

# Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202206069F01

# **TEST Report**

Applicant: Vela Optoelectronics (Suzhou) Co., Ltd

Address of Applicant: Building B, Advanced Laser (Equipment) Industrial Park,

Xinchuang Road, Daxin Zhen, Zhangjiagang, Suzhou, Jiangsu

province, China

Manufacturer: Vela Optoelectronics (Suzhou) Co., Ltd

Address of Building B, Advanced Laser (Equipment) Industrial Park,

Manufacturer: Xinchuang Road, Daxin Zhen, Zhangjiagang, Suzhou, Jiangsu

province, China

**Equipment Under Test (EUT)** 

Product Name: HANDHELD LIBS

Model No.: P-1

Series model: P-1PLUS, P-1PRO, P-1CUSTOM, P-2, P-2PLUS, P-2PRO,

P-2CUSTOM, P-3, P-3PLUS, P-3PRO, P-3CUSTOM

Trade Mark: PEGASUSLIBS

FCC ID: 2ASU3-P-1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jun.14,2022

**Date of Test:** Jun.14,2022~Jun.20,2022

Date of report issued: Jun.20,2022

Test Result: PASS \*

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 1. Version

| Version No. | Date        | Description |
|-------------|-------------|-------------|
| 00          | Jun.20,2022 | Original    |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |

| Tested/ Prepared By | Ervin Xu             | Date: | Jun.20,2022 |
|---------------------|----------------------|-------|-------------|
|                     | Project Engineer     | _     |             |
| Check By:           | Bruce Zhu            | Date: | Jun.20,2022 |
|                     | Reviewer             |       |             |
| Approved By :       | Kerin Yang           | Date: | Jun.20,2022 |
|                     | Authorized Signature |       |             |



# 2. Contents

|                                                                                                                                                                                                                                                                                                                  | Page |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. VERSION                                                                                                                                                                                                                                                                                                       | 2    |
| 2. CONTENTS                                                                                                                                                                                                                                                                                                      | 3    |
| 3. TEST SUMMARY                                                                                                                                                                                                                                                                                                  | 4    |
| 4. GENERAL INFORMATION                                                                                                                                                                                                                                                                                           | 5    |
| 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS                                                                                    |      |
| 5. TEST INSTRUMENTS LIST                                                                                                                                                                                                                                                                                         | 8    |
| 6. TEST RESULTS AND MEASUREMENT DATA                                                                                                                                                                                                                                                                             | 9    |
| 6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.2. Radiated Emission Method |      |
| 7. TEST SETUP PHOTO                                                                                                                                                                                                                                                                                              | 28   |
| 8. EUT CONSTRUCTIONAL DETAILS                                                                                                                                                                                                                                                                                    | 28   |



# 3. Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | N/A    |
| Conducted Output Power           | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

#### Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

### **Measurement Uncertainty**

| Test Item                                                                                             | Frequency Range | Measurement Uncertainty | Notes |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------|-------------------------|-------|--|--|
| Radiated Emission                                                                                     | 30~1000MHz      | 3.45 dB                 | (1)   |  |  |
| Radiated Emission                                                                                     | 1~6GHz          | 3.54 dB                 | (1)   |  |  |
| Radiated Emission                                                                                     | 6~40GHz         | 5.38 dB                 | (1)   |  |  |
| Conducted Disturbance 0.15~30MHz 2.66 dB (1)                                                          |                 |                         |       |  |  |
| Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%. |                 |                         |       |  |  |



# 4. General Information

# 4.1. General Description of EUT

| Product Name:       | HANDHELD LIBS                                     |  |  |
|---------------------|---------------------------------------------------|--|--|
| Model No.:          | P-1                                               |  |  |
| Series model:       | P-1PLUS, P-1PRO, P-1CUSTOM, P-2, P-2PLUS, P-2PRO, |  |  |
|                     | P-2CUSTOM, P-3, P-3PLUS, P-3PRO, P-3CUSTOM        |  |  |
| Test sample(s) ID:  | HTT202206069-1(Engineer sample)                   |  |  |
|                     | HTT202206069-2(Normal sample)                     |  |  |
| Operation frequency | 2402~2480 MHz                                     |  |  |
| Number of Channels  | 40                                                |  |  |
| Modulation Type     | GFSK                                              |  |  |
| Channel separation  | 2MHz                                              |  |  |
| Antenna Type:       | PCB Antenna                                       |  |  |
| Antenna Gain:       | 0 dBi                                             |  |  |
| Power Supply:       | DC 14.8V From Battery                             |  |  |
| Adapter Information | Mode: vela 1608-2                                 |  |  |
|                     | Input: AC100-240V, 50/60Hz, 1.5A                  |  |  |
|                     | Output: DC 16.8, 2000mA                           |  |  |



