SAR EVALUATION REPORT For # Telecell Mobile (H.K) Ltd. RM 801 Metro Ctr II, 21 Lam Hing Street Kln Bay Hong Kong FCC ID: 2ADX3F50G Report Type: Product Type: Original Report Mobile Phone Torry Klathou **Test Engineer:** Terry XiaHou **Report Number:** RSZ160603015-20 **Report Date:** 2016-06-26 Bell Hu BellHu **Reviewed By:** SAR Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) Prepared By: 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn **Note**: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. | Attestation of Test Results | | | | | | |-----------------------------|-----------------|--|-------------|--|--| | | Company Name | Telecell Mobile (H.K) Ltd. | | | | | FIIT | EUT Description | Mobile Phone | | | | | EUT
Information | FCC ID | 2ADX3F50G | | | | | ************ | Model Number | F50G | | | | | | Test Date | 2016-06-04 | | | | | Frequency | | Max. SAR Level(s) Reported | Limit(W/Kg) | | | | GSM 850 | | 0.280 W/kg 1g Head SAR
0.482 W/kg 1g Body SAR | | | | | PCS 1900 | | 0.279 W/kg 1g Head SAR
0.779 W/kg 1g Body SAR | | | | | WCDMA850 | | 0.151 W/kg 1g Head SAR
0.167 W/kg 1g Body SAR | | | | | WCDMA 1700 | | 0.328 W/kg 1g Head SAR
0.550 W/kg 1g Body SAR | | | | | WCDMA1900 | | 0.739 W/kg 1g Head SAR
0.935 W/kg 1g Body SAR | | | | | LTE Band 2 | | 0.591 W/kg 1g Head SAR
0.964 W/kg 1g Body SAR | 1. 6 | | | | LTE Band 4 | | 0.374 W/kg 1g Head SAR
0.768 W/kg 1g Body SAR | 1.0 | | | | LTE Band 7 | | 0.124 W/kg 1g Head SAR
0.558 W/kg 1g Body SAR | | | | | LTE Band 12 | | 0.086 W/kg 1g Head SAR
0.210 W/kg 1g Body SAR | | | | | LTE Band 17 | | 0.102 W/kg 1g Head SAR
0.213 W/kg 1g Body SAR | | | | | Simultaneous | | 1.112 W/kg 1g Head SAR
1.131 W/kg 1g Body SAR | | | | | Hotspot | | 1.131 W/kg 1g Body SAR | | | | Report No: RSZ160603015-20 SAR Evaluation Report 2 of 165 #### ANSI / IEEE C95.1:2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fileds, 3 kHz to 300 GHz. Report No: RSZ160603015-20 #### ANSI / IEEE C95.3: 2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz. #### FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices #### IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques #### IEC 62209-1:2006 #### **Applicable Standards** Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3GHz) #### IEC 62209-2:2010 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices-Human models, instrumentation, and procedures-Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) #### **KDB** procedures KDB 447498 D01 General RF Exposure Guidance v06. KDB 648474 D04 Handset SAR v01r03. KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r03 KDB 941225 D06 Hotspot Mode v02r01 **Note:** This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures. The results and statements contained in this report pertain only to the device(s) evaluated. SAR Evaluation Report 3 of 165 # TABLE OF CONTENTS | DOCUMENT REVISION HISTORY | 5 | |---|-----| | EUT DESCRIPTION | 6 | | TECHNICAL SPECIFICATION | 6 | | REFERENCE, STANDARDS, AND GUILDELINES | 7 | | SAR LIMITS | 8 | | FACILITIES | 9 | | DASY4 SAR EVALUATION PROCEDURE | 10 | | Power Reference Measurement | | | Area Scan | 10 | | ZOOM SCAN | | | POWER DRIFT MEASUREMENTZ-SCAN | | | DESCRIPTION OF TEST SYSTEM | | | EQUIPMENT LIST AND CALIBRATION | | | EQUIPMENT LIST ACC CALIBRATION INFORMATION | | | SAR MEASUREMENT SYSTEM VERIFICATION | | | Liquid Verification | | | System Accuracy Verification | | | SAR SYSTEM VALIDATION DATA | | | EUT TEST STRATEGY AND METHODOLOGY | 35 | | TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR | | | CHEEK/TOUCH POSITION | | | EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS | | | SAR EVALUATION PROCEDURE | | | TEST METHODOLOGY | | | CONDUCTED OUTPUT POWER MEASUREMENT | 39 | | Provision Applicable | | | MAXIMUM OUTPUT POWER AMONG PRODUCTION UNITS | | | | | | SAR MEASUREMENT RESULTS | | | SAR TEST DATA | | | SAR SIMULTANEOUS TRANSMISSION DESCRIPTION | | | APPENDIX A MEASUREMENT UNCERTAINTY | | | APPENDIX B PROBE CALIBRATION CERTIFICATES | | | APPENDIX C DIPOLE CALIBRATION CERTIFICATES | 115 | | APPENDIX D EUT TEST POSITION PHOTOS | | | Liquid depth 15cm | | | LEFT HEAD TOUCH SETUP PHOTO | | | LEFT HEAD TILT SETUP PHOTORIGHT HEAD TOUCH SETUP PHOTO | | | RIGHT HEAD TILT SETUP PHOTO | | | BODY-WORN BACK SETUP PHOTO | | | BODY-WORN RIGHT SETUP PHOTO | | | BODY-WORN LEFT SETUP PHOTO. | | | APPENDIX F INFORMATIVE REFERENCES | 165 | ## **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of Revision | | |-----------------|-----------------|-------------------------|------------------|--| | 0 | RSZ160603015-20 | Original Report | 2016-06-26 | | Report No: RSZ160603015-20 SAR Evaluation Report 5 of 165 ## **EUT DESCRIPTION** This report has been prepared on behalf of Telecell Mobile (H.K) Ltd.and their product, FCC ID: 2ADX3F50G, Model: F50G, or the EUT (Equipment under Test) as referred to in the rest of this report. #### *Note: 1. The device is capable of personal hotspot mode. Wi-Fi Hotspot mode permits the device to share its cellular data connection with other 2.4 GHz Wi-Fi enabled devices. Report No: RSZ160603015-20 ## **Technical Specification** | Product Type | Portable | |---------------------------|---| | Exposure Category: | Population / Uncontrolled | | Antenna Type(s): | Internal Antenna | | Body-Worn Accessories: | Headset | | Face-Head Accessories: | None | | Multi-slot Class: | Class12 | | On and an Made | GSM Voice, EGPRS/GPRS Data, WCDMA(Rel99, HSUPA, HSDPA, | | Operation Mode : | HSPA+),LTE, Wi-Fi and Bluetooth | | | GSM 850 : 824-849 MHz(TX) ; 869-894 MHz(RX) | | | PCS 1900: 1850-1910 MHz(TX) ; 1930-1990 MHz(RX) | | | WCDMA850: 824-849 MHz(TX) ; 869-894 MHz(RX) | | | WCDMA 1700: 1710-1755MHz(TX); 2110-2155MHz(RX) | | | WCDMA1900: 1850-1910 MHz(TX) ; 1930-1990 MHz(RX) | | | LTE Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX) | | Frequency Band: | LTE Band 4: 1710-1755 MHz(TX); 2110-2155 MHz(RX) | | | LTE Band 7: 2500-2570 MHz(TX); 2620-2690 MHz(RX) | | | LTE Band 12: 698-716 MHz(TX); 728-746 MHz(RX) | | | LTE Band 17: 704-716 MHz(TX); 734-746 MHz(RX) | | | Wi-Fi(802.11b/g/n20): 2412MHz-2462MHz | | | Wi-Fi(n40): 2422MHz-2452MHz | | | Bluetooth:2402-2480MHz | | | GSM 850 : 33.77 dBm | | | PCS 1900: 30.65 dBm | | | WCDMA 850: 22.89 dBm | | | WCDMA 1700: 22.95 dBm | | | WCDMA 1900: 22.81 dBm | | | LTE Band 2: 24.36 dBm | | Conducted RF Power: | LTE Band 4: 24.01 dBm | | | LTE Band 7: 24.31 dBm | | | LTE Band 12: 24.54 dBm | | | LTE Band 17: 25.45 dBm | | | Wi-Fi(802.11b/g/n20/n40): 9.40 dBm | | | Bluetooth3.0: 4.11 dBm | | | BLE: -1.75 dBm | | Dimensions (L*W*H): | $145.2 \text{ mm (L)} \times 73.2 \text{ mm (W)} \times 9.7 \text{ mm (H)}$ | | Power Source: | 3.8 V _{DC} Rechargeable Battery | | Normal Operation: | Head and Body-worn | SAR Evaluation Report 6 of 165 ## REFERENCE, STANDARDS, AND GUILDELINES #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. Report No: RSZ160603015-20 This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of
tissue mass. #### CE: The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. SAR Evaluation Report 7 of 165 #### **SAR Limits** ## FCC Limit (1g Tissue) Report No: RSZ160603015-20 | | SAR (W/kg) | | | | | |--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | | | ## CE Limit (10g Tissue) | | SAR (W/kg) | | | | | |--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | Spatial Peak
(averaged over any 10 g of tissue) | 2.0 | 10 | | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT. SAR Evaluation Report 8 of 165 ## **FACILITIES** The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China Report No: RSZ160603015-20 SAR Evaluation Report 9 of 165 #### **DASY4 SAR Evaluation Procedure** #### **Power Reference Measurement** The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. By default, the Minimum distance of probe sensors to surface is 4mm. This distance can be modified by the user, but cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7mm for an ES3DV3 probe type). #### Area Scan The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2013, IEC 62209-1:2006 and IEC 62209-2:2010 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly. After measurement is completed, all maxima and their coordinates are listed in the Results property page. The maximum selected in the list is highlighted in the 3-D view. For the secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima within x dB condition. Only the primary maximum and any secondary maxima within x dB from the primary maximum and above this limit will be measured. Report No: RSZ160603015-20 SAR Evaluation Report 10 of 165 #### Zoom Scan Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label. Report No: RSZ160603015-20 ### Power drift measurement The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. #### **Z-Scan** The Z Scan job measures points along a vertical straight line. The line runs along the Z axis of a one-dimensional grid. A user can anchor the grid to the section reference point, to any defined user point or to the current probe location. As with any other grids, the local Z axis of the anchor location establishes the Z axis of the grid. SAR Evaluation Report 11 of 165 ## **Description of Test System** These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG) which is the fourth generation of the system shown in the figure hereinafter: Report No: RSZ160603015-20 The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ES3DV3 SN: 3036 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. SAR Evaluation Report 12 of 165 ### **Measurement System Diagram** Report No: RSZ160603015-20 - A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation
