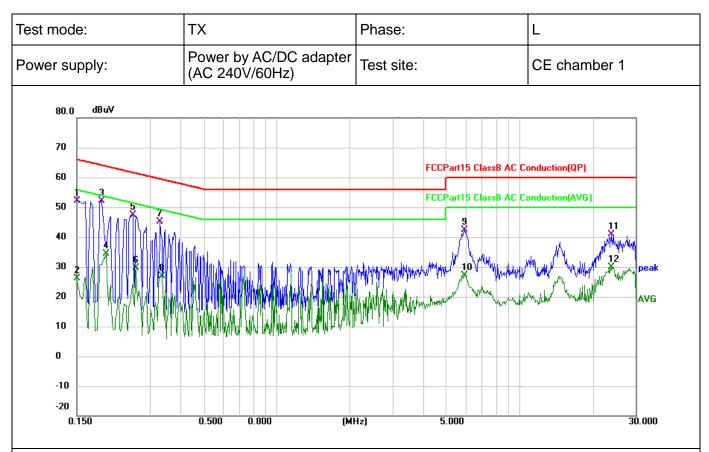

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

Calculation formula:

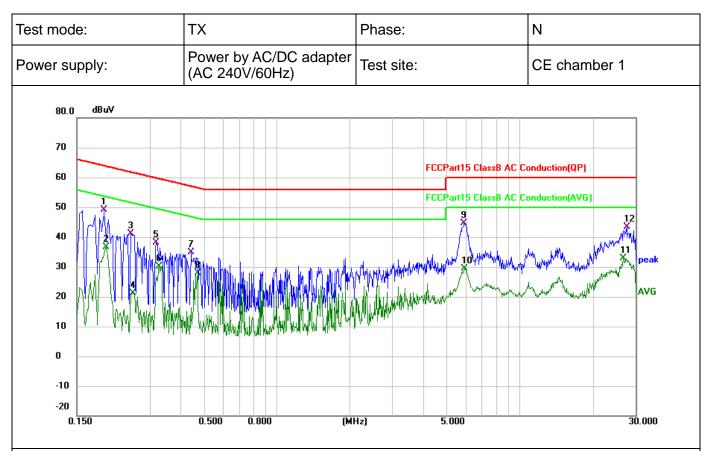
Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) – Limit (dB μ V)


Page 12 of 38

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1980	28.91	10.97	39.88	53.69	-13.81	AVG
2	0.2020	42.11	10.97	53.08	63.53	-10.45	QP
3	0.2660	38.23	10.98	49.21	61.24	-12.03	QP
4	0.2700	20.04	10.99	31.03	51.12	-20.09	AVG
5	0.6660	24.81	11.08	35.89	56.00	-20.11	QP
6	0.9939	16.14	13.26	29.40	46.00	-16.60	AVG
7	2.1939	9.77	15.80	25.57	46.00	-20.43	AVG
8	2.7940	24.22	11.39	35.61	56.00	-20.39	QP
9	7.6779	27.30	11.61	38.91	60.00	-21.09	QP
10	8.6178	13.43	11.60	25.03	50.00	-24.97	AVG
11	24.0579	20.43	11.79	32.22	50.00	-17.78	AVG
12 *	28.6178	40.33	11.73	52.06	60.00	-7.94	QP


Page 13 of 38

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1507	40.19	10.99	51.18	65.96	-14.78	QP
2	0.1980	30.37	10.91	41.28	53.69	-12.41	AVG
3	0.2700	32.55	10.90	43.45	61.12	-17.67	QP
4	0.3300	21.43	10.89	32.32	49.45	-17.13	AVG
5	0.9900	21.68	13.17	34.85	56.00	-21.15	QP
6	0.9900	13.72	13.17	26.89	46.00	-19.11	AVG
7	4.1577	11.65	11.38	23.03	46.00	-22.97	AVG
8	4.1939	25.13	11.38	36.51	56.00	-19.49	QP
9	13.2619	30.27	11.65	41.92	60.00	-18.08	QP
10	13.9700	13.43	11.67	25.10	50.00	-24.90	AVG
11	27.2220	20.80	11.73	32.53	50.00	-17.47	AVG
12 *	27.9220	39.84	11.73	51.57	60.00	-8.43	QP