| Channel | Frequency(MHz) | Channel | Frequency(MHz) |
|---------|----------------|---------|----------------|
| 0       | 2402           | 20      | 2442           |
| 1       | 2404           | 21      | 2444           |
| 2       | 2406           | 22      | 2446           |
| 3       | 2408           | 23      | 2448           |
| 4       | 2410           | 24      | 2450           |
| 5       | 2412           | 25      | 2452           |
| 6       | 2414           | 26      | 2454           |
| 7       | 2416           | 27      | 2456           |
| 8       | 2418           | 28      | 2458           |
| 9       | 2420           | 29      | 2460           |
| 10      | 2422           | 30      | 2462           |
| 11      | 2424           | 31      | 2464           |
| 12      | 2426           | 32      | 2466           |
| 13      | 2428           | 33      | 2468           |
| 14      | 2430           | 34      | 2470           |
| 15      | 2432           | 35      | 2472           |
| 16      | 2434           | 36      | 2474           |
| 17      | 2436           | 37      | 2476           |
| 18      | 2438           | 38      | 2478           |
| 19      | 2440           | 39      | 2480           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2440MHz   |
| The Highest channel | 2480MHz   |



#### 4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

#### 4.3. Description of Support Units

None.

#### 4.4. Deviation from Standards

None.

#### 4.5. Abnormalities from Standard Conditions

None.

#### 4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

### 4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

#### 4.8. Additional Instructions

| Test Software     | Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Power level setup | Default                                                                                                             |