and fast movement interrupts. - A probe alignment unit which improves the (absolute) accuracy of the probe positioning. - A computer operating Windows 2000 or Windows XP. - DASY4 software. - Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - The SAM twin phantom enabling testing left-hand and right-hand usage. - The device holder for handheld smart phones. - Tissue simulating liquid mixed according to the given recipes. - Validation dipole kits allowing system validation. SAR Evaluation Report 13 of 165 ### **System Components** - DASY4 Measurement Server - Data Acquisition Electronics - Probes - Light Beam Unit - Medium - SAM Twin Phantom - Device Holder for SAM Twin Phantom - System Validation Kits - Robot #### **DASY4 Measurement Server** The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board. Report No: RSZ160603015-20 The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pin out and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. #### **Data Acquisition Electronics** The data acquisition electronics DAE3 consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. #### **Probes** The DASY system can support many different probe types. **Dosimetric Probes:** These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (± 2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies. **Free Space Probes:** These are electric and magnetic field probes specially designed for measurements in free space. The z-sensor is aligned to the probe axis and the rotation angle of the x-sensor is specified. SAR Evaluation Report 14 of 165 Report No: RSZ160603015-20 This allows the DASY system to automatically align the probe to the measurement grid for field component measurement. The free space probes are generally not calibrated in liquid. (The H-field probes can be used in liquids without any change of parameters.) **Temperature Probes:** Small and sensitive temperature probes for general use. They use a completely different parameter set and different evaluation procedures. Temperature rise features allow direct SAR evaluations with these probes. ### **ES3DV3** Probe Specification Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges Calibration In air from 150 MHz to 3.7 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy \pm 8%) Frequency 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity ± 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal probe axis) Dynamic 5 mW/g to > 100 mW/g; Range Linearity: $\pm 0.2 \text{ dB}$ Surface \pm 0.2 mm repeatability in air and clear liquids Detection over diffuse reflecting surfaces. Dimensions Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz Photograph of the probe Fast automatic scanning in arbitrary phantoms The SAR measurements were conducted with the dosimetric probe ES3DV3 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum. Inside view of ES3DV3 E-field Probe SAR Evaluation Report 15 of 165 #### **E-Field Probe Calibration Process** Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. Report No: RSZ160603015-20 The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees. E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. #### **Data Evaluation** The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: | Probe parameters: - Sensitivity - Conversion factor - Diode compression point | Normi, ai0, ai1, ai2
ConvFi
dcpi | | | |---|--|--|--| | Device parameters: - Frequency - Crest factor | f
cf | | | | Media parameters: - Conductivity - Density | σ
ρ | | | These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) SAR Evaluation Report 16 of 165 From the compensated input signals the primary field data for each channel can be evaluated: Report No: RSZ160603015-20 E – field probes : $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ $$\mathrm{H-fieldprobes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$ With Vi = compensated signal of channel i (i = x, y, z) Norm_i = sensor sensitivity of channel i (i =x, y, z) $\mu V/(V/m)^2$ for E-field probes ConF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strenggy of channel i in V/m H_i = diode compression point (DASY parameter) The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$ With SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/meter] or [Siemens/meter] ρ = equivalent tissue density in g/cm³ Note that the density is normally set to
1, to account for actual brain density rather than the density of the simulation liquid. ### **Light Beam Unit** The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. SAR Evaluation Report 17 of 165 #### Medium #### **Parameters:** The parameters of the tissue simulating liquid strongly influence the SAR in the liquid. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., IEC 62209-1:2005, IEC62209-2:2010, IEEE 1528-2013). Report No: RSZ160603015-20 #### Parameter measurements Several measurement systems are available for measuring the dielectric parameters of liquids: - The open coax test method (e.g., HP85070B dielectric probe kit) is easy to use, but has only moderate acuracy. It is calibrated with open, short, and deionized water and the calibrations a critical process. - The transmission line method (e.g., model 1500T from DAMASKOS, INC.) measures the transmission and reflection in a liquid filled high precision line. It needs standard two port calibration and is probably more accurate than the open coax method. - The reflection line method measures the reflection in a liquid filled shorted precision lined. The method is not suitable for these liquids because of its low sensitivity. - The slotted line method scans the field magnitude and phase along a liquid filled line. The evaluation is straight forward and only needs a simple response calibration. The method is very accurate, but can only be used in high loss liquids and at frequencies above 100 to 200MHz. Cleaning the line can be tedious. IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters | Frequency | Head 7 | Гissue | Body Tissue | | | |-----------|--------|---------|--------------------|---------|--| | (MHz) | εr | O (S/m) | εr | O (S/m) | | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | | SAR Evaluation Report 18 of 165 #### **SAM Twin Phantom** The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas: - Left hand - Right hand - Flat phantom The phantom table comes in two sizes: A $100 \times 50 \times 85$ cm (L x W x H) table for use with free standing robots (DASY4 professional system option) or as a second phantom and a $100 \times 75 \times 85$ cm(L x W x H) table with reinforcements for table mounted robots (DASY4 compact system option). Report No: RSZ160603015-20 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to tap the phantom during o_-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. The phantom can be used with the following tissue simulating liquids: - Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation. - Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week). - Do not use other organic solvents without previously testing the phantom's compatibility. #### **Device Holder for SAM Twin Phantom** The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point ERP). Thus the device needs no repositioning when changing the angles. SAR Evaluation Report 19 of 165 The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. Report No: RSZ160603015-20 #### **System Validation Kits** Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well-defined SAR distribution in the flat section of the SAM twin phantom is produced. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request). The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance holder that snaps on the dipole. #### Robot The DASY4 system uses the high precision industrial robots RX60L, RX90 and RX90L, as well as the RX60BL and RX90BL types out of the newer series from Stäubli SA (France). The RX robot series offers many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchronous motors; no stepper motors) - Low ELF interference (the closed metallic construction shields against motor control fields) For the newly delivered DASY4 systems as well as for the older DASY3 systems delivered since 1999, the CS7MB robot controller version from Stäubli is used. Previously delivered systems have either a CS7 or CS7M controller; the differences to the CS7MB are mainly in the hardware, but some procedures in the robot software from Stäubli are also not completely the same. The following descriptions about robot hard- and software correspond to CS7MB controller with software version 13.1 (edit S5). The actual commands, procedures and configurations, also including details in hardware, might differ if an older robot controller is in use. In this case please also refer to the Stäubli manuals for further information. SAR Evaluation Report 20 of 165 ## **EQUIPMENT LIST AND CALIBRATION** ## **Equipments List & Calibration Information** | Equipment | Model | Calibration
Date | Calibration
Due Date | S/N | |--|----------------------|---------------------|-------------------------|-----------------| | Robot | RX60BL | N/A | N/A | F02/5S01A1/A/01 | | Robot Controller | CS7MBs&p RX60BL | N/A | N/A | F02/5S01A1/C/01 | | DASY4 Test Software | DASY4, V4.5 Build 19 | N/A | N/A | N/A | | Data Acquistion Electronics | DAE3 | 2015-08-17 | 2016-08-17 | 456 | | E-Field Probe | ES3DV3 | 2015-08-20 | 2016-08-20 | 3036 | | Dipole, 750MHz | ALS-D-750-S-2 | 2013-10-08 | 2016-10-08 | 177-00505 | | Dipole, 835MHz | ALS-D-835-S-2 | 2014-10-08 | 2017-10-08 | 180-00558 | | Dipole, 1750MHz | ALS-D-1750-S-2 | 2013-10-08 | 2016-10-08 | 198-00304 | | Dipole,1900MHz | ALS-D-1900-S-2 | 2014-10-09 | 2017-10-09 | 210-00710 | | Dipole, 2450MHz | ALS-D-2450-S-2 | 2014-10-09 | 2017-10-09 | 220-00758 | | Dipole Spacer | ALS-DS-U | N/A | N/A | 250-00907 | | Device holder/Positioner | MD4HHTV5 | N/A | N/A | SD 000 H01 KA | | SPEAG SAM Twin Phantom | Twin SAM | N/A | N/A | Tp-1218 | | Simulated Tissue 750 MHz Head | ALS-TS-750-H | Each Time | / | 270-01001 | | Simulated Tissue 750 MHz Body | ALS-TS-750-B | Each Time | / | 270-02100 | | Simulated Tissue 835 MHz Head | ALS-TS-835-H | Each Time | / | 270-01002 | | Simulated Tissue 835 MHz Body | ALS-TS-835-B | Each Time | / | 270-02101 | | Simulated Tissue 1750 MHz Head | ALS-TS-1750-H | Each Time | / | 295-01103 | | Simulated Tissue 1750 MHz Body | ALS-TS-1750-B | Each Time | / | 295-02102 | | Simulated Tissue 1900 MHz Head | ALS-TS-1900-H | Each Time | / | 295-01103 | | Simulated Tissue 1900 MHz Body | ALS-TS-1900-B | Each
Time | / | 295-02102 | | Simulated Tissue 2450 MHz Head | ALS-TS-2450-H | Each Time | Each Time | 290-01108 | | Simulated Tissue 2450 MHz Body | ALS-TS-2450-B | Each Time | Each Time | 290-01109 | | Directional couple | DC6180A | N/A | N/A | 0325849 | | Power Amplifier | 5S1G4 | N/A | N/A | 71377 | | Attenuator | 3dB | N/A | N/A | 5402 | | Dielectric probe kit | HP85070B | 2015-06-13 | 2016-06-13 | US33020324 | | Network analyzer | 8752C | 2016-06-03 | 2017-06-03 | 3410A02356 | | Synthesized Sweeper | HP 8341B | 2016-06-03 | 2017-06-03 | 2624A00116 | | UNIVERSAL RADIO COMMUNICATION TESTER | CMU200 | 2015-11-23 | 2016-11-23 | 106891 | | WIDEBAND RADIO
COMMUNICATION TESTER | CMW500 | 2016-04-19 | 2017-04-19 | 114772 | | EMI Test Receiver | ESCI | 2015-06-13 | 2016-06-13 | 101746 | Report No: RSZ160603015-20 SAR Evaluation Report 21 of 165 ## SAR MEASUREMENT SYSTEM VERIFICATION ## Liquid Verification Report No: RSZ160603015-20 Liquid Verification Setup Block Diagram ## **Liquid Verification Results** | Frequency | Liquid | Liquid | Parameter | Targ | Target Value | | Delta