Page 14 of 38

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	41.17	10.99	52.16	66.00	-13.84	QP
2	0.1500	15.18	10.99	26.17	56.00	-29.83	AVG
3 *	0.1900	41.06	10.98	52.04	64.04	-12.00	QP
4	0.1975	23.34	10.97	34.31	53.72	-19.41	AVG
5	0.2540	36.50	10.99	47.49	61.63	-14.14	QP
6	0.2620	18.67	10.99	29.66	51.37	-21.71	AVG
7	0.3300	34.08	10.98	45.06	59.45	-14.39	QP
8	0.3339	15.88	10.97	26.85	49.35	-22.50	AVG
9	5.9339	30.78	11.54	42.32	60.00	-17.68	QP
10	5.9339	15.69	11.54	27.23	50.00	-22.77	AVG
11	23.9300	29.17	11.79	40.96	60.00	-19.04	QP
12	23.9300	18.17	11.79	29.96	50.00	-20.04	AVG

Page 15 of 38

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.1940	38.28	10.92	49.20	63.86	-14.66	QP
2	0.1980	25.77	10.91	36.68	53.69	-17.01	AVG
3	0.2500	30.21	10.91	41.12	61.76	-20.64	QP
4	0.2540	10.30	10.91	21.21	51.63	-30.42	AVG
5	0.3180	27.16	10.89	38.05	59.76	-21.71	QP
6	0.3260	19.17	10.89	30.06	49.55	-19.49	AVG
7	0.4420	23.92	10.90	34.82	57.02	-22.20	QP
8	0.4700	16.86	10.90	27.76	46.51	-18.75	AVG
9	5.9058	33.13	11.39	44.52	60.00	-15.48	QP
10	5.9579	17.87	11.39	29.26	50.00	-20.74	AVG
11	26.7860	21.21	11.74	32.95	50.00	-17.05	AVG
12	27.6780	31.65	11.73	43.38	60.00	-16.62	QP

5.3 6dB occupied bandwidth

5.3.1 Limits

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.2 Test setup

5.3.3 Test procedures

- a) Test method: ANSI C63.10-2013 Section 11.8.2.
- b) The transmitter output of EUT is connected to the spectrum analyzer.

c) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, detector = Peak

5.3.4 Test results

Mode	Test channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
	CH0	2402	0.7261	≥ 0.5
BLE 1Mbps	CH19	2440	0.7223	≥ 0.5
	CH39	2480	0.7003	≥ 0.5

6dB occupied bandwidth

CH19

CH39

5.4 Conducted peak output power

5.4.1 Limits

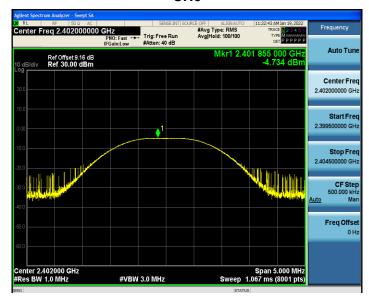
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

5.4.2 Test setup

5.4.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 11.9.1.1.

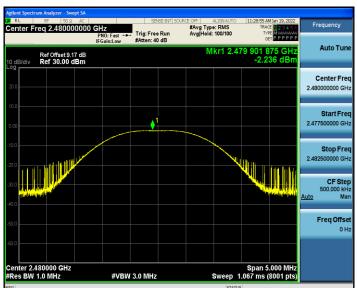
b) The EUT was set to continuously transmitting in the max power during the test.


c) The transmitter output of EUT is connected to the spectrum analyzer.

d) Spectrum analyzer setting: RBW \geq 6dB occupied bandwidth, VBW \geq 3 × RBW, detector = Peak

5.4.4 Test results

Mode	Test channel	Frequency (MHz)	Conducted peak output power (dBm)	Limit (dBm)
	CH0	2402	-4.73	≤ 30
BLE 1Mbps	CH19	2440	-2.36	≤ 30
	CH39	2480	-2.24	≤ 30


Peak conducted output power

CH19

CH39

CH0

5.5 Power spectral density test

5.5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

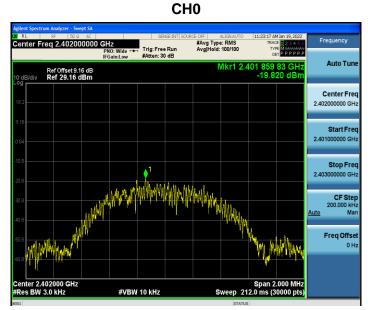
5.5.2 Test setup

EUT	Spectrum
EUT	Analyzer

5.5.3 Test Procedure

a) Test method: ANSI C63.10-2013 Section 11.10.2.

b) The EUT was set to continuously transmitting in the max power during the test.


- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 3 kHz, VBW = 10 kHz, detector = Peak

5.5.4 Test Results

Mode	Test channel	Frequency (MHz)	Power spectral density (dBm/3kHz)	Limit (dBm/3kHz)
	CH0	2402	-19.82	≤ 8
BLE 1Mbps	CH19	2440	-17.56	≤ 8
	CH39	2480	-17.28	≤ 8

Power spectral density

CH19

CH39

5.6 Conducted emissions at the band edge

5.6.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.6.2 Test setup

сит	Spectrum
EUT	Analyzer

5.6.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 11.13

b) The EUT was set to continuously transmitting in the max power during the test.

c) The transmitter output of EUT is connected to the spectrum analyzer.

d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.6.4 Test results

BLE 1Mbps - conducted emissions at the band edge

gilent Sp	ectrum J	Analyzer - Swe	pt SA						
enter		≅ 50 Ω 2.35700	AC 0000 GHz PN0: Eas			F ALIGNAUTI Vg Type: RMS Vg[Hold: 300/300	TRA TY	M Jan 19, 2022 CE 123456 PE M M	Frequency
			IFGain:Lo		dB	Mk	5 2.399		Auto Tu
IO dB/di		ef Offset 9.1 ef 16.00 d				WIKI		14 dBm	
6.00								1	Center Fr
4.00									2.357000000 G
24.0								-25.08 dBm	Start Fr
34.0								5	2.310000000 G
44.0								my 12	
54.0 64.0	دايو/ ي وجيا	malineration	Unergen optimility of the spin	Nétradillation (Station	urana ana ana ana ana ana ana ana ana ana	hiteration and the state of the	- and and a state of the state	γ η γ	Stop Fr
74.0									2.40400000 G
74.0									
Start 2				(B)(200 kHz		Swoon		0400 GHz	CF St
Start 2 Res B	SW 10	0 kHz		VBW 300 kHz	SUNPTION		9.000 ms	(1001 pts)	9.400000 N
Start 2 Res B	SW 10	O kHz	#\ X 2.401 744 GHz	Y	FUNCTION		9.000 ms		9.400000 M
Start 2 Res E	E TRC S	O kHz	× 2.401 744 GHz 2.400 000 GHz	-5.084 dBr -55.665 dBr	m m		9.000 ms	(1001 pts)	9.400000 M <u>Auto</u> M
Start 2 Res E KR MODI 1 N 2 N 3 N	E TRC S	O kHz	× 2.401 744 GHz 2.400 000 GHz 2.390 000 GHz	-5.084 dBr -55.665 dBr -57.023 dBr	m m m		9.000 ms	(1001 pts)	9.400000 M <u>Auto</u> M Freq Offs
Start 2 Res E	E TRC S	O kHz	× 2.401 744 GHz 2.400 000 GHz	-5.084 dBr -55.665 dBr -57.023 dBr -55.692 dBr	m m m m		9.000 ms	(1001 pts)	9.400000 M Auto N Freq Offs
Start 2 Res E KR MOD 1 N 2 N 3 N 4 N 5 N 6	E TRC S	O kHz	× 2.401 744 GHz 2.400 000 GHz 2.390 000 GHz 2.310 000 GHz	-5.084 dBr -55.665 dBr -57.023 dBr -55.692 dBr	m m m m		9.000 ms	(1001 pts)	9.400000 M
Start 2 Res E (KR MOD 1 N 2 N 3 N 4 N 5 N	E TRC S	O kHz	× 2.401 744 GHz 2.400 000 GHz 2.390 000 GHz 2.310 000 GHz	-5.084 dBr -55.665 dBr -57.023 dBr -55.692 dBr	m m m m		9.000 ms	(1001 pts)	9.400000 M Auto N Freq Offs
Start 2 #Res B #KR MODI 1 N 2 N 3 N 4 N 5 N 6 7	E TRC S	O kHz	× 2.401 744 GHz 2.400 000 GHz 2.390 000 GHz 2.310 000 GHz	-5.084 dBr -55.665 dBr -57.023 dBr -55.692 dBr	m m m m		9.000 ms	(1001 pts)	9.400000 M <u>Auto</u> M Freq Offs