# 5. Test Instruments list

| <u>J.</u> | rest mstrume                       |                                        |                    | ı                |                        | 1                          |
|-----------|------------------------------------|----------------------------------------|--------------------|------------------|------------------------|----------------------------|
| Item      | Test Equipment                     | Manufacturer                           | Model No.          | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1         | 3m Semi- Anechoic<br>Chamber       | Shenzhen C.R.T technology co., LTD     | 9*6*6              | HTT-E028         | Aug. 10 2020           | Aug. 09 2024               |
| 2         | Control Room                       | Shenzhen C.R.T technology co., LTD     | 4.8*3.5*3.0        | HTT-E030         | Aug. 10 2020           | Aug. 09 2024               |
| 3         | EMI Test Receiver                  | Rohde&Schwar                           | ESCI7              | HTT-E022         | May 23 2022            | May 22 2023                |
| 4         | Spectrum Analyzer                  | Rohde&Schwar                           | FSP                | HTT-E037         | May 23 2022            | May 22 2023                |
| 5         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-NJ-0.6M    | HTT-E018         | May 23 2022            | May 22 2023                |
| 6         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-2M    | HTT-E019         | May 23 2022            | May 22 2023                |
| 7         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-0.6M  | HTT-E020         | May 23 2022            | May 22 2023                |
| 8         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-8.5M  | HTT-E021         | May 23 2022            | May 22 2023                |
| 9         | Composite logarithmic antenna      | Schwarzbeck                            | VULB 9168          | HTT-E017         | Aug. 22 2021           | Aug. 21 2022               |
| 10        | Horn Antenna                       | Schwarzbeck                            | BBHA9120D          | HTT-E016         | Aug. 22 2021           | Aug. 21 2022               |
| 11        | Loop Antenna                       | Zhinan                                 | ZN30900C           | HTT-E039         | Aug. 22 2021           | Aug. 21 2022               |
| 12        | Horn Antenna                       | Beijing Hangwei Dayang                 | OBH100400          | HTT-E040         | Aug. 22 2021           | Aug. 21 2022               |
| 13        | low frequency<br>Amplifier         | Sonoma Instrument                      | 310                | HTT-E015         | May 23 2022            | May 22 2023                |
| 14        | high-frequency<br>Amplifier        | HP                                     | 8449B              | HTT-E014         | May 23 2022            | May 22 2023                |
| 15        | Variable frequency power supply    | Shenzhen Anbiao<br>Instrument Co., Ltd | ANB-10VA           | HTT-082          | May 23 2022            | May 22 2023                |
| 16        | EMI Test Receiver                  | Rohde & Schwarz                        | ESCS30             | HTT-E004         | May 23 2022            | May 22 2023                |
| 17        | Artificial Mains                   | Rohde & Schwarz                        | ESH3-Z5            | HTT-E006         | May 23 2022            | May 22 2023                |
| 18        | Artificial Mains                   | Rohde & Schwarz                        | ENV-216            | HTT-E038         | May 23 2022            | May 22 2023                |
| 19        | Cable Line                         | Robinson                               | Z302S-NJ-BNCJ-1.5M | HTT-E001         | May 23 2022            | May 22 2023                |
| 20        | Attenuator                         | Robinson                               | 6810.17A           | HTT-E007         | May 23 2022            | May 22 2023                |
| 21        | Variable frequency power supply    | Shenzhen Yanghong<br>Electric Co., Ltd | YF-650 (5KVA)      | HTT-E032         | May 23 2022            | May 22 2023                |
| 22        | Control Room                       | Shenzhen C.R.T technology co., LTD     | 8*4*3.5            | HTT-E029         | May 23 2022            | May 22 2023                |
| 23        | DC power supply                    | Agilent                                | E3632A             | HTT-E023         | May 23 2022            | May 22 2023                |
| 24        | EMI Test Receiver                  | Agilent                                | N9020A             | HTT-E024         | May 23 2022            | May 22 2023                |
| 25        | Analog signal generator            | Agilent                                | N5181A             | HTT-E025         | May 23 2022            | May 22 2023                |
| 26        | Vector signal generator            | Agilent                                | N5182A             | HTT-E026         | May 23 2022            | May 22 2023                |
| 27        | Power sensor                       | Keysight                               | U2021XA            | HTT-E027         | May 23 2022            | May 22 2023                |
| 28        | Temperature and humidity meter     | Shenzhen Anbiao<br>Instrument Co., Ltd | TH10R              | HTT-074          | May 23 2022            | May 22 2023                |
| 29        | Radiated Emission Test<br>Software | Farad                                  | EZ-EMC             | N/A              | N/A                    | N/A                        |
| 30        | Conducted Emission Test Software   | Farad                                  | EZ-EMC             | N/A              | N/A                    | N/A                        |
| 31        | RF Test Software                   | panshanrf                              | TST                | N/A              | N/A                    | N/A                        |



# 6. Test results and Measurement Data

### 6.1. Conducted Emissions

|                       | <u> </u>                                                                                                                                                                                                                                                                        |                                                                                                                                                               |                                                                                  |                                                       |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                     |                                                                                                                                                               |                                                                                  |                                                       |  |
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                  |                                                       |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                 |                                                                                                                                                               |                                                                                  |                                                       |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                         | Class B                                                                                                                                                       |                                                                                  |                                                       |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz,                                                                                                                                                                                                                                                            | Sweep time=auto                                                                                                                                               |                                                                                  |                                                       |  |
| Limit:                | Fraguency range (MHz)                                                                                                                                                                                                                                                           | Limit                                                                                                                                                         | (dBuV)                                                                           |                                                       |  |
|                       | Frequency range (MHz)  Quasi-peak  Average                                                                                                                                                                                                                                      |                                                                                                                                                               |                                                                                  |                                                       |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                        | 66 to 56*                                                                                                                                                     | +                                                                                | o 46*                                                 |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                           | 56                                                                                                                                                            |                                                                                  | 46                                                    |  |
|                       | 5-30                                                                                                                                                                                                                                                                            | 60                                                                                                                                                            |                                                                                  | 50                                                    |  |
| Test setup:           | * Decreases with the logarith  Reference Plan                                                                                                                                                                                                                                   |                                                                                                                                                               |                                                                                  |                                                       |  |
| Test procedure:       | LISN 40cm 80cm 40cm 80cm 40cm 80cm 80cm 40cm 80cm 80cm 40cm 80cm 80cm 80cm 80cm 80cm 80cm 80cm 8                                                                                                                                                                                | Filter AC p  EMI Receiver  are connected to the                                                                                                               |                                                                                  |                                                       |  |
|                       | <ol> <li>50ohm/50uH coupling implements.</li> <li>The peripheral devices as LISN that provides a 50oh termination. (Please refer photographs).</li> <li>Both sides of A.C. line are interference. In order to fi positions of equipment are according to ANSI C63.10</li> </ol> | pedance for the measure also connected to the measure to the block diagram of the checked for maximum and the maximum emisured all of the interface contents. | uring equipm the main power edance with of the test seem conducted ables must be | nent. er through a 50ohm etup and d attive pe changed |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                  |                                                       |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                  |                                                       |  |
| Test environment:     | Temp.: 25 °C Hu                                                                                                                                                                                                                                                                 | mid.: 52%                                                                                                                                                     | Press.:                                                                          | 1012mbar                                              |  |
| Test voltage:         | AC 120V, 60Hz                                                                                                                                                                                                                                                                   |                                                                                                                                                               |                                                                                  |                                                       |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                            |                                                                                                                                                               |                                                                                  |                                                       |  |
|                       | 1                                                                                                                                                                                                                                                                               |                                                                                                                                                               |                                                                                  |                                                       |  |