(%) | | |-----------|--------|-------------------|-----------|--------------------|--------------|--------------------------|--------------|-----| | 1 | Type | $\epsilon_{ m r}$ | O'(S/m) | $\epsilon_{\rm r}$ | O' (S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ (S/m) | (%) | | 703 | Head | 43.02 | 0.75 | 43.08 | 0.77 | -0.139 | -2.597 | ±5 | | /03 | Body | 54.62 | 0.93 | 54.71 | 0.95 | -0.165 | -2.105 | ±5 | | 707 | Head | 42.01 | 0.81 | 42.08 | 0.85 | -0.166 | -4.706 | ±5 | | 707 | Body | 55.01 | 0.96 | 55.07 | 0.97 | -0.109 | -1.031 | ±5 | | 700.0 | Head | 41.82 | 0.88 | 41.83 | 0.89 | -0.286 | 0.000 | ±5 | | 709.0 | Body | 55.24 | 0.97 | 55.25 | 0.98 | -0.450 | 2.083 | ±5 | | 710.0 | Head | 41.57 | 0.90 | 41.58 | 0.91 | -0.882 | 2.247 | ±5 | | 710.0 | Body | 55.40 | 0.95 | 55.25 | 0.98 | -0.162 | 0.000 | ±5 | | 711.0 | Head | 41.64 | 0.88 | 41.65 | 0.89 | -0.715 | 0.000 | ±5 | | 711.0 | Body | 55.42 | 0.98 | 55.43 | 0.99 | -0.126 | 3.125 | ±5 | | 824.2 | Head | 40.86 | 0.90 | 40.87 | 0.91 | -1.518 | 1.111 | ±5 | | 824.2 | Body | 54.68 | 0.95 | 54.69 | 0.96 | -0.924 | -1.031 | ±5 | | 926.4 | Head | 41.07 | 0.89 | 41.08 | 0.90 | -1.012 | 0.000 | ±5 | | 826.4 | Body | 54.94 | 0.99 | 54.95 | 1.00 | -0.453 | 3.093 | ±5 | | 920.0 | Head | 41.09 | 0.91 | 41.10 | 0.92 | -0.964 | 2.222 | ±5 | | 829.0 | Body | 55.02 | 0.99 | 55.03 | 1.00 | -0.308 | 3.093 | ±5 | | 836.5 | Head | 41.15 | 0.91 | 41.16 | 0.92 | -0.819 | 2.222 | ±5 | | 830.3 | Body | 55.06 | 0.98 | 55.07 | 0.99 | -0.236 | 2.062 | ±5 | | 836.6 | Head | 41.34 | 0.92 | 41.35 | 0.93 | -0.361 | 3.333 | ±5 | | 830.0 | Body | 55.01 | 0.99 | 55.02 | 1.00 | -0.326 | 3.093 | ±5 | | 844.0 | Head | 41.31 | 0.92 | 41.32 | 0.93 | -0.434 | 3.333 | ±5 | | 044.U | Body | 55.19 | 0.98 | 55.20 | 0.99 | 0.000 | 2.062 | ±5 | | 846.6 | Head | 41.30 | 0.91 | 41.31 | 0.92 | -0.458 | 2.222 | ±5 | | 840.0 | Body | 54.76 | 0.97 | 54.77 | 0.98 | -0.779 | 1.031 | ±5 | | 848.8 | Head | 41.38 | 0.90 | 41.39 | 0.91 | -0.265 | 1.111 | ±5 | | 040.0 | Body | 55.11 | 0.98 | 55.12 | 0.99 | -0.145 | 2.062 | ±5 | SAR Evaluation Report 22 of 165 | 1712.4 | Head | 40.04 | 1.35 | 40.08 | 1.37 | -0.100 | -1.460 | ±5 | |--------|------|-------|------|-------|------|--------|--------|----| | 1712.4 | Body | 53.39 | 1.52 | 53.43 | 1.49 | -0.075 | 2.013 | ±5 | | 1720.0 | Head | 40.02 | 1.42 | 40.08 | 1.37 | -0.150 | 3.650 | ±5 | | 1720.0 | Body | 53.38 | 1.56 | 53.43 | 1.49 | -0.094 | 4.698 | ±5 | | 1722.5 | Head | 40.05 | 1.41 | 40.08 | 1.37 | -0.075 | 2.920 | ±5 | | 1732.5 | Body | 53.52 | 1.53 | 53.43 | 1.49 | 0.168 | 2.685 | ±5 | | 1732.6 | Head | 40.07 | 1.36 | 40.08 | 1.37 | -0.025 | -0.730 | ±5 | | 1/32.0 | Body | 53.52 | 1.48 | 53.43 | 1.49 | 0.168 | -0.671 | ±5 | | 1745.0 | Head | 40.09 | 1.44 | 40.08 | 1.37 | 0.025 | 5.109 | ±5 | | 1/43.0 | Body | 53.42 | 1.55 | 53.43 | 1.49 | -0.019 | 4.027 | ±5 | | 1752.6 | Head | 40.09 | 1.38 | 40.08 | 1.37 | 0.025 | 0.730 | ±5 | | 1752.6 | Body | 53.55 | 1.50 | 53.43 | 1.49 | 0.225 | 0.671 | ±5 | | 1850.2 | Head | 40.12 | 1.43 | 40.13 | 1.44 | 0.325 | 2.857 | ±5 | | 1830.2 | Body | 53.39 | 1.55 | 53.40 | 1.56 | 0.188 | 2.632 | ±5 | | 1852.4 | Head | 40.11 | 1.41 | 40.12 | 1.42 | 0.300 | 1.429 | ±5 | | 1832.4 | Body | 53.44 | 1.55 | 53.45 | 1.56 | 0.281 | 2.632 | ±5 | | 1860.0 | Head | 40.13 | 1.43 | 40.14 | 1.44 | 0.350 | 2.857 | ±5 | | 1800.0 | Body | 53.39 | 1.56 | 53.40 | 1.57 | 0.188 | 3.289 | ±5 | | 1880.0 | Head | 40.13 | 1.42 | 40.14 | 1.43 | 0.350 | 2.143 | ±5 | | 1880.0 | Body | 53.63 | 1.59 | 53.64 | 1.60 | 0.638 | 5.263 | ±5 | | 1900.0 | Head | 40.18 | 1.41 | 40.19 | 1.42 | 0.475 | 1.429 | ±5 | | 1900.0 | Body | 53.72 | 1.57 | 53.73 | 1.58 | 0.807 | 3.947 | ±5 | | 1907.6 | Head | 40.19 | 1.42 | 40.20 | 1.43 | 0.500 | 2.143 | ±5 | | 1907.0 | Body | 53.81 | 1.54 | 53.82 | 1.55 | 0.976 | 1.974 | ±5 | | 1909.8 | Head | 40.13 | 1.41 | 40.14 | 1.42 | 0.350 | 1.429 | ±5 | | 1909.8 | Body | 53.38 | 1.53 | 53.39 | 1.54 | 0.169 | 1.316 | ±5 | | 2510 | Head | 39.42 | 1.91 | 39.43 | 1.92 | 0.792 | 2.674 | ±5 | | 2310 | Body | 52.83 | 2.10 | 52.84 | 2.11 | 0.418 | 3.431 | ±5 | | 2535 | Head | 39.13 | 1.90 | 39.14 | 1.91 | 0.128 | 1.058 | ±5 | | 2333 | Body | 52.63 | 2.11 | 52.64 | 2.12 | 0.095 | 2.415 | ±5 | | 2560 | Head | 39.81 | 1.95 | 39.82 | 1.96 | 1.946 | 2.083 | ±5 | | 2300 | Body | 52.82 | 2.18 | 52.83 | 2.19 | 0.514 | 3.791 | ±5 | ^{*}Liquid Verification was performed on 2016-06-04. SAR Evaluation Report 23 of 165 ## **System Accuracy Verification** Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files. Report No: RSZ160603015-20 ## **System Verification Setup Block Diagram** ## **System Accuracy Check Results** | Date | Frequency
Band | Liquid Type | Measured SAR
(W/Kg) | | Target Value
(W/Kg) | Delta
(%) | Tolerance (%) | |------------|------------------------|-------------|------------------------|----------|------------------------|--------------|---------------| | | 750 | Head | 1g | 0.825*10 | 8.5 | -2.941 | ±10 | | | /30 | Body | 1g | 0.862*10 | 8.54 | 0.937 | ±10 | | | 835
2016-06-04 1750 | Head | 1g | 0.951*10 | 9.773 | -2.691 | ±10 | | | | Body | 1g | 0.921*10 | 9.736 | -5.403 | ±10 | | 2016-06-04 | | Head | 1g | 3.759*10 | 37.02 | 1.540 | ±10 | | 2010-00-04 | | Body | 1g | 3.742*10 | 36.65 | 2.101 | ±10 | | | 1900 | Head | 1g | 3.787*10 | 39.481 | -4.080 | ±10 | | | 1900 | Body | 1g | 3.975*10 | 39.715 | 0.088 | ±10 | | | 2450 | Head | 1g | 5.397*10 | 54.916 | -1.723 | ±10 | | | 2430 | Body | 1g | 5.373*10 | 52.418 | 2.503 | ±10 | #### Note: The power inputed to dipole is 0.1Watt,the SAR values are normalized to 1 Watt forward power by multiplying 10 times. SAR Evaluation Report 24 of 165 #### SAR SYSTEM VALIDATION DATA Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 750 MHz; Type: ALS-D-750-S-2; S/N: 177-00505 Program Name: 750 MHz Head Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.37$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(6.13, 6.13, 6.13); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE - SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **750 Head system check /Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.883 mW/g **750 Head system check /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.7 V/m; Power Drift = -0.182 dB Peak SAR (extrapolated) = 1.152 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.825 mW/g; SAR(10 g) = 0.529 mW/gMaximum value of SAR (measured) = 0.870 mW/g SAR Evaluation Report 25 of 165 **Program Name: 750 MHz Body** Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 55.28$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(6.1, 6.1, 6.1); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **750 Body system check /Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.962 mW/g **750 Body system check** /**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.4 V/m; Power Drift = -0.100 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 1.326 W/kg SAR(1 g) = 0.862 mW/g; SAR(10 g) = 0.553 mW/gMaximum value of SAR (measured) = 0.883 mW/g SAR Evaluation Report 26 of 165 Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558 Program Name: 835 MHz Head Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.37$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(5.96, 5.96, 5.96); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **835 Head system check /Area Scan (91x141x1):** Measurement grid: dx=10mm,
dy=10mm Maximum value of SAR (interpolated) = 1.103 mW/g **835 Head system check /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.1 V/m; Power Drift = -0.112 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.951 mW/g; SAR(10 g) = 0.527 mW/g Maximum value of SAR (measured) = 0.995 mW/g SAR Evaluation Report 27 of 165 Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558 **Program Name: 835 MHz Body** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 1.00$ S/m; $\varepsilon_r = 55.18$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(6.00, 6.00, 6.00); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **835 Body system check /Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.35 mW/g 835 Body system check /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Report No: RSZ160603015-20 Reference Value = 33.7 V/m; Power Drift = -0.123 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 0.921 mW/g; SAR(10 g) = 0.625 mW/g Maximum value of SAR (measured) = 0.983 mW/g SAR Evaluation Report 28 of 165 Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 1750 MHz; Type: ALS-D-1750-S-2; S/N: 198-00304 Program Name: 1750MHz Head Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.43$ S/m; $\varepsilon_r = 39.79$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(5.1, 5.1, 5.1); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **1750 head system check/Area Scan (81x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.78 mW/g **1750 head system check/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.75 V/m; Power Drift = -0.073 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 5.625 W/kg SAR(1 g) = 3.759 mW/g; SAR(10 g) = 1.892 mW/g Maximum value of SAR (measured) = 3.84 mW/g SAR Evaluation Report 29 of 165 Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 1750 MHz; Type: ALS-D-1750-S-2; S/N: 198-00304 **Program Name: 1750MHz Body** Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.53$ S/m; $\varepsilon_r = 52.81$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(4.75, 4.75, 4.75); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **1750 Body system check/Area Scan (81x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.72 mW/g 1750 Body system check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.25 V/m; Power Drift = -0.122 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 5.335 W/kg SAR(1 g) = 3.742 mW/g; SAR(10 g) = 1.924 mW/gMaximum value of SAR (measured) = 3.77 mW/g SAR Evaluation Report 30 of 165 Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710 Program Name: 1900MHz Head Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ S/m; $\varepsilon_r = 40.18$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(4.9, 4.9, 4.9); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **1900 head system check/Area Scan (81x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.75 mW/g **1900 head system check/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.75 V/m; Power Drift = -0.032 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 6.376 W/kg SAR(1 g) = 3.787 mW/g; SAR(10 g) = 1.927 mW/g Maximum value of SAR (measured) = 3.89 mW/g SAR Evaluation Report 31 of 165 Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710 **Program Name: 1900MHz Body** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ S/m; $\varepsilon_r = 53.72$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(4.56, 4.56, 4.56); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **1900 Body system check/Area Scan (81x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.33 mW/g **1900 Body system check/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.15 V/m; Power Drift = -0.032 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 6.811 W/kg SAR(1 g) = 3.975 mW/g; SAR(10 g) = 2.136 mW/g Maximum value of SAR (measured) = 4.05 mW/g SAR Evaluation Report 32 of 165 Program