High band-edge

	RF 50 Q AC		SENSE:1	NT SOURCE OFF	ALIGNAUTO Type: RMS	11:29:39 AM	Jan 19, 2022	Frequency
enter Fre	eq 2.489000000	PNO: Fast • IEGain: I ow	→ Trig: Free Ru #Atten: 26 dB	n Avgļi	Hold: 300/300	TYPE		
) dB/div	Ref Offset 9.17 dB Ref 16.00 dBm	I Gumeow			Mkr4	2.483 80 -45.30	08 GHz 4 dBm	Auto Tun
•g 5.00 1.00	¢1							Center Fre 2.489000000 GH
4.0 4.0 4.0	Contraction of the second seco	24 1977 minut					-22.54 dBm	Start Fre 2.478000000 GH
4.0		լ . թ.թ.թ.թ.թ.	and the second of the second of the	Werthelicherry	Jela Antone and	htermonia	-Angender	Stop Fre
								2.50000000 Gi
tart 2.478 Res BW 1	100 kHz	#VB	W 300 kHz		Sweep 2	Stop 2.50 .133 ms (1	001 pts)	CF Ste 2.200000 M
4.0 tart 2.478 Res BW 1 KR MODE TRC 1 N 1	100 kHz SCL X f 2.47	9 738 GHz	۲ -2.540 dBm	FUNCTION	Sweep 2	Stop 2.50 .133 ms (1 FUNCTION	001 pts)	CF Ste 2.200000 MH
'4.0 tart 2.478 Res BW 1 KR MODE TRC 1 N 2 N 3 N 4 N 5	100 kHz scl × f 2.47 f 2.48 f 2.50		Y	FUNCTION	Sweep 2	.133 ms (1	001 pts)	CF Ste 2.200000 Mi Auto Mi Freq Offs
2 N 1 3 N 1	100 kHz scl × f 2.47 f 2.48 f 2.50	9 738 GHz 3 500 GHz 0 000 GHz	-2.540 dBm -46.229 dBm -54.778 dBm	FUNCTION	Sweep 2	.133 ms (1	001 pts)	250000000 GH CF Ste 2200000 MH Auto Ma Freq Offs: 0 H

5.7 Conducted spurious emissions

5.7.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.7.2 Test setup

сит	Spectrum
EUT	Analyzer

5.7.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 11.11 & 11.12.

b) The EUT was set to continuously transmitting in the max power during the test.

c) The transmitter output of EUT is connected to the spectrum analyzer.