The EUT is powered by the Battery, So this test item is not applicable for the EUT.



### 6.2. Conducted Output Power



### **Measurement Data**

| Test channel | Peak Output Power (dBm) | Limit(dBm) | Result |
|--------------|-------------------------|------------|--------|
| Lowest       | -16.63                  |            |        |
| Middle       | -11.78                  | 30.00      | Pass   |
| Highest      | -9.55                   |            |        |



#### 6.3. Channel Bandwidth



### **Measurement Data**

| Test channel | Channel Bandwidth (MHz) | Limit(KHz) | Result |
|--------------|-------------------------|------------|--------|
| Lowest       | 0.637                   |            |        |
| Middle       | 0.644                   | >500       | Pass   |
| Highest      | 0.640                   |            |        |



### Test plot as follows:



#### Lowest channel



#### Middle channel



Highest channel



### 6.4. Power Spectral Density



#### **Measurement Data**

| Test channel | Power Spectral Density<br>(dBm/3kHz) | Limit(dBm/3kHz) | Result |
|--------------|--------------------------------------|-----------------|--------|
| Lowest       | -31.36                               |                 |        |
| Middle       | -27.10                               | 8.00            | Pass   |
| Highest      | -25.11                               |                 |        |



### Test plot as follows:



#### Lowest channel



#### Middle channel



Highest channel



# 6.5. Band edges

#### 6.5.1 Conducted Emission Method

| 6.5.1 Conducted Emission Method |                                                 |                                                                                                                                                                                                                                                                                                                                                                                         |             |             |             |          |  |  |  |  |  |
|---------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------|--|--|--|--|--|
| Test Requirement:               | FCC Part15                                      | C Section 15                                                                                                                                                                                                                                                                                                                                                                            | 5.247 (d)   |             |             |          |  |  |  |  |  |
| Test Method:                    | ANSI C63.1                                      | 0:2013 and k                                                                                                                                                                                                                                                                                                                                                                            | (DB558074 [ | 001 DTS Mea | as Guidance | e V05r02 |  |  |  |  |  |
| Limit:                          | spectrum in is produced the 100 kHz the desired | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |             |             |             |          |  |  |  |  |  |
| Test setup:                     | Sp                                              | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |             |             |             |          |  |  |  |  |  |
| Test Instruments:               | Refer to see                                    | ction 6.0 for d                                                                                                                                                                                                                                                                                                                                                                         | etails      |             |             |          |  |  |  |  |  |
| Test mode:                      | Refer to see                                    | ction 5.2 for d                                                                                                                                                                                                                                                                                                                                                                         | etails      |             |             |          |  |  |  |  |  |
| Test results:                   | Pass                                            |                                                                                                                                                                                                                                                                                                                                                                                         |             |             |             |          |  |  |  |  |  |
| Test environment:               | Temp.:                                          | 25 °C                                                                                                                                                                                                                                                                                                                                                                                   | Humid.:     | 52%         | Press.:     | 1012mbar |  |  |  |  |  |