Name: 2450MHz Head Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 39.99$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(4.34, 4.34, 4.34); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **2450 head system check/Area Scan (81x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 5.29 mW/g **2450** head system check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.17 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 9.692 W/kg Report No: RSZ160603015-20 SAR(1 g) = 5.397 mW/g; SAR(10 g) = 2.672 mW/g Maximum value of SAR (measured) = 5.93 mW/g SAR Evaluation Report 33 of 165 Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) DUT: Dipole 2450 MHz; Type: ALS-D-2450-S-2; S/N: 220-00758 **Program Name: 2450MHz Body** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ S/m}$; $\varepsilon_r = 52.95$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ## DASY4 Configuration: - Probe: ES3DV3 - SN3036; ConvF(4.19, 4.19, 4.19); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE – SN456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **2450 Body system check/Area Scan (81x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.32 mW/g **2450 Body system check/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.77 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 9.978 W/kg Report No: RSZ160603015-20 SAR(1 g) = 5.373 mW/g; SAR(10 g) = 2.728 mW/gMaximum value of SAR (measured) = 5.59 mW/g SAR Evaluation Report 34 of 165 #### EUT TEST STRATEGY AND METHODOLOGY ## **Test Positions for Device Operating Next to a Person's Ear** This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ½ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth. A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned
to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR: Report No: RSZ160603015-20 SAR Evaluation Report 35 of 165 #### **Cheek/Touch Position** The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom. This test position is established: o When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom. Report No: RSZ160603015-20 o (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom. For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer. #### **Cheek / Touch Position** #### **Ear/Tilt Position** With the handset aligned in the "Cheek/Touch Position": - 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. - 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability. SAR Evaluation Report 36 of 165 If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional. ### Ear /Tilt 15° Position ### Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. Figure 5 - Test positions for body-worn devices SAR Evaluation Report 37 of 165 #### **SAR Evaluation Procedure** The evaluation was performed with the following procedure: Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. Report No: RSZ160603015-20 - Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. ### **Test methodology** KDB 447498 D01 General RF Exposure Guidance v06. KDB 648474 D04 Handset SAR v01r03. KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r03 KDB 941225 D06 Hotspot Mode v02r01 SAR Evaluation Report 38 of 165 ### CONDUCTED OUTPUT POWER MEASUREMENT ### **Provision Applicable** The measured peak output power should be greater and within 5% than EMI measurement. #### **Test Procedure** The RF output of the transmitter was connected to the input of the EMI Test Receiver through sufficient attenuation. Report No: RSZ160603015-20 **GSM/WCDMA/LTE** ### **Radio Configuration** The power measurement was configured by the Wireless Communication Test Set CMU200 & CMW500 for all Radio configurations. ### **GSM** Function: Menu select > GSM Mobile Station > GSM 850/1900 Press Connection control to choose the different menus Press RESET > choose all the reset all settings Connection: Press Signal Off to turn off the signal and change settings Network Support $> \widetilde{GSM} + \text{only}$ MS Signal > 33 dBm for GSM 850 > 30 dBm for PCS 1900 BS Signal:Enter the same channel number for TCH channel (test channel) and BCCH channel Frequency Offset >+ 0 Hz Mode > BCCH and TCH BCCH Level > -85 dBm (May need to adjust if link is not stabe) BCCH Channel >choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH channel] Channel Type > Off P0 > 4 dB TCH > choose desired test channel Hopping >Off AF/RF: Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection: Press Signal on to turn on the signal and change settings SAR Evaluation Report 39 of 165 #### **GPRS** Function: Menu select > GSM Mobile Station > GSM 850/1900 Press Connection control to choose the different menus Press RESET > choose all the reset all settings Connection: Press Signal Off to turn off the signal and change settings Network Support $> \tilde{G}SM + GPRS$ Main Service > Packet Data Service selection > Test Mode A – Auto Slot Config. off MS Signal:Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting Report No: RSZ160603015-20 > Slot configuration > Uplink/Gamma > 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 BS Signal: Enter the same channel number for TCH channel (test channel) and BCCH channel
Frequency Offset >+ 0 Hz Mode >BCCH and TCH BCCH Level >-85 dBm (May need to adjust if link is not stabe) BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH channel] Channel Type > Off P0 > 4 dB Slot Config > Unchanged (if already set under MS signal) TCH > choose desired test channel Hopping >Off Main Timeslot >3 Network: Coding Scheme > CS4 (GPRS) Bit Stream > 2E9-1 PSR Bit Stream AF/RF: Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection: Press Signal on to turn on the signal and change settings #### **EGPRS** Function: Menu select > GSM Mobile Station > GSM 850/1900 Press Connection control to choose the different menus Press RESET > choose all the reset all settings Connection: Press Signal Off to turn off the signal and change settings Network Support > GSM + EGPRS Main Service > Packet Data Service selection > Test Mode A – Auto Slot Config. off MS Signal:Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting > Slot configuration > Uplink/Gamma > 27 dBm for EGPRS 850 > 25 dBm for EGPRS 1900 BS Signal: Enter the same channel number for TCH channel (test channel) and BCCH channel Frequency Offset >+ 0 Hz Mode >BCCH and TCH BCCH Level >-85 dBm (May need to adjust if link is not stabe) BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH channel] Channel Type > Off P0 > 4 dB Slot Config > Unchanged (if already set under MS signal) TCH > choose desired test channel Hopping >Off Main Timeslot >3 Network: Coding Scheme > MCS5 (EGPRS) Bit Stream > 2E9-1 PSR Bit Stream AF/RF: Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection: Press Signal on to turn on the signal and change settings SAR Evaluation Report 40 of 165 #### **WCDMA Release 99** The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7). Report No: RSZ160603015-20 | | Loopback Mode | Test Mode 1 | | | | |------------------|----------------------------|--------------|--|--|--| | WCDMA | Rel99 RMC | 12.2kbps RMC | | | | | General Settings | Power Control
Algorithm | Algorithm2 | | | | | | c / βd | 8/15 | | | | #### **HSDPA** The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. | | Mode | HSDPA | HSDPA | HSDPA | HSDPA | | |----------|-------------------------|-------|-------|-------------|-------|--| | | Subset | 1 | 2 | 3 | 4 | | | | Loopback Mode | | | Test Mode 1 | | | | | Rel99 RMC | | | 12.2kbps RM | C | | | | HSDPA FRC | | | H-Set1 | | | | WCDMA | Power Control Algorithm | | | Algorithm2 | | | | General | βс | 2/15 | 12/15 | 15/15 | 15/15 | | | Settings | βd | 15/15 | 15/15 | 8/15 | 4/15 | | | | βd (SF) | 64 | | | | | | | βc/ βd | 2/15 | 12/15 | 15/8 | 15/4 | | | | βhs | 4/15 | 24/15 | 30/15 | 30/15 | | | | MPR(dB) | 0 | 0 | 0.5 | 0.5 | | | | DACK | | | 8 | | | | | DNAK | | | 8 | | | | HSDPA | DCQI | | | 8 | | | | Specific | Ack-Nack repetition | | | 3 | | | | Settings | factor | | | <u> </u> | | | | Settings | CQI Feedback | | | 4ms | | | | | CQI Repetition Factor | | | 2 | | | | | Ahs=βhs/ βc | | | 30/15 | | | ### HSPA+ The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34 121-1 | Sub- | β_c | β_d | β_{HS} | β_{ec} | β_{ed} | β_{ed} | CM | MPR | AG | E-TFCI | E-TFCI | |------|-----------|-----------|--------------|--------------|--------------------------|--------------------------|----------|----------|----------|----------|---------| | test | (Note3) | | (Note1) | | (2xSF2) | (2xSF4) | (dB) | (dB) | Index | (Note 5) | (boost) | | | | | | | (Note 4) | (Note 4) | (Note 2) | (Note 2) | (Note 4) | | | | 1 | 1 | 0 | 30/15 | 30/15 | β _{ed} 1: 30/15 | β _{ed} 3: 24/15 | 3.5 | 2.5 | 14 | 105 | 105 | | | | | | | β _{ed} 2: 30/15 | β _{ed} 4: 24/15 | | | | | | Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_{e}$. Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0). Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default. Note 4: β_{ed} can not be set directly; it is set by Absolute Grant Value. Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm. SAR Evaluation Report 41 of 165 **HSUPA** The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. Report No: RSZ160603015-20 | | Mode | HSUPA | HSUPA | HSUPA | HSUPA | HSUPA | | | |----------|-----------------------|----------------|------------------|---------------------------------|-----------|---------|--|--| | | Subset | 1 | 2 | 3 | 4 | 5 | | | | | Loopback Mode | Test Mode 1 | | | | | | | | -
 - | Rel99 RMC | | | 12.2kbps RMC | C | | | | | | HSDPA FRC | | | H-Set1 | | | | | | _ | HSUPA Test | HSUPA Loopback | | | | | | | | | Power Control | | | A 1 ~ ~ midla ma 2 | | | | | | WCDMA | Algorithm | | | Algorithm2 | | | | | | General | βс | 11/15 | 6/15 | 15/15 | 2/15 | 15/15 | | | | Settings | βd | 15/15 | 15/15 | 9/15 | 15/15 | 0 | | | | | βес | 209/225 | 12/15 | 30/15 | 2/15 | 5/15 | | | | | βc/ βd | 11/15 | 6/15 | 15/9 | 2/15 | - | | | | | βhs | 22/15 | 12/15 | 30/15 | 4/15 | 5/15 | | | | | CM(dB) | 1.0 | 3.0 | 2.0 | 3.0 | 1.0 | | | | | MPR(dB) | 0 | 2 | 1 | 2 | 0 | | | | | DACK | | | 8 | | | | | | | DNAK | 8 | | | | | | | | HSDPA | DCQI | 8 | | | | | | | | Specific | Ack-Nack repetition | 3 | | | | | | | | Settings | factor | | | | | | | | | g | CQI Feedback | 4ms | | | | | | | | | CQI Repetition Factor | | | 2 | | | | | | | Ahs=βhs/βc | | 1 0 | 30/15 | _ | | | | | | DE-DPCCH | 6 | 8 | 8 | 5 | 7 | | | | | DHARQ | 0 | 0 | 0 | 0 | 0 | | | | | AG Index | 20 | 12 | 15 | 17 | 21 | | | | | ETFCI | 75 | 67 | 92 | 71 | 81 | | | | | Associated Max UL | 242.1 | 174.9 | 482.8 | 205.8 | 308.9 | | | | | Data Rate kbps | | | | | | | | | HSUPA | | E-TFC | | | | CI 11 E | | | | Specific | | E-TFC | | E-TFCI | | | | | | Settings | | E-TF | | 11 | E-TFCI 67 | | | | | | | E-TFC | | E-TFCI | | I PO 18 | | | | | Reference E FCls | E-TF | | PO4 | E-TF | | | | | | | E-TFC | | E-TFCI | | I PO23 | | | | | | E-TF | | 92