d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

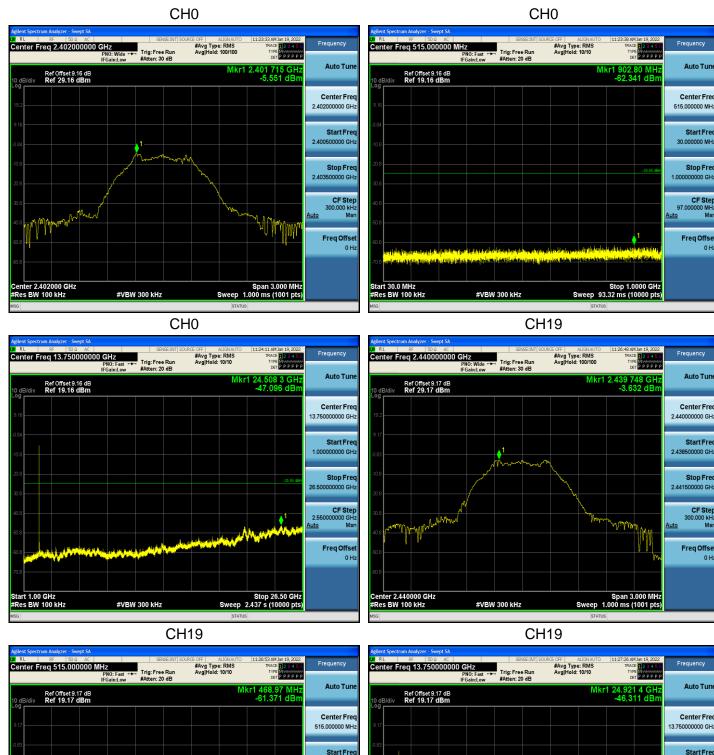
5.7.4 Test results

1.00000000 GH

26.50000000 GH

CF Step 2.55000000 GH

Freq Offse


Ma

0 H

uto

Stop 26.50 GHz Sweep 2.437 s (10000 pts) Stop Fre

BLE 1Mbps - conducted spurious emissions

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

30.000000 M

1.00000000 GH

97.00

Stop 1.0000 GHz 93.32 ms (10000 mt

Sween

▲1

#VBW 300 kHz

30.0 MHz BM 100 kH Stop Fre

CF Step

Freq Offse

Ma

0 H

1.00 GH;

#VBW 300 kHz

BLE 1Mbps - conducted spurious emissions

CH39

CH39 Frequency nter Freq 515.000000 MHz #Avg Type: RMS Avg|Hold: 10/10 Trig: Free Run #Atten: 20 dB Auto Tun Ref Offset 9.17 dB Ref 19.17 dBm -62.226 dB Center Freq 515.000000 MH; Start Free 30.000000 MH Stop Free 1.00000000 GH CF Step 97.000000 MH-Ma ▲1 Freq Offse 0 H; Stop 1.0000 GHz Sweep 93.32 ms (10000 pts Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz

5.8 Duty Cycle

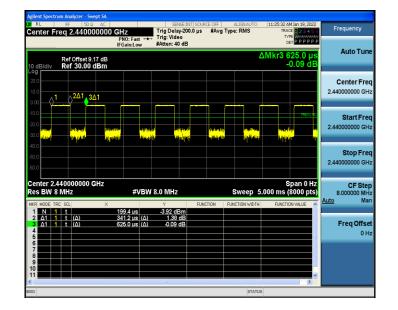
5.8.1 Conformance Limit

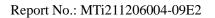
None, for reporting purposes only.

5.8.2 Test setup

сит	Spectrum
EUT	Analyzer

5.8.3 Test procedure


- a) Test method: KDB 558074 Zero-span spectrum analyzer method.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.


d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.8.4 Test Results

TestMode	Transmission Duration	Transmission Period	Duty Cycle		
	(ms]	(ms]	(%)		
BLE 1Mbps	0.3412	0.625	54.59		

BLE 1Mbps

5.9 Radiated spurious emission

5.9.1 Limits

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

§ 15.209 Radiated emission limits at restricted bands:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

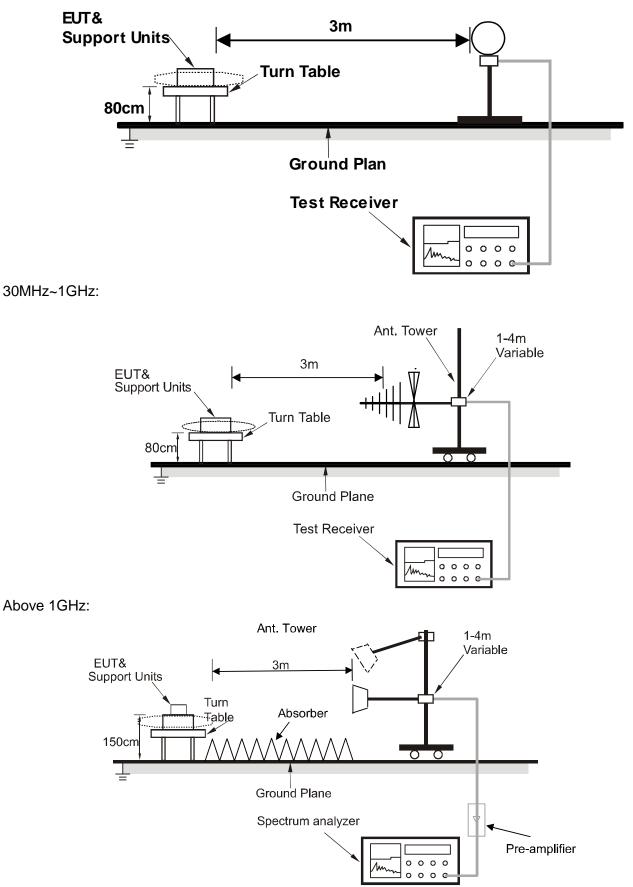
§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

According to ANSI C63.10-2013, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified


Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
	5th harmonic of the highest frequency or 40 GHz, whichever is lower

5.9.2 Test setup

Below 30MHz:

For the actual test configuration, please refer to the related item - Photographs of the test setup.