### Test plot as follows:





Lowest channel

Highest channel

<sup>1</sup>F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China



### 6.5.2 Radiated Emission Method

| Test Requirement:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C Section 1                 | 5.209 and | d 15.205   |         |              |            |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|------------|---------|--------------|------------|--|--|
| Test Method:          | ANSI C63.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |           |            |         |              |            |  |  |
| Test Frequency Range: | All of the re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | strict bands<br>ata was sho |           | ted, only  | the wor | st band's (2 | 2310MHz to |  |  |
| Test site:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Distance:                |           |            |         |              |            |  |  |
| Receiver setup:       | Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Detec                     | ctor      | RBW        | VBW     | / \          | /alue      |  |  |
| ·                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pos                         |           | 1MHz       | 3MH:    |              | Peak       |  |  |
|                       | Above 1GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM                          | S         | 1MHz       | 3MH:    | z Av         | rerage     |  |  |
| Limit:                | Fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | quency                      | Lin       | nit (dBuV/ | m @3m   | n) V         | /alue      |  |  |
|                       | Aboy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve 1GHz                     |           | 54.0       |         |              | Average    |  |  |
| Test setup:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |           | 74.0       | 0       | -            | Peak       |  |  |
|                       | Tum Table < 1m 4m >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |           |            |         |              |            |  |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> <li>The radiation measurements are performed in X, Y, Z axis positioning.</li> </ol> |                             |           |            |         |              |            |  |  |
| Test Instruments:     | worst case mode is recorded in the report.  Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |           |            |         |              |            |  |  |
| Test mode:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion 5.2 for d              |           |            |         |              |            |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |           |            |         |              |            |  |  |
| Test environment:     | Temp.: 25 °C Humid.: 52% Press.: 1012mbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |           |            |         |              |            |  |  |



### **Measurement Data**

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

| Frequency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | mission Level Limits Margin |        | Detector |  |
|-----------|---------------|-------------------|------------|------------------|----------------|-----------------------------|--------|----------|--|
| (MHz)     | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m)                    | (dB)   | Type     |  |
| 2390      | 58.69         | 26.20             | 5.72       | 33.30            | 57.31          | 74                          | -16.69 | peak     |  |
| 2390      | 46.05         | 26.20             | 5.72       | 33.30            | 44.67          | 54                          | -9.33  | AVG      |  |

#### Vertical:

| Frequency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|-------------------|------------|------------------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |
| 2390      | 60.13         | 26.20             | 5.72       | 33.30            | 58.75          | 74       | -15.25 | peak     |
| 2390      | 46.24         | 26.20             | 5.72       | 33.30            | 44.86          | 54       | -9.14  | AVG      |

Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

| Frequency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|-------------------|------------|------------------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
| 2483.5    | 55.24         | 28.60             | 6.97       | 32.70            | 58.11          | 74       | -15.89 | peak     |
| 2483.5    | 41.96         | 28.60             | 6.97       | 32.70            | 44.83          | 54       | -9.17  | AVG      |

#### Vertical:

| Frequency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|-------------------|------------|------------------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |
| 2483.5    | 57.01         | 28.60             | 6.97       | 32.70            | 59.88          | 74       | -14.12 | peak     |
| 2483.5    | 41.92         | 28.60             | 6.97       | 32.70            | 44.79          | 54       | -9.21  | AVG      |



# 6.6. Spurious Emission

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15                                               | C Section 1                                                                                                                                                                                                                                                                                                                                                                             | 5.247 (d)   |             |            |          |  |  |  |  |
|-------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|----------|--|--|--|--|
| Test Method:      | ANSI C63.1                                               | 0:2013 and k                                                                                                                                                                                                                                                                                                                                                                            | KDB558074 [ | D01 DTS Mea | as Guidanc | e V05r02 |  |  |  |  |
| Limit:            | spectrum in<br>is produced<br>the 100 kHz<br>the desired | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |             |             |            |          |  |  |  |  |
| Test setup:       | Sp                                                       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |             |             |            |          |  |  |  |  |
| Test Instruments: | Refer to see                                             | ction 6.0 for d                                                                                                                                                                                                                                                                                                                                                                         | letails     |             |            |          |  |  |  |  |
| Test mode:        | Refer to se                                              | ction 5.2 for d                                                                                                                                                                                                                                                                                                                                                                         | letails     |             |            |          |  |  |  |  |
| Test results:     | Pass                                                     |                                                                                                                                                                                                                                                                                                                                                                                         |             |             |            |          |  |  |  |  |
| Test environment: | Temp.:                                                   | 25 °C                                                                                                                                                                                                                                                                                                                                                                                   | Humid.:     | 52%         | Press.:    | 1012mbar |  |  |  |  |