E-TFCI | | CI 75 | | | | | | E-TFC
E-TF | | _ | | I PO26 | | | | | | | C1 81
I PO 27 | PO 18 E-TFCI 81
E-TFCI PO 27 | | | | | | | | E-TI-CI | 11021 | | L-TrC. | 11021 | | | SAR Evaluation Report 42 of 165 #### LTE For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1. Report No: RSZ160603015-20 Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3 | Modulation | Cha | Channel bandwidth / Transmission bandwidth (N _{RB}) | | | | | | | |------------|-----|---|-----|------|------|------|-----|--| | | 1.4 | 1.4 3.0 5 10 15 20 | | | | | | | | | MHz | MHz | MHz | MHz | MHz | MHz | | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | | 16 QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | | 16 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 2 | | For UE Power Class 1 and 3 the specific requirements and identified subclauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in subclause 6.2.3. Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR) | Network
Signalling
value | Requirements
(subclause) | E-UTRA Band | Channel
bandwidth
(MHz) | Resources
Blocks (N _{RB}) | A-MPR (dB) | |--------------------------------|-------------------------------|--------------------------|-------------------------------|--|-----------------------------| | NS_01 | 6.6.2.1.1 | Table 5.5-1 | 1.4, 3, 5, 10,
15, 20 | Table 5.6-1 | N/A | | | | | 3 | >5 | ≤ 1 | | | | 2, 4,10, 23, 25, | 5 | >6 | ≤ 1 | | NS_03 | 6.6.2.2.1 | 2, 4, 10, 23, 25, 35, 36 | 10 | >6 | ≤ 1 | | | | 33, 30 | 15 | >8 | ≤ 1 | | | | | 20 | >10 | ≤ 1 | | NS_04 | 6.6.2.2.2 | 41 | 5 | >6 | ≤ 1 | | _ | | | 10, 15, 20 | | 6.2.4-4 | | NS_05 | 6.6.3.3.1 | 1 | 10,15,20 | ≥ 50 | ≤ 1 | | NS_06 | 6.6.2.2.3 | 12, 13, 14, 17 | 1.4, 3, 5, 10 | Table 5.6-1 | N/A | | NS_07 | 6.6.2.2.3
6.6.3.3.2 | 13 | 10 | Table | 6.2.4-2 | | NS_08 | 6.6.3.3.3 | 19 | 10, 15 | > 44 | ≤ 3 | | NS_09 | 6.6.3.3.4 | 21 | 10, 15 | > 40
> 55 | ≤1
≤2 | | NS_10 | | 20 | 15, 20 | | 6.2.4-3 | | NS_11 | 6.6.2.2.1 | 23 | 1.4, 3, 5, 10,
15, 20 | | 6.2.4-5 | | NS_12 | 6.6.3.3.5 | 26 | 1.4, 3, 5 | Table | 6.2.4-6 | | NS_13 | 6.6.3.3.6 | 26 | 5 | Table | 6.2.4-7 | | NS_14 | 6.6.3.3.7 | 26 | 10, 15 | Table | 6.2.4-8 | | NS_15 | 6.6.3.3.8 | 26 | 1.4, 3, 5, 10,
15 | | 6.2.4-9
6.2.4-10 | | NS_16 | 6.6.3.3.9 | 27 | 3, 5, 10 | | Table 6.2.4-12,
6.2.4-13 | | NS_17 | 6.6.3.3.10 | 28 | 5, 10 | Table 5.6-1 | N/A | | NS_18 | 6.6.3.3.11 | 28 | 5 | ≥2 | ≤ 1 | | _ | | | 10, 15, 20 | ≥1 | ≤ 4 | | NS_19 | 6.6.3.3.12 | 44 | 10, 15, 20 | Table | 6.2.4-14 | | NS_20 | 6.2.2
6.6.2.2.1
6.6.3.2 | 23 | 5, 10, 15, 20 | Table (| 6.2.4-15 | | | | | | | | | NS_32 | - | - | - | - | - | SAR Evaluation Report 43 of 165 For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing: | Channel | Frequency
(MHz) | Channel
 Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 2412 | 8 | 2447 | | 2 | 2417 | 9 | 2452 | | 3 | 2422 | 10 | 2457 | | 4 | 2427 | 11 | 2462 | | 5 | 2432 | / | / | | 6 | 2437 | / | / | | 7 | 2442 | / | / | Report No: RSZ160603015-20 For 802.11b, 802.11g, 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11. For 802.11n-HT40 mode, 7 channels are provided to testing: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 2422 | 6 | 2447 | | 2 | 2427 | 7 | 2452 | | 3 | 2432 | / | / | | 4 | 2437 | / | / | | 5 | 2442 | / | / | EUT was tested with Channel 1, 4 and 7. SAR Evaluation Report 44 of 165 # **Maximum Output Power among production units** | | Max Tar | get Power for Product | ion Unit (dBm) | | |-------------|---------------|-----------------------|----------------|-------| | | | 5 | Channel | | | Mode | e/Band | Low | Middle | High | | GMS 850 | | 33.80 | 33.70 | 33.20 | | GPRS8 | 350 1 slot | 33.20 | 33.20 | 33.20 | | GPRS8 | 50 2 slots | 32.80 | 32.80 | 32.00 | | GPRS8 | 50 3 slots | 30.90 | 30.90 | 30.90 | | GPRS8 | 50 4 slots | 29.70 | 29.70 | 29.70 | | EGPRS | 850 1 slot | 28.50 | 28.50 | 28.50 | | EGPRS8 | 350 2 slots | 27.50 | 27.50 | 27.50 | | EGPRS8 | 350 3 slots | 26.80 | 26.80 | 26.80 | | EGPRS8 | 350 4 slots | 24.20 | 24.20 | 24.20 | | PCS | 5 1900 | 30.30 | 30.60 | 30.70 | | GPRS19 | 900 1 slot | 30.20 | 30.20 | 30.20 | | GPRS19 | 900 2 slots | 28.80 | 28.80 | 28.80 | | GPRS19 | 900 3 slots | 28.30 | 27.50 | 27.40 | | GPRS19 | 900 4 slots | 26.50 | 26.50 | 26.50 | | EGPRS1 | 1900 1 slot | 26.80 | 26.80 | 26.80 | | EGPRS1 | 900 2 slots | 25.50 | 25.50 | 25.50 | | EGPRS1 | 900 3 slots | 24.80 | 24.80 | 24.80 | | EGPRS1 | 900 4 slots | 23.90 | 23.90 | 23.90 | | | RMC | 22.90 | 22.90 | 22.90 | | WCDMA850 | HSDPA | 22.10 | 22.10 | 22.10 | | | HSUPA | 22.00 | 22.00 | 22.00 | | | RMC | 22.30 | 22.70 | 23.00 | | WCDMA1700 | HSDPA | 22.20 | 22.20 | 22.20 | | | HSUPA | 22.20 | 22.20 | 22.20 | | | RMC | 22.90 | 22.90 | 22.90 | | WCDMA1900 | HSDPA | 22.10 | 22.10 | 22.10 | | | HSUPA | 21.90 | 21.90 | 21.90 | | LTE | Band 2 | 24.40 | 24.40 | 24.40 | | LTE | LTE Band 4 | | 24.10 | 24.10 | | LTE Band 7 | | 24.50 | 24.50 | 24.50 | | LTE I | LTE Band 12 | | 24.60 | 24.60 | | LTE I | Band 17 | 25.50 | 25.50 | 25.50 | | Wi-Fi(802.1 | 1b/g/n20/n40) | 9.50 | 9.50 | 9.50 | | Bluete | ooth3.0 | 4.20 | 4.20 | 4.20 | | В | LE | -1.70 | -1.70 | -1.70 | Report No: RSZ160603015-20 SAR Evaluation Report 45 of 165 ## **Test Results:** ### GSM: | Dand | Frequency | Conducted Output Power | | | | |----------|-----------|-------------------------------|-----------------|--|--| | Band | (MHz) | Meas. Power (dBm) | Meas. Power (W) | | | | | 824.2 | 33.77 | 2.382 | | | | GSM 850 | 836.6 | 33.64 | 2.312 | | | | | 848.8 | 33.16 | 2.070 | | | | | 1850.2 | 30.21 | 1.050 | | | | PCS 1900 | 1880.0 | 30.53 | 1.130 | | | | | 1909.8 | 30.65 | 1.161 | | | Report No: RSZ160603015-20 ### **GPRS**: | D J | Channel | Frequency | | RF Output Po | ower (dBm) | | |----------|---------|-----------|--------|--------------|------------|---------| | Band | No. | (MHz) | 1 slot | 2 slot | 3 slots | 4 slots | | | 128 | 824.2 | 32.82 | 32.75 | 30.65 | 29.00 | | GSM 850 | 190 | 836.6 | 33.04 | 32.74 | 30.87 | 29.10 | | | 251 | 848.8 | 33.14 | 31.96 | 30.31 | 29.61 | | | 512 | 1850.2 | 30.13 | 29.07 | 28.25 | 26.42 | | PCS 1900 | 661 | 1880.0 | 30.07 | 29.76 | 27.40 | 26.27 | | | 810 | 1909.8 | 29.16 | 28.71 | 27.37 | 26.49 | ## **EGPRS**: | Band | Channel | Frequency | RF Output Power (dBm) | | | | | |----------|---------|-----------|-----------------------|--------|---------|---------|--| | Danu | No. | (MHz) | 1 slot | 2 slot | 3 slots | 4 slots | | | | 128 | 824.2 | 28.48 | 27.45 | 26.73 | 24.12 | | | GSM 850 | 190 | 836.6 | 27.03 | 26.75 | 24.11 | 23.52 | | | | 251 | 848.8 | 27.96 | 26.76 | 24.59 | 23.33 | | | | 512 | 1850.2 | 26.79 | 25.49 | 24.05 | 22.95 | | | PCS 1900 | 661 | 1880.0 | 26.21 | 25.13 | 24.73 | 23.11 | | | | 810 | 1909.8 | 26.67 | 25.06 | 24.04 | 23.86 | | For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal. | Number of Time slot | 1 | 2 | 3 | 4 | |--|-------|-------|----------|-------| | Duty Cycle | 1:8 | 1:4 | 1:2.66 | 1:2 | | Time based Ave. power compared to slotted Ave. power | -9 dB | -6 dB | -4.25 dB | -3 dB | | Crest Factor | 8 | 4 | 2.66 | 2 | SAR Evaluation Report 46 of 165 ## The time based average power for GPRS Report No: RSZ160603015-20 | Dand | Channel | Frequency | Tim | e based avera | ge Power (dB | m) | |----------|---------|-----------|--------|---------------|--------------|---------| | Band | No. | (MHz) | 1 slot | 2 slot | 3 slots | 4 slots | | | 128 | 824.2 | 23.82 | 26.75 | 26.40 | 26.00 | | GSM 850 | 190 | 836.6 | 24.04 | 26.74 | 26.62 | 26.10 | | | 251 | 848.8 | 24.14 | 25.96 | 26.06 | 26.61 | | | 512 | 1850.2 | 21.13 | 23.07 | 24.00 | 23.42 | | PCS 1900 | 661 | 1880.0 | 21.07 | 23.76 | 23.15 | 23.27 | | | 810 | 1909.8 | 20.16 | 22.71 | 23.12 | 23.49 | ### The time based average power for EGPRS | D J | Channel | Frequency | Tim | e based avera | ge Power (dB | m) | |----------|---------|-----------|--------|---------------|--------------|---------| | Band | No. | (MHz) | 1 slot | 2 slot | 3 slots | 4 slots | | | 128 | 824.2 | 19.48 | 21.45 | 22.48 | 21.12 | | GSM 850 | 190 | 836.6 | 18.03 | 20.75 | 19.86 | 20.52 | | | 251 | 848.8 | 18.96 | 20.76 | 20.34 | 20.33 | | | 512 | 1850.2 | 17.79 | 19.49 | 19.80 | 19.95 | | PCS 1900 | 661 | 1880.0 | 17.21 | 19.13 | 20.48 | 20.11 | | | 810 | 1909.8 | 17.67 | 19.06 | 19.79 | 20.86 | #### Note: - 1. Rohde & Schwarz Radio Communication Tester (CMU200) was used for the measurement of GSM peak and average output power for active timeslots. - 2. For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band). - 3. For GPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 3(850 MHz band) and 3(1900 MHz band). - 4. For EGPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 6(850 MHz band) and 5(1900 MHz band). - 5. According to KDB941225D01-SAR for GPRS and EDGE modes are not required when the source-based time-averaged output power for each data mode is lower than that in the normal GSM voice mode. SAR Evaluation Report 47 of 165 # Results (12.2kbps RMC) ## **WCDMA 850:** | Test | Test Mode | 3GPP
Sub | Av | eraged Mean Po
(dBm) | ower | |-----------|----------------|-------------|------------------|-------------------------|-------------------| | Condition | 1 est ivioue | Test | Low
Frequency | Mid
Frequency | High
Frequency | | | RMC1 | 2.2k | 22.74 | 22.86 | 22.89 | | | | 1 | 22.02 | 22.08 | 21.59 | | | Rel 6 HSDPA | 2 | 22.04 | 22.04 | 21.57 | | | Kei o HSDPA | 3 | 21.99 | 22.05 | 21.57 | | Normal | | 4 | 22.05 | 22.08 | 21.53 | | Normai | | 1 | 21.75 | 21.82 | 21.99 | | | D 16 | 2 | 21.55 | 21.74 | 21.94 | | | Rel 6
HSUPA | 3 | 21.46 | 21.73 | 21.87 | | | 1100171 | 4 | 21.43 | 21.70 | 21.81 | | | | 5 | 21.36 | 21.59 | 21.67 | Report No: RSZ160603015-20 ## **WCDMA 1700:** | Test | Test Mode | 3GPP
Sub | Av | Averaged Mean Power
(dBm) | | | | |-----------|----------------|-------------|------------------|------------------------------|-------------------|--|--| | Condition | Test Mode | Test | Low
Frequency | Mid
Frequency | High
Frequency | | | | | RMC12.2k | | 22.27 | 22.69 | 22.95 | | | | | | 1 | 21.86 | 22.13 | 21.33 | | | | | Rel 6 HSDPA | 2 | 21.89 | 22.12 | 21.28 | | | | | Kei o HSDPA | 3 | 21.82 | 22.09 | 21.20 | | | | Normal | | 4 | 21.87 | 22.12 | 21.20 | | | | Normai | | 1 | 21.56 | 21.88 | 22.18 | | | | | D 16 | 2 | 21.46 | 21.81 | 22.12 | | | | | Rel 6
HSUPA | 3 | 21.43 | 21.84 | 22.13 | | | | | 11501 A | 4 | 21.41 | 21.82 | 22.07 | | | | | | 5 | 21.45 | 21.84 | 22.12 | | | SAR Evaluation Report 48 of 165 ### **WCDMA 1900:** | Test | Test Mode Sub | | | ower | | |-----------|-----------------|------|------------------|------------------|-------------------| | Condition | Test Mode | Test | Low
Frequency | Mid
Frequency | High