5.9.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 6.3, 6.4, 6.5, 6.6, 11.11, 11.12, 11.13.

b) The EUT is placed on an on-conducting table 0.8 meters above the ground plane for measurement below 1GHz, 1.5 meters above the ground plane for measurement above 1GHz.

c) Emission blew 18 GHz were measured at a 3 meters test distance, above 18 GHz were measured at 1-meter test distance with the application of a distance correction factor

d) The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / RBW: 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / RBW: 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / RBW: 120 kHz
Above 1 GHz	Peak / RBW: 1 MHz, VBW: 3MHz, Peak detector AVG / RBW: 1 MHz, VBW: 3MHz, Average detector

5.9.4 Test results

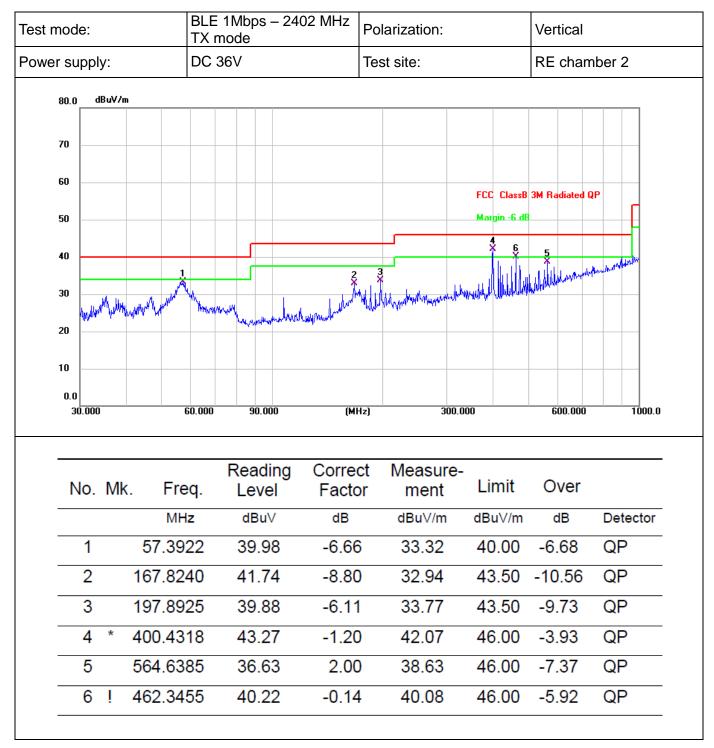
Notes:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

Calculation formula:

Measurement ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Correct Factor (dB/m) Over (dB) = Measurement ($dB\mu V/m$) – Limit ($dB\mu V/m$)



Radiated emissions between 30MHz – 1GHz

Test mod	est mode:			BLE 1Mbps – 2402 MHz TX mode			Po	larization:			Hor	izon	tal			
Power supply:		DC 36V			Tes	st site:		RE cha				amber 2				
80.0	dBuV∕	'n									1					
70																
60																
50												C ClassB rgin -6 dl		diated	QP	
40						┛	3		4 X			5 1. ¥.				where
30		1	, ¹		X		×		M	Miller Annaly wood	hillipped	I HALLIN,	and May	h.lh.m.m.h.h	House	
20	Nativetican	And and a second s	Ovyl"	Mindage	<u>م</u>	equilation of	W	duyulor								
10																
0.0 30	0.000		6	60.000		90.	.000	(M	Hz)	3	00.000		6	00.000		1000.
٨	No. M	k.	Fre	eq.		lea Lev	ding /el	Corre Facto		Measur ment		mit	Ov	/er		
			MH	z		dB	u∨	dB		dBuV/m	dB	uV/m	d	В	De	tector
	1	57	7.19	14		37.	41	-6.76	6	30.65 40.00		0.00	-9.3	35	QP	
	2	77	7.86	53		41.	72	-10.57	7	31.15	40	0.00	-8.8	85	Q	D
	3	107.8876			42.	37	-6.93	3	35.44	43	3.50	-8.0	06	Q	2	
	4 *	173.8135			47.	52	-8.60)	38.92	43	3.50	-4.	58	Q	D	
						10	61	-1.24	1	39.37	46	6.00	-6.6	63	Q	5
	5	399	9.03	00		40.	01	-1.2-		00.07			0.0	00		