### Test plot as follows:









### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Section         | on 15  | 5.209      |      |         |       |                         |  |
|-----------------------|------------------------------|--------|------------|------|---------|-------|-------------------------|--|
| Test Method:          | ANSI C63.10:2013             |        |            |      |         |       |                         |  |
| Test Frequency Range: | 9kHz to 25GHz                |        |            |      |         |       |                         |  |
| Test site:            | Measurement Distar           | ice: 3 | 3m         |      |         |       |                         |  |
| Receiver setup:       | Frequency                    |        | Detector   | RB\  | W       | VBW   | Value                   |  |
|                       | 9KHz-150KHz                  | Qi     | Quasi-peak |      | Hz      | 600Hz | z Quasi-peak            |  |
|                       | 150KHz-30MHz                 | Qı     | ıasi-peak  | 9Kł  | Ηz      | 30KH: | z Quasi-peak            |  |
|                       | 30MHz-1GHz                   | Qi     | ıasi-peak  | 120k | Ήz      | 300KH | Iz Quasi-peak           |  |
|                       | Above 1GHz                   |        | Peak       | 1MI  | Ηz      | 3MHz  | z Peak                  |  |
|                       | Above 10112                  |        | Peak       | 1MI  | Ηz      | 10Hz  | Average                 |  |
| Limit:                | Frequency                    |        | Limit (u\  | //m) | V       | /alue | Measurement<br>Distance |  |
|                       | 0.009MHz-0.490M              | Hz     | 2400/F(k   | (Hz) |         | QP    | 300m                    |  |
|                       | 0.490MHz-1.705M              | Hz     | 24000/F(   | KHz) |         | QP    | 30m                     |  |
|                       | 1.705MHz-30MH                | Z      | 30         |      | QP      |       | 30m                     |  |
|                       | 30MHz-88MHz                  |        | 100        |      | QP      |       |                         |  |
|                       | 88MHz-216MHz                 |        | 150        |      | QP      |       |                         |  |
|                       | 216MHz-960MH                 | Z      | 200        |      |         | QP    | 3m                      |  |
|                       | 960MHz-1GHz                  |        | 500        |      |         |       |                         |  |
|                       | Above 1GHz                   |        | 500        |      | Average |       |                         |  |
|                       |                              |        | 5000       |      | Peak    |       |                         |  |
| Test setup:           | For radiated emissio         | ns fr  | om 9kHz to | 30MH | Z       |       |                         |  |
|                       | Tum Table Socm > Im Receiver |        |            |      |         |       |                         |  |







| Test environment: | Temp.: 25 °C Humid.: |  |  | 52% | Press.: | 1012mbar |  |  |
|-------------------|----------------------|--|--|-----|---------|----------|--|--|
| Test voltage:     | AC 120V, 60Hz        |  |  |     |         |          |  |  |
| Test results:     | Pass                 |  |  |     |         |          |  |  |

#### Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



#### ■ Below 1GHz



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 169.5990 | 46.63            | -18.91            | 27.72            | 43.50 | -15.78 | QP       |
| 2   |     | 191.0738 | 51.25            | -20.47            | 30.78            | 43.50 | -12.72 | QP       |
| 3   | *   | 260.1444 | 59.98            | -18.68            | 41.30            | 46.00 | -4.70  | QP       |
| 4   |     | 300.3672 | 52.02            | -17.47            | 34.55            | 46.00 | -11.45 | QP       |
| 5   |     | 379.9141 | 54.58            | -17.38            | 37.20            | 46.00 | -8.80  | QP       |
| 6   |     | 714.1734 | 38.34            | -8.44             | 29.90            | 46.00 | -16.10 | QP       |
|     |     |          |                  |                   |                  |       |        |          |