Frequency | | | RMC12.2k | | 22.27 | 22.62 | 22.81 | | | | 1 | 21.81 | 22.00 | 21.33 | | | Rel 6 | 2 | 21.79 | 21.96 | 21.28 | | | HSDPA | 3 | 21.80 | 21.97 | 21.20 | | Normal | | 4 | 21.77 | 21.95 | 21.20 | | Normai | | 1 | 21.41 | 21.76 | 21.87 | | | D 16 | 2 | 21.38 | 21.80 | 21.81 | | | Rel 6
HSUPA | 3 | 21.39 | 21.74 | 21.78 | | | IIBOIA | 4 | 21.39 | 21.72 | 21.69 | | | | 5 | 21.35 | 21.69 | 21.58 | Report No: RSZ160603015-20 ### Note: - 1. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1. - 2. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA when the maximum average output of each RF channel is less than $\frac{1}{4}$ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit. SAR Evaluation Report 49 of 165 ## LTE Band 2: | | | | | | Ave | Tx Power (d) | Bm) | |----------|------------------------|---|---------------------------------|---|---|---
--| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | 1850.7MHz | 1880MHz | 1909.3MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.68 | 24.04 | 23.43 | | | | RB Size=1, RB Offset=2 | 0 | 0 | 23.61 | 23.33 | 23.82 | | | | RB Size=1, RB Offset=5 | 0 | 0 | 23.82 | 23.40 | 23.90 | | | QPSK | RB Size=3, RB Offset=0 | 1 | 1 | 23.40 | 23.84 | 24.07 | | | | RB Size=3, RB Offset=1 | 1 | 1 | 24.03 | 23.80 | 23.70 | | | | RB Size=3, RB Offset=2 | 1 | 1 | 23.75 | 23.33 | 23.59 | | 1.414 | | RB Size=6, RB Offset=0 | 1 | 1 | 22.75 | 23.01 | 22.51 | | 1.4M | | RB Size=1, RB Offset=0 | 1 | 1 | 22.90 | 22.42 | 22.32 | | | | RB Size=1, RB Offset=2 | 1 | 1 | 22.77 | 22.49 | 22.29 | | | | RB Size=1, RB Offset=5 | 1 | 1 | 23.56 | 2.40 | 22.56 | | | 16QAM | RB Size=3, RB Offset=0 | 2 | 2 | 22.81 | 22.41 | 23.01 | | | | RB Size=3, RB Offset=1 | 2 | 2 | 23.17 | 22.21 | 22.84 | | | | RB Size=3, RB Offset=2 | 2 | 2 | 23.35 | 22.86 | 22.70 | | | | RB Size=6, RB Offset=0 | 2 | 2 | 21.93 | 22.20 | 22.32 | | | | | 1 | | | | | | | | | | | Ave | Tx Power (d) | Bm) | | BW | Modulation | Resource Block Size& | Target | Meas | Low | Mid | High | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
1851.5MHz | Mid
Channel
1880MHz | High
Channel
1908.5MHz | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR 0 | MPR 0 | Low
Channel
1851.5MHz
24.15 | Mid
Channel
1880MHz
23.70 | High
Channel
1908.5MHz
23.54 | | BW | Modulation | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 | 0
0 | 0
0 | Low
Channel
1851.5MHz
24.15
23.80 | Mid
Channel
1880MHz
23.70
24.23 | High
Channel
1908.5MHz
23.54
23.38 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | 0
0
0 | 0
0
0 | Low
Channel
1851.5MHz
24.15
23.80
24.26 | Mid
Channel
1880MHz
23.70
24.23
24.10 | High
Channel
1908.5MHz
23.54
23.38
23.38 | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 | High
Channel
1908.5MHz
23.54
23.38
23.38
23.21 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 | 0
0
0
1
1 | 0
0
0
1 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42 | Mid
Channel
1880MHz
23.70
24.23
24.10
23.07
22.58 | High
Channel
1908.5MHz
23.54
23.38
23.38
23.21
22.86 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 22.58 22.76 | High
Channel
1908.5MHz
23.54
23.38
23.38
23.21
22.86
22.58 | | BW
3M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23
23.17 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 22.58 22.76 23.03 | High
Channel
1908.5MHz
23.54
23.38
23.38
23.21
22.86
22.58
22.93 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=11, RB Offset=0 RB Size=11, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23
23.17
23.06 | Mid
Channel
1880MHz
23.70
24.23
24.10
23.07
22.58
22.76
23.03
22.74 | High
Channel
1908.5MHz
23.54
23.38
23.38
23.21
22.86
22.58
22.93
23.25 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=11, RB Offset=0 RB Size=11, RB Offset=0 RB Size=11, RB Offset=10 | MPR 0 0 1 1 1 1 1 1 1 | 0
0
0
1
1
1
1
1 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23
23.17
23.06
22.52 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 22.58 22.76 23.03 22.74 22.35 | High
Channel
1908.5MHz
23.54
23.38
23.21
22.86
22.58
22.93
23.25
23.38 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=7 RB Size=8, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | MPR 0 0 1 1 1 1 1 1 1 1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23
23.17
23.06
22.52
22.57 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 22.58 22.76 23.03 22.74 22.35 22.95 | High
Channel
1908.5MHz
23.54
23.38
23.21
22.86
22.58
22.93
23.25
23.38
23.18 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 1 2 | 0
0
0
1
1
1
1
1
1
1
2 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23
23.17
23.06
22.52
22.57
22.25 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 22.58 22.76 23.03 22.74 22.35 22.95 21.74 | High
Channel
1908.5MHz
23.54
23.38
23.21
22.86
22.58
22.93
23.25
23.38
23.18
21.60 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 2 | MPR 0 0 1 1 1 1 1 2 2 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23
23.17
23.06
22.52
22.57
22.52
21.61 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 22.58 22.76 23.03 22.74 22.35 22.95 21.74 21.38 | High
Channel
1908.5MHz
23.54
23.38
23.38
23.21
22.86
22.58
22.93
23.25
23.38
23.18
21.60
21.84 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 1 2 | 0
0
0
1
1
1
1
1
1
1
2 | Low
Channel
1851.5MHz
24.15
23.80
24.26
22.99
22.42
23.23
23.17
23.06
22.52
22.57
22.25 | Mid Channel 1880MHz 23.70 24.23 24.10 23.07 22.58 22.76 23.03 22.74 22.35 22.95 21.74 | High
Channel
1908.5MHz
23.54
23.38
23.21
22.86
22.58
22.93
23.25
23.38
23.18
21.60 | Report No: RSZ160603015-20 SAR Evaluation Report 50 of 165 | | | | | | Ave | Tx Power (d) | Bm) | |--------|------------------------|--|---------------------------------|---|--|--|---| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel
1852.5MHz | Mid
Channel
1880MHz | High
Channel
1907.5MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.69 | 24.32 | 24.17 | | | | RB Size=1, RB Offset=12 | 0 | 0 | 23.14 | 23.43 | 22.87 | | | | RB Size=1, RB Offset=24 | 0 | 0 | 23.36 | 23.82 | 23.24 | | | QPSK | RB Size=12, RB Offset=0 | 1 | 1 | 22.80 | 22.58 | 22.76 | | | QI SII | RB Size=12, RB Offset=6 | 1 | 1 | 22.60 | 22.98 | 22.12 | | | | RB Size=12, RB Offset=11 | 1 | 1 | 22.33 | 22.75 | 22.46 | | | | RB Size=25, RB Offset=0 | 1 | 1 | 22.76 | 22.92 | 22.50 | | 5M | | RB Size=1, RB Offset=0 | 1 | 1 | 23.37 | 23.25 | 23.35 | | | | RB Size=1, RB Offset=12 | 1 | 1 | 23.02 | 22.47 | 22.35 | | | | RB Size=1, RB Offset=24 | 1 | 1 | 22.87 | 22.76 | 22.49 | | | 16QAM | RB Size=12, RB Offset=0 | 2 | 2 | 21.40 | 21.26 | 22.31 | | | | RB Size=12, RB Offset=6 | 2 | 2 | 21.37 | 21.33 | 21.78 | | | | RB
Size=12, RB Offset=11 | 2 | 2 | 21.42 | 21.96 | 21.98 | | | | RB Size=25, RB Offset=0 | 2 | 2 | 21.42 | 21.63 | 22.15 | | | | | | | | | | | | | | | | Ave | Tx Power (d) | Bm) | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Ave
Low
Channel | Tx Power (d) Mid Channel | Bm)
High
Channel | | BW | Modulation | | | | Low | Mid | High | | BW | Modulation | | | | Low
Channel | Mid
Channel | High
Channel | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
1855MHz | Mid
Channel
1880MHz | High
Channel
1905MHz | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR
0 | MPR 0 | Low
Channel
1855MHz
22.84 | Mid
Channel
1880MHz
23.44 | High
Channel
1905MHz
24.17 | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | MPR 0 0 | 0
0 | Low
Channel
1855MHz
22.84
23.58 | Mid
Channel
1880MHz
23.44
23.35 | High
Channel
1905MHz
24.17
23.78 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 | 0
0
0 | 0
0
0 | Low
Channel
1855MHz
22.84
23.58
23.89 | Mid
Channel
1880MHz
23.44
23.35
22.57 | High
Channel
1905MHz
24.17
23.78
22.65 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33 | High
Channel
1905MHz
24.17
23.78
22.65
23.20 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | 0
0
0
1
1 | 0
0
0
1
1 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27
22.68 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33
22.23 | High
Channel
1905MHz
24.17
23.78
22.65
23.20
22.67 | | BW 10M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27
22.68
23.19 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33
22.23
22.59 | High
Channel
1905MHz
24.17
23.78
22.65
23.20
22.67
22.51 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27
22.68
23.19
22.80 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33
22.23
22.59
22.24 | High
Channel
1905MHz
24.17
23.78
22.65
23.20
22.67
22.51
22.60 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27
22.68
23.19
22.80
22.91 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33
22.23
22.29
22.24
22.55 | High
Channel
1905MHz
24.17
23.78
22.65
23.20
22.67
22.51
22.60
22.64 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=25, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | MPR 0 0 1 1 1 1 1 1 | MPR 0 0 1 1 1 1 1 1 1 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27
22.68
23.19
22.80
22.91 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33
22.23
22.59
22.24
22.55
21.80 | High
Channel
1905MHz
24.17
23.78
22.65
23.20
22.67
22.51
22.60
22.64
22.54 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | MPR 0 0 1 1 1 1 1 1 1 1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27
22.68
23.19
22.80
22.91
22.84
23.00 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33
22.23
22.59
22.24
22.55
21.80
22.31 | High
Channel
1905MHz
24.17
23.78
22.65
23.20
22.67
22.51
22.60
22.64
22.54
22.13 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=25, RB Offset=49 RB Size=25, RB Offset=0 | MPR 0 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
1855MHz
22.84
23.58
23.89
22.27
22.68
23.19
22.80
22.91
22.84
23.00
21.44 | Mid
Channel
1880MHz
23.44
23.35
22.57
22.33
22.23
22.29
22.24
22.55
21.80
22.31
22.19 | High
Channel
1905MHz
24.17
23.78
22.65
23.20
22.67
22.51
22.60
22.64
22.54
22.13
22.27 | Report No: RSZ160603015-20 SAR Evaluation Report 51 of 165 | | | | | | Ave | Tx Power (d) | Bm) | |--------|------------------------|---|--------------------------------------|---------------------------------|--|---|---| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | 1857.5MHz | 1880MHz | 1902.5MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.63 | 23.33 | 23.85 | | | | RB Size=1, RB Offset=37 | 0 | 0 | 23.69 | 23.32 | 23.52 | | | | RB Size=1, RB Offset=74 | 0 | 0 | 24.24 | 22.89 | 23.57 | | | QPSK | RB Size=36, RB Offset=0 | 1 | 1 | 22.86 | 22.54 | 23.30 | | | | RB Size=36, RB Offset=18 | 1 | 1 | 22.56 | 22.87 | 22.65 | | | | RB Size=36, RB Offset=37 | 1 | 1 | 22.58 | 22.44 | 22.49 | | 15M | | RB Size=75, RB Offset=0 | 1 | 1 | 22.86 | 22.52 | 22.53 | | 13101 | | RB Size=1, RB Offset=0 | 1 | 1 | 23.19 | 22.20 | 23.07 | | | | RB Size=1, RB Offset=37 | 1 | 1 | 22.67 | 21.97 | 22.92 | | | | RB Size=1, RB Offset=74 | 1 | 1 | 23.13 | 22.11 | 21.90 | | | 16QAM | RB Size=36, RB Offset=0 | 2 | 2 | 21.61 | 21.37 | 22.35 | | | | RB Size=36, RB Offset=18 | 2 | 2 | 22.02 | 21.30 | 22.29 | | | | RB Size=36, RB Offset=37 | 2 | 2 | 21.40 | 21.33 | 22.34 | | | | RB Size=75, RB Offset=0 | 2 | 2 | 21.68 | 21.22 | 21.90 | | | | | | | | | | | | | | | | | Tx Power (d) | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Ave