Radiated emissions between 30MHz – 1GHz

Radiated emissions 1 GHz ~ 25 GHz

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
		BLI	E 1Mbps - 240	02 MHz TX m	ode		
4804	40.91	1.52	42.43	74	-31.57	Peak	V
4804	30.47	1.52	31.99	54	-22.01	AVG	V
7206	40.62	5.46	46.08	74	-27.92	Peak	V
7206	30.52	5.46	35.98	54	-18.02	AVG	V
9608	41.79	6.33	48.12	74	-25.88	Peak	V
9608	31.61	6.33	37.94	54	-16.06	AVG	V
4804	41.71	1.52	43.23	74	-30.77	Peak	Н
4804	30.5	1.52	32.02	54	-21.98	AVG	Н
7206	39.98	5.46	45.44	74	-28.56	Peak	Н
7206	30.53	5.46	35.99	54	-18.01	AVG	Н
9608	41.73	6.33	48.06	74	-25.94	Peak	Н
9608	31.61	6.33	37.94	54	-16.06	AVG	Н
		BLI	E 1Mbps - 244	10 MHz TX m	ode		
4880	40.32	1.68	42	74	-32	Peak	V
4880	30.63	1.68	32.31	54	-21.69	AVG	V
7320	40.1	5.45	45.55	74	-28.45	Peak	V
7320	30.15	5.45	35.6	54	-18.4	AVG	V
9760	41.72	6.37	48.09	74	-25.91	Peak	V
9760	31.64	6.37	38.01	54	-15.99	AVG	V
4880	40.89	1.68	42.57	74	-31.43	Peak	Н
4880	31.06	1.68	32.74	54	-21.26	AVG	Н
7320	40.23	5.45	45.68	74	-28.32	Peak	Н
7320	30.16	5.45	35.61	54	-18.39	AVG	Н
9760	41.91	6.37	48.28	74	-25.72	Peak	Н
9760	31.66	6.37	38.03	54	-15.97	AVG	Н

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
4960	42.78	1.83	44.61	74	-29.39	Peak	V
4960	30.3	1.83	32.13	54	-21.87	AVG	V
7440	40.97	5.43	46.4	74	-27.6	Peak	V
7440	30.15	5.43	35.58	54	-18.42	AVG	V
9920	41.93	6.41	48.34	74	-25.66	Peak	V
9920	30.97	6.41	37.38	54	-16.62	AVG	V
4960	45.75	1.83	47.58	74	-26.42	Peak	Н
4960	38.22	1.83	40.05	54	-13.95	AVG	Н
7440	40.8	5.43	46.23	74	-27.77	Peak	Н
7440	30.18	5.43	35.61	54	-18.39	AVG	Н
9920	41.19	6.41	47.6	74	-26.4	Peak	Н
9920	31.07	6.41	37.48	54	-16.52	AVG	Н

Radiated emissions at band edge

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
			BLE 1Mbps – L	.ow band-edg	е		
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
2310	48.39	-6.6	41.79	74	-32.21	Peak	V
2310	38.44	-6.6	31.84	54	-22.16	AVG	V
2390	54.34	-6.23	48.11	74	-25.89	Peak	V
2390	38.84	-6.23	32.61	54	-21.39	AVG	V
2310	47.64	-6.6	41.04	74	-32.96	Peak	Н
2310	38.37	-6.6	31.77	54	-22.23	AVG	Н
2390	56.2	-6.23	49.97	74	-24.03	Peak	Н
2390	39.05	-6.23	32.82	54	-21.18	AVG	Н
		E	BLE 1Mbps – H	ligh band-edg	e		
2483.5	61.8	-5.79	56.01	74	-17.99	Peak	V
2483.5	39.97	-5.79	34.18	54	-19.82	AVG	V
2500	50.56	-5.72	44.84	74	-29.16	Peak	V
2500	38.82	-5.72	33.1	54	-20.9	AVG	V
2483.5	64.26	-5.79	58.47	74	-15.53	Peak	Н
2483.5	40.7	-5.79	34.91	54	-19.09	AVG	Н
2500	51.24	-5.72	45.52	74	-28.48	Peak	Н
2500	38.71	-5.72	32.99	54	-21.01	AVG	Н

Photographs of the Test Setup

See the appendix – Test Setup Photos.

Photographs of the EUT

See the appendix - EUT Photos.

----End of Report----