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 69.8449  | 44.92            | -19.94            | 24.98            | 40.00 | -15.02 | QP       |
| 2   |     | 164.3301 | 37.95            | -18.45            | 19.50            | 43.50 | -24.00 | QP       |
| 3   |     | 256.5211 | 46.59            | -18.72            | 27.87            | 46.00 | -18.13 | QP       |
| 4   |     | 400.4318 | 41.83            | -14.06            | 27.77            | 46.00 | -18.23 | QP       |
| 5   |     | 605.6592 | 37.49            | -10.11            | 27.38            | 46.00 | -18.62 | QP       |
| 6   | *   | 726.8052 | 40.91            | -8.53             | 32.38            | 46.00 | -13.62 | QP       |

Final Level =Receiver Read level + Correct Factor



#### Above 1-25GHz

# CH Low (2402MHz)

### Horizontal:

|           |               | Antenna |            | Preamp |                |          |        |                  |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|------------------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |                  |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
| 4804      | 51.32         | 31.40   | 8.18       | 32.10  | 58.80          | 74.00    | -15.20 | peak             |
| 4804      | 36.04         | 31.40   | 8.18       | 32.10  | 43.52          | 54.00    | -10.48 | AVG              |
| 7206      | 44.26         | 35.80   | 10.83      | 31.40  | 59.49          | 74.00    | -14.51 | peak             |
| 7206      | 28.18         | 35.80   | 10.83      | 31.40  | 43.41          | 54.00    | -10.59 | AVG              |
|           |               |         |            |        |                |          |        |                  |
|           |               |         |            |        |                |          |        |                  |

### Vertical:

|           |               | Antenna |            | Preamp |                |          |        |          |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|----------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |          |
|           |               |         |            |        |                |          | _      | Detector |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
|           |               |         |            |        |                |          |        |          |
| 4804      | 52.31         | 31.40   | 8.18       | 32.10  | 59.79          | 74.00    | -14.21 | peak     |
|           |               |         |            |        |                |          |        |          |
| 4804      | 36.14         | 31.40   | 8.18       | 32.10  | 43.62          | 54.00    | -10.38 | AVG      |
|           |               |         |            |        |                |          |        |          |
| 7206      | 42.89         | 35.80   | 10.83      | 31.40  | 58.12          | 74.00    | -15.88 | peak     |
|           |               |         |            |        |                |          |        |          |
| 7206      | 28.59         | 35.80   | 10.83      | 31.40  | 43.82          | 54.00    | -10.18 | AVG      |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



# CH Middle (2440MHz)

### Horizontal:

|               | Antenna                        |                                                                                                                                                                                      | Preamp                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meter Reading | Factor                         | Cable Loss                                                                                                                                                                           | Factor                                                                                                                                                                                                                                                                     | Emission Level                                                                                                                                                                                                                                                                                                                                                 | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                            | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (dBµV)        | (dB/m)                         | (dB)                                                                                                                                                                                 | (dB)                                                                                                                                                                                                                                                                       | (dBµV/m)                                                                                                                                                                                                                                                                                                                                                       | (dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                          | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 51.32         | 31.40                          | 9.17                                                                                                                                                                                 | 32.10                                                                                                                                                                                                                                                                      | 59.79                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                             | -14.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36.04         | 31.40                          | 9.17                                                                                                                                                                                 | 32.10                                                                                                                                                                                                                                                                      | 44.51                                                                                                                                                                                                                                                                                                                                                          | 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                             | -9.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 44.96         | 35.80                          | 10.83                                                                                                                                                                                | 31.40                                                                                                                                                                                                                                                                      | 60.19                                                                                                                                                                                                                                                                                                                                                          | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                             | -13.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29.07         | 35.80                          | 10.83                                                                                                                                                                                | 31.40                                                                                                                                                                                                                                                                      | 44.30                                                                                                                                                                                                                                                                                                                                                          | 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                             | -9.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                |                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | (dBµV) 51.32 36.04 44.96 29.07 | Meter Reading         Factor           (dBμV)         (dB/m)           51.32         31.40           36.04         31.40           44.96         35.80           29.07         35.80 | Meter Reading         Factor         Cable Loss           (dBμV)         (dB/m)         (dB)           51.32         31.40         9.17           36.04         31.40         9.17           44.96         35.80         10.83           29.07         35.80         10.83 | Meter Reading         Factor         Cable Loss         Factor           (dBμV)         (dB/m)         (dB)         (dB)           51.32         31.40         9.17         32.10           36.04         31.40         9.17         32.10           44.96         35.80         10.83         31.40           29.07         35.80         10.83         31.40 | Meter Reading         Factor         Cable Loss         Factor         Emission Level           (dBμV)         (dB/m)         (dB)         (dBμV/m)           51.32         31.40         9.17         32.10         59.79           36.04         31.40         9.17         32.10         44.51           44.96         35.80         10.83         31.40         60.19           29.07         35.80         10.83         31.40         44.30 | Meter Reading         Factor         Cable Loss         Factor         Emission Level         Limits           (dBμV)         (dB/m)         (dB)         (dB)         (dBμV/m)         (dBμV/m)           51.32         31.40         9.17         32.10         59.79         74.00           36.04         31.40         9.17         32.10         44.51         54.00           44.96         35.80         10.83         31.40         60.19         74.00           29.07         35.80         10.83         31.40         44.30         54.00 | Meter Reading         Factor         Cable Loss         Factor         Emission Level         Limits         Margin           (dBμV)         (dB/m)         (dB)         (dB)         (dBμV/m)         (dBμV/m)         (dB)           51.32         31.40         9.17         32.10         59.79         74.00         -14.21           36.04         31.40         9.17         32.10         44.51         54.00         -9.49           44.96         35.80         10.83         31.40         60.19         74.00         -13.81           29.07         35.80         10.83         31.40         44.30         54.00         -9.70 |