Low
Channel | Tx Power (dl
Mid
Channel | Bm)
High
Channel | | BW | Modulation | | | | Low | Mid | High | | BW | Modulation | | | | Low
Channel | Mid
Channel | High
Channel | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
1860MHz | Mid
Channel
1880MHz | High
Channel
1900MHz | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR 0 | MPR 0 | Low
Channel
1860MHz
23.71 | Mid
Channel
1880MHz
22.64 | High
Channel
1900MHz
24.12 | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0 | 0
0 | Low
Channel
1860MHz
23.71
24.11 | Mid
Channel
1880MHz
22.64
23.42 | High
Channel
1900MHz
24.12
24.36 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 | 0
0
0 | 0
0
0 | Low
Channel
1860MHz
23.71
24.11
23.92 | Mid
Channel
1880MHz
22.64
23.42
22.75 | High
Channel
1900MHz
24.12
24.36
23.20 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91 | Mid
Channel
1880MHz
22.64
23.42
22.75
23.16 | High
Channel
1900MHz
24.12
24.36
23.20
23.15 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 | 0
0
0
1
1 | 0
0
0
1
1 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91
22.99 | Mid
Channel
1880MHz
22.64
23.42
22.75
23.16
22.54 | High
Channel
1900MHz
24.12
24.36
23.20
23.15
22.77 | | BW 20M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91
22.99
23.19 | Mid Channel 1880MHz 22.64 23.42 22.75 23.16 22.54 22.76 | High Channel 1900MHz 24.12 24.36 23.20 23.15 22.77 22.94 | | | | RB
Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91
22.99
23.19
22.76 | Mid
Channel
1880MHz
22.64
23.42
22.75
23.16
22.54
22.76
22.84 | High
Channel
1900MHz
24.12
24.36
23.20
23.15
22.77
22.94
22.61 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91
22.99
23.19
22.76
23.08 | Mid
Channel
1880MHz
22.64
23.42
22.75
23.16
22.54
22.76
22.84
22.91 | High
Channel
1900MHz
24.12
24.36
23.20
23.15
22.77
22.94
22.61
23.39 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=50, RB Offset=9 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1 | MPR 0 0 1 1 1 1 1 1 1 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91
22.99
23.19
22.76
23.08
23.62 | Mid Channel 1880MHz 22.64 23.42 22.75 23.16 22.54 22.76 22.84 22.91 22.87 | High
Channel
1900MHz
24.12
24.36
23.20
23.15
22.77
22.94
22.61
23.39
23.10 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=50, RB Offset=9 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 | MPR 0 0 1 1 1 1 1 1 1 1 | MPR 0 0 1 1 1 1 1 1 1 1 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91
22.99
23.19
22.76
23.08
23.62
23.59 | Mid Channel 1880MHz 22.64 23.42 22.75 23.16 22.54 22.76 22.84 22.91 22.87 22.57 | High
Channel
1900MHz
24.12
24.36
23.20
23.15
22.77
22.94
22.61
23.39
23.10
22.57 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=9 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
1860MHz
23.71
24.11
23.92
22.91
22.99
23.19
22.76
23.08
23.62
23.59
21.37 | Mid Channel 1880MHz 22.64 23.42 22.75 23.16 22.54 22.76 22.84 22.91 22.87 22.57 21.40 | High
Channel
1900MHz
24.12
24.36
23.20
23.15
22.77
22.94
22.61
23.39
23.10
22.57
21.76 | Report No: RSZ160603015-20 SAR Evaluation Report 52 of 165 ## LTE Band 4: | | | | | | Ave | Tx Power (d) | Bm) | |-------|---------------|--|---------------------------------|---------------------------------|---|---|---| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | 1710.7MHz | 1732.5MHz | 1754.3MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.13 | 23.65 | 23.94 | | | | RB Size=1, RB Offset=2 | 0 | 0 | 23.27 | 23.93 | 23.85 | | | | RB Size=1, RB Offset=5 | 0 | 0 | 23.06 | 23.48 | 23.42 | | | QPSK | RB Size=3, RB Offset=0 | 1 | 1 | 23.81 | 23.47 | 23.18 | | | | RB Size=3, RB Offset=1 | 1 | 1 | 23.21 | 23.13 | 23.35 | | | | RB Size=3, RB Offset=2 | 1 | 1 | 23.87 | 23.11 | 23.98 | | 1.414 | | RB Size=6, RB Offset=0 | 1 | 1 | 22.70 | 22.89 | 22.04 | | 1.4M | | RB Size=1, RB Offset=0 | 1 | 1 | 23.14 | 23.09 | 22.69 | | | | RB Size=1, RB Offset=2 | 1 | 1 | 23.39 | 23.55 | 23.53 | | | | RB Size=1, RB Offset=5 | 1 | 1 | 22.51 | 22.96 | 23.13 | | | 16QAM | RB Size=3, RB Offset=0 | 2 | 2 | 22.89 | 22.84 | 23.70 | | | | RB Size=3, RB Offset=1 | 2 | 2 | 22.28 | 22.67 | 22.62 | | | | RB Size=3, RB Offset=2 | 2 | 2 | 23.21 | 22.71 | 22.99 | | | | RB Size=6, RB Offset=0 | 2 | 2 | 21.57 | 21.99 | 22.98 | | | | | | | Ave | Tx Power (d) | Bm) | | BW | Modulation | Resource Block Size& | Target | Meas | Low | Mid | High | | | | Resource Block Offset | MPR | MPR | Channel
1711.5MHz | Channel
1732.5MHz | Channel
1753.5MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.28 | 22.97 | 22.11 | | | - | RB Size=1, RB Offset=7 | 0 | 0 | 22.57 | 23.27 | 23.97 | | | - | RB Size=1, RB Offset=14 | 0 | 0 | 22.77 | 22.71 | 22.37 | | | ODGIZ | | U | U | 22.11 | 22.71 | 22.57 | | | OPSK | RR Size=8 RR Offset=0 | 1 | 1 | 22 90 | 24 01 | 22.52 | | | QPSK | RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 | 1 | 1 | 22.90 | 24.01
23.35 | 22.52 | | | QPSK | RB Size=8, RB Offset=4 | 1 | 1 | 22.25 | 23.35 | 22.75 | | | QPSK | RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 | 1 1 | 1 | 22.25
22.98 | 23.35
22.98 | 22.75
23.09 | | 3M - | QPSK | RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 | 1
1
1 | 1
1
1 | 22.25
22.98
22.35 | 23.35
22.98
22.09 | 22.75
23.09
22.93 | | 3M - | QPSK | RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 | 1
1
1
1 | 1
1
1 | 22.25
22.98
22.35
23.08 | 23.35
22.98
22.09
22.31 | 22.75
23.09
22.93
22.08 | | 3M - | QPSK | RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 | 1
1
1
1
1 | 1
1
1
1 | 22.25
22.98
22.35
23.08
23.21 | 23.35
22.98
22.09
22.31
22.41 | 22.75
23.09
22.93
22.08
22.67 | | 3M - | | RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | 1
1
1
1
1
1 | 1
1
1
1
1 | 22.25
22.98
22.35
23.08
23.21
23.01 | 23.35
22.98
22.09
22.31
22.41
22.50 | 22.75
23.09
22.93
22.08
22.67
22.63 | | 3M - | QPSK
16QAM | RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | 1
1
1
1
1
1
2 | 1
1
1
1
1
1
2 | 22.25
22.98
22.35
23.08
23.21
23.01
21.56 | 23.35
22.98
22.09
22.31
22.41
22.50
21.49 | 22.75
23.09
22.93
22.08
22.67
22.63
21.44 | | 3M - | | RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | 1
1
1
1
1
1 | 1
1
1
1
1 | 22.25
22.98
22.35
23.08
23.21
23.01 | 23.35
22.98
22.09
22.31
22.41
22.50 | 22.75
23.09
22.93
22.08
22.67
22.63 | Report No: RSZ160603015-20 SAR Evaluation Report 53 of 165 | | | | | | Ave | Tx Power (d) | Bm) | |--------|------------------------|---|---|--|--|---|---| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | - | - | 1712.5MHz | 1732.5MHz | 1752.5MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.66 | 23.55 | 23.63 | | | | RB Size=1, RB Offset=12 | 0 | 0 | 23.31 | 23.83 | 23.39 | | | | RB Size=1, RB Offset=24 | 0 | 0 | 23.87 | 23.54 | 23.81 | | | QPSK | RB Size=12, RB Offset=0 | 1 | 1 | 22.38 | 22.82 | 23.21 | | | | RB Size=12, RB Offset=6 | 1 | 1 | 22.96 | 22.74 | 22.29 | | | | RB Size=12, RB Offset=11 | 1 | 1 | 22.45 | 22.58 | 22.18 | | 5M | | RB Size=25, RB Offset=0 | 1 | 1 | 22.45 | 22.11 | 22.60 | | 5111 | | RB Size=1, RB Offset=0 | 1 | 1 | 23.14 | 22.78 | 23.30 | | | | RB Size=1, RB Offset=12 | 1 | 1 | 23.03 | 23.01 | 23.09 | | | | RB Size=1, RB Offset=24 | 1 | 1 | 22.42 | 22.48 | 23.19 | | | 16QAM | RB Size=12, RB Offset=0 | 2 | 2 | 21.62 | 21.97 | 21.42 | | | | RB Size=12, RB Offset=6 | 2 | 2 | 21.39 | 21.86 | 22.27 | | | | RB Size=12, RB Offset=11 | 2 | 2 | 21.65 | 21.78 | 22.04 | | | | RB Size=25, RB Offset=0 | 2 | 2 | 21.40 | 21.78 | 21.25 | | | | | | | | | | | | | | | | | Tx Power (d) | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Ave
Low
Channel | Tx Power (d) Mid Channel | High
Channel | | BW | Modulation | | | | Low | Mid | High | | BW | Modulation | | | | Low
Channel | Mid
Channel | High
Channel | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
1715MHz | Mid
Channel
1732.5MHz | High
Channel
1750MHz | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR
0 | MPR 0 |
Low
Channel
1715MHz
23.65 | Mid
Channel
1732.5MHz
23.63 | High
Channel
1750MHz
23.31 | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0 | 0
0 | Low
Channel
1715MHz
23.65
23.55 | Mid
Channel
1732.5MHz
23.63
23.30 | High
Channel
1750MHz
23.31
23.80 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 | 0
0
0 | 0
0
0 | Low
Channel
1715MHz
23.65
23.55
23.53 | Mid
Channel
1732.5MHz
23.63
23.30
23.52 | High
Channel
1750MHz
23.31
23.80
23.51 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65 | Mid
Channel
1732.5MHz
23.63
23.30
23.52
22.92 | High
Channel
1750MHz
23.31
23.80
23.51
22.25 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | 0
0
0
1
1 | 0
0
0
1 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65
22.94 | Mid
Channel
1732.5MHz
23.63
23.30
23.52
22.92
22.43 | High
Channel
1750MHz
23.31
23.80
23.51
22.25
22.24 | | BW 10M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 | 0
0
0
1
1
1 | 0
0
0
1
1 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65
22.94
22.37 | Mid
Channel
1732.5MHz
23.63
23.30
23.52
22.92
22.43
22.97 | High
Channel
1750MHz
23.31
23.80
23.51
22.25
22.24
22.32 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65
22.94
22.37
22.54 | Mid
Channel
1732.5MHz
23.63
23.30
23.52
22.92
22.43
22.97
22.78 | High
Channel
1750MHz
23.31
23.80
23.51
22.25
22.24
22.32
22.33 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65
22.94
22.37
22.54
22.79 | Mid
Channel
1732.5MHz
23.63
23.30
23.52
22.92
22.43
22.97
22.78
22.65 | High
Channel
1750MHz
23.31
23.80
23.51
22.25
22.24
22.32
22.33
22.26 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=25, RB Offset=0 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0
0
1
1
1
1
1 | 0
0
0
1
1
1
1
1 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65
22.94
22.37
22.54
22.79
23.34 | Mid Channel 1732.5MHz 23.63 23.30 23.52 22.92 22.43 22.97 22.78 22.65 22.86 | High
Channel
1750MHz
23.31
23.80
23.51
22.25
22.24
22.32
22.33
22.26
23.00 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1
1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65
22.94
22.37
22.54
22.79
23.34
23.03 | Mid
Channel
1732.5MHz
23.63
23.30
23.52
22.92
22.43
22.97
22.78
22.65
22.86
22.72 | High
Channel
1750MHz
23.31
23.80
23.51
22.25
22.24
22.32
22.33
22.26
23.00
21.97 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 | 0
0
0
1
1
1
1
1
1
2 | Low
Channel
1715MHz
23.65
23.55
23.53
22.65
22.94
22.37
22.54
22.79
23.34
23.03
21.79 | Mid Channel 1732.5MHz 23.63 23.30 23.52 22.92 22.43 22.97 22.78 22.65 22.86 22.72 21.43 | High
Channel
1750MHz
23.31
23.80
23.51
22.25
22.24
22.32
22.33
22.26
23.00
21.97
22.04 | Report No: RSZ160603015-20 SAR Evaluation Report 54 of 165 | | | | | | Ave | Tx Power (d) | Bm) | |--------|------------------------|---|---|---|--|---|---| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | 1717.5MHz | 1732.5MHz | 1747.5MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.39 | 22.68 | 22.48 | | | | RB Size=1, RB Offset=37 | 0 | 0 | 22.76 | 22.80 | 22.52 | | | | RB Size=1, RB Offset=74 | 0 | 0 | 22.79 | 22.29 | 22.09 | | | QPSK | RB Size=36, RB Offset=0 | 1 | 1 | 21.88 | 21.25 | 22.09 | | | | RB Size=36, RB Offset=18 | 1 | 1 | 22.02 | 21.23 | 21.74 | | | | RB Size=36, RB Offset=37 | 1 | 1 | 22.00 | 22.05 | 21.98 | | 15M | | RB Size=75, RB Offset=0 | 1 | 1 | 21.72 | 21.44 | 21.72 | | 13IVI | | RB Size=1, RB Offset=0 | 1 | 1 | 22.75 | 22.51 | 23.43 | | | | RB Size=1, RB Offset=37 | 1 | 1 | 21.78 | 22.75 | 23.36 | | | | RB Size=1, RB Offset=74 | 1 | 1 | 22.46 | 22.45 | 22.57 | | | 16QAM | RB Size=36, RB Offset=0 | 2 | 2 | 21.15 | 22.06 | 22.29 | | | | RB Size=36, RB Offset=18 | 2 | 2 | 20.81 | 21.23 | 22.31 | | | | RB Size=36, RB Offset=37 | 2 | 2 | 21.11 | 21.65 | 22.43 | | | | RB Size=75, RB Offset=0 | 2 | 2 | 21.63 | 21.68 | 22.02 | | | | | | | Ave | Tx Power (d) | Rm) | | | | | | | Avc | TXTOWEI (u) | DIII) | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | BW | Modulation | | | | Low | Mid | High | | BW | Modulation | | | | Low
Channel | Mid
Channel | High
Channel | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
1720MHz | Mid
Channel
1732.5MHz | High
Channel
1745MHz | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR 0 | MPR 0 | Low
Channel
1720MHz
23.60 | Mid
Channel
1732.5MHz
23.61 | High
Channel
1745MHz
24.01 | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0 | 0
0 | Low
Channel
1720MHz
23.60
23.47 | Mid
Channel
1732.5MHz
23.61
23.22 | High
Channel
1745MHz
24.01
23.70 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 | 0
0
0 | 0
0
0 | Low
Channel
1720MHz
23.60
23.47
23.29 | Mid
Channel
1732.5MHz
23.61
23.22
23.32 | High
Channel
1745MHz
24.01
23.70
22.76 | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03 | Mid
Channel
1732.5MHz
23.61
23.22
23.32
22.68 | High
Channel
1745MHz
24.01
23.70
22.76
22.95 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 | 0
0
0
1
1 | 0
0
0
1
1 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03
22.38 | Mid
Channel
1732.5MHz
23.61
23.22
23.32
22.68
22.89 | High
Channel
1745MHz
24.01
23.70
22.76
22.95
21.93 | | BW 20M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03
22.38
22.18 | Mid Channel 1732.5MHz 23.61 23.22 23.32 22.68 22.89 22.79 | High
Channel
1745MHz
24.01
23.70
22.76
22.95
21.93
22.74 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03
22.38
22.18
22.69 | Mid
Channel
1732.5MHz
23.61
23.22
23.32
22.68
22.89
22.79
22.10 | High
Channel
1745MHz
24.01
23.70
22.76
22.95
21.93
22.74
22.06 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB
Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03
22.38
22.18
22.69
22.36 | Mid
Channel
1732.5MHz
23.61
23.22
23.32
22.68
22.89
22.79
22.10
23.23 | High
Channel
1745MHz
24.01
23.70
22.76
22.95
21.93
22.74
22.06
22.71 | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=50, RB Offset=9 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1 | 0
0
0
1
1
1
1
1 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03
22.38
22.18
22.69
22.36
22.48 | Mid Channel 1732.5MHz 23.61 23.22 23.32 22.68 22.89 22.79 22.10 23.23 23.24 | High
Channel
1745MHz
24.01
23.70
22.76
22.95
21.93
22.74
22.06
22.71
22.49 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=50, RB Offset=9 RB Size=50, RB Offset=24 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1
1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03
22.38
22.18
22.69
22.36
22.48
22.95 | Mid Channel 1732.5MHz 23.61 23.22 23.32 22.68 22.89 22.79 22.10 23.23 23.24 23.12 | High
Channel
1745MHz
24.01
23.70
22.76
22.95
21.93
22.74
22.06
22.71
22.49
22.87 | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 RB Size=50, RB Offset=24 RB Size=50, RB Offset=49 RB Size=100, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=9 RB Size=1, RB Offset=49 RB Size=1, RB Offset=99 RB Size=50, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
1720MHz
23.60
23.47
23.29
22.03
22.38
22.18
22.69
22.36
22.48
22.95
21.51 | Mid Channel 1732.5MHz 23.61 23.22 23.32 22.68 22.89 22.79 22.10 23.23 23.24 23.12 21.57 | High
Channel
1745MHz
24.01
23.70
22.76
22.95
21.93
22.74
22.06
22.71
22.49
22.87
21.51 | Report No: RSZ160603015-20 SAR Evaluation Report 55 of 165 ## LTE Band 7: | | | | | | Ave Tx Power (dBm) | | | | |------|------------------------|---|---|--|---|---|--|--| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | | 2502.5MHz | 2535MHz | 2567.5MHz | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 24.30 | 24.16 | 23.84 | | | | | RB Size=1, RB Offset=12 | 0 | 0 | 23.50 | 24.28 | 23.39 | | | | | RB Size=1, RB Offset=24 | 0 | 0 | 24.20 | 24.13 | 22.75 | | | | QPSK | RB Size=12, RB Offset=0 | 1 | 1 | 23.20 | 22.63 | 22.40 | | | | | RB Size=12, RB Offset=6 | 1 | 1 | 23.30 | 23.17 | 22.05 | | | | | RB Size=12, RB Offset=11 | 1 | 1 | 23.17 | 23.14 | 22.60 | | | 514 | 5) (| RB Size=25, RB Offset=0 | 1 | 1 | 23.28 | 22.65 | 22.17 | | | 5M | RB Size=1, RB Offset=0 | 1 | 1 | 23.57 | 23.53 | 23.21 | | | | | | RB Size=1, RB Offset=12 | 1 | 1 | 23.02 | 22.92 | 22.29 | | | | | RB Size=1, RB Offset=24 | 1 | 1 | 22.85 | 23.15 | 22.38 | | | | 16QAM | RB Size=12, RB Offset=0 | 2 | 2 | 21.71 | 22.08 | 21.73 | | | | | RB Size=12, RB Offset=6 | 2 | 2 | 21.86 | 21.72 | 22.44 | | | | | RB Size=12, RB Offset=11 | 2 | 2 | 22.44 | 21.90 | 22.21 | | | | | RB Size=25, RB Offset=0 | 2 | 2 | 22.30 | 22.22 | 22.32 | | | | | | | | Ave | Tx Power (d) | Bm) | | | BW | Modulation | Resource Block Size& | Target
MPR | Meas | Low | Mid | High | | | 2,,, | 1,10441441011 | Resource Block Offset | | MPR | Channel | Channel | Channel | | | | | | | | 25051 (11 | 0.50.53.611 | | | | | | DD G' 1 DD O CC + 0 | 0 | 0 | 2505MHz | 2535MHz | 2565MHz | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.80 | 24.11 | 22.92 | | | | | RB Size=1, RB Offset=24 | 0 | 0 | 23.80
24.13 | 24.11
24.01 | 22.92
23.15 | | | | 2734 | RB Size=1, RB Offset=24
RB Size=1, RB Offset=49 | 0 | 0 | 23.80
24.13
23.10 | 24.11
24.01
24.39 | 22.92
23.15
22.62 | | | | QPSK | RB Size=1, RB Offset=24
RB Size=1, RB Offset=49
RB Size=25, RB Offset=0 | 0 0 1 | 0 0 1 | 23.80
24.13
23.10
23.32 | 24.11
24.01
24.39
22.83 | 22.92
23.15
22.62
22.78 | | | | QPSK | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | 0 0 1 1 | 0 0 1 1 | 23.80
24.13
23.10
23.32
23.39 | 24.11
24.01
24.39
22.83
23.07 | 22.92
23.15
22.62
22.78
22.81 | | | | QPSK | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 | 0
0
1
1 | 0
0
1
1 | 23.80
24.13
23.10
23.32
23.39
23.11 | 24.11
24.01
24.39
22.83
23.07
23.30 | 22.92
23.15
22.62
22.78
22.81
22.42 | | | 10M | QPSK | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 | 0
0
1
1
1
1 | 0
0
1
1
1 | 23.80
24.13
23.10
23.32
23.39
23.11
23.30 | 24.11
24.01
24.39
22.83
23.07
23.30
22.69 | 22.92
23.15
22.62
22.78
22.81
22.42
22.72 | | | 10M | QPSK | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
1
1
1
1
1 | 0
0
1
1
1
1
1 | 23.80
24.13
23.10
23.32
23.39
23.11
23.30
23.08 | 24.11
24.01
24.39
22.83
23.07
23.30
22.69
23.09 | 22.92
23.15
22.62
22.78
22.81
22.42
22.72
22.44 | | | 10M | QPSK | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0
1
1
1
1
1
1 | 0
0
1
1
1
1
1 | 23.80
24.13
23.10
23.32
23.39
23.11
23.30
23.08
23.53 | 24.11
24.01
24.39
22.83
23.07
23.30
22.69
23.09
22.54 | 22.92
23.15
22.62
22.78
22.81
22.42
22.72
22.44
22.00 | | | 10M | | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 | 0
0
1
1
1
1
1
1
1 | 0
0
1
1
1
1
1
1 | 23.80
24.13
23.10
23.32
23.39
23.11
23.30
23.08
23.53
23.25 | 24.11
24.01
24.39
22.83
23.07
23.30
22.69
23.09
22.54
23.10 | 22.92
23.15
22.62
22.78
22.81
22.42
22.72
22.44
22.00
21.65 | | | 10M | QPSK
16QAM | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
1
1
1
1
1
1
1
1
2 | 0
0
1
1
1
1
1
1
1
2 | 23.80
24.13
23.10
23.32
23.39
23.11
23.30
23.08
23.53
23.25
21.79 | 24.11
24.01
24.39
22.83
23.07
23.30
22.69
23.09
22.54
23.10
22.00 | 22.92
23.15
22.62
22.78
22.81
22.42
22.72
22.44
22.00
21.65
21.83 | | | 10M | | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | 0
0
1
1
1
1
1
1
1
2 | 0
0
1
1
1
1
1
1
1
2 | 23.80
24.13
23.10
23.32
23.39
23.11
23.30
23.08
23.53
23.53
23.25
21.79
21.82 | 24.11 24.01 24.39 22.83 23.07 23.30 22.69 23.09 22.54 23.10 22.00 22.11 | 22.92
23.15
22.62
22.78
22.81
22.42
22.72
22.44
22.00
21.65
21.83
21.20 | | | 10M | | RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
1
1
1
1
1
1
1
1
2 | 0
0
1
1
1
1
1
1
1
2 | 23.80
24.13
23.10
23.32
23.39
23.11
23.30
23.08
23.53
23.25
21.79 | 24.11
24.01
24.39
22.83
23.07
23.30
22.69
23.09
22.54
23.10
22.00 | 22.92
23.15
22.62
22.78
22.81
22.42
22.72
22.44
22.00
21.65
21.83 | | Report No: RSZ160603015-20 SAR Evaluation Report 56 of 165 | | | | | | Ave | Tx Power (d | Bm) | | |------|------------
---|---------------|-------------|--------------------|----------------|-----------------|--| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | | 2507.5MHz | 2535MHz | 2562.5MHz | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 24.06 | 24.26 | 23.66 | | | | | RB Size=1, RB Offset=37 | 0 | 0 | 23.75 | 24.23 | 23.51 | | | | | RB Size=1, RB Offset=74 | 0 | 0 | 23.13 | 24.48 | 23.05 | | | | QPSK | RB Size=36, RB Offset=0 | 1 | 1 | 23.10 | 23.30 | 22.01 | | | | | RB Size=36, RB Offset=18 | 1 | 1 | 23.11 | 23.29 | 22.14 | | | | | RB Size=36, RB Offset=37 | 1 | 1 | 23.06 | 23.35 | 22.69 | | | 1514 | | RB Size=75, RB Offset=0 | 1 | 1 | 23.31 | 22.71 | 22.09 | | | 15M | | RB Size=1, RB Offset=0 | 1 | 1 | 23.20 | 22.61 | 22.60 | | | | | RB Size=1, RB Offset=37 | 1 | 1 | 22.29 | 23.27 | 22.92 | | | | | RB Size=1, RB Offset=74 | 1 | 1 | 22.84 | 23.57 | 22.35 | | | | 16QAM | RB Size=36, RB Offset=0 | 2 | 2 | 22.28 | 21.85 | 21.86 | | | | | RB Size=36, RB Offset=18 | 2 | 2 | 22.37 | 21.68 | 21.52 | | | | | RB Size=36, RB Offset=37 | 2 | 2 | 22.36 | 22.39 | 21.02 | | | | | RB Size=75, RB Offset=0 | 2 | 2 | 22.22 | 22.51 | 21.24 | | | | | | | | Ave Tx Power (dBm) | | | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | | 2510MHz | 2535MHz | 2560MHz | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.87 | 24.03 | 23.10 | | | | | RB Size=1, RB Offset=49 | 0 | 0 | 23.22 | 24.12 | 23.60 | | | | | RB Size=1, RB Offset=99 | 0 | 0 | 23.00 | 24.31 | 23.13 | | | | QPSK | RB Size=50, RB Offset=0 | 1 | 1 | 23.17 | 22.68 | 22.47 | | | | | RB Size=50, RB Offset=24 | 1 | 1 | 22.49 | 22.72 | 22.41 | | | | | RB Size=50, RB Offset=49 | 1 | 1 | 22.25 | 23.30 | 22.92 | | | 2014 | | RB Size=100, RB Offset=0 | 1 | 1 | 22.73 | 23.27 | 22.56 | | | 20M | | RB Size=1, RB Offset=0 | 1 | 1 | 23.24 | 23.02 | 23.42 | | | | | RB Size=1, RB Offset=49 | 1 | 1 | 22.46 | 23.07 | 22.21 | | | | | RB Size=1, RB Offset=99 | 1 | 1 | 22.84 | 24.09 | 22.37 | | | | 16QAM | RB Size=50, RB Offset=0 | 2 | 2 | 21.62 | 21.59 | 21.30 | | | | | RB Size=50, RB Offset=24 | 2 | 2 | 21.57 | 22.50 | 21.98 | | | | | RB Size=50, RB Offset=49 | 2 | 2 | 21.61 | 22.23 | 21.65 | | | | | | | | | | | | Report No