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

### Vertical:

|           |               | Antenna |            | Preamp |                |          |        |          |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|----------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |          |
|           |               |         |            |        |                |          |        | Detector |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
|           |               |         |            |        |                |          |        |          |
| 4880      | 50.33         | 31.40   | 9.17       | 32.10  | 58.80          | 74.00    | -15.20 | peak     |
|           |               |         |            |        |                |          |        |          |
| 4880      | 35.15         | 31.40   | 9.17       | 32.10  | 43.62          | 54.00    | -10.38 | AVG      |
|           |               |         |            |        |                |          |        |          |
| 7320      | 44.39         | 35.80   | 10.83      | 31.40  | 59.62          | 74.00    | -14.38 | peak     |
|           |               |         |            |        |                |          |        |          |
| 7320      | 28.75         | 35.80   | 10.83      | 31.40  | 43.98          | 54.00    | -10.02 | AVG      |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



### CH High (2480MHz)

#### Horizontal:

|           |               | Antenna |            | Preamp |                |          |        |          |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|----------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |          |
|           | 4.5 4.0       |         |            |        |                |          |        | Detector |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |
| 4960      | 50.25         | 31.40   | 9.17       | 32.10  | 58.72          | 74.00    | -15.28 | peak     |
| 4960      | 37.15         | 31.40   | 9.17       | 32.10  | 45.62          | 54.00    | -8.38  | AVG      |
| 7440      | 44.96         | 35.80   | 10.83      | 31.40  | 60.19          | 74.00    | -13.81 | peak     |
| 7440      | 29.07         | 35.80   | 10.83      | 31.40  | 44.30          | 54.00    | -9.70  | AVG      |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |

#### Vertical:

|           |               | Antenna |            | Preamp |                |          |        |          |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|----------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |          |
|           |               |         |            |        |                |          |        | Detector |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
|           |               |         |            |        |                |          |        |          |
| 4960      | 50.88         | 31.40   | 9.17       | 32.10  | 59.35          | 74.00    | -14.65 | peak     |
|           |               |         |            |        |                |          |        |          |
| 4960      | 36.14         | 31.40   | 9.17       | 32.10  | 44.61          | 54.00    | -9.39  | AVG      |
|           |               |         |            |        |                |          |        |          |
| 7440      | 43.06         | 35.80   | 10.83      | 31.40  | 58.29          | 74.00    | -15.71 | peak     |
|           |               |         |            |        |                |          |        |          |
| 7440      | 30.10         | 35.80   | 10.83      | 31.40  | 45.33          | 54.00    | -8.67  | AVG      |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

#### Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.



# 7. Test Setup Photo

Reference to the appendix I for details.

# 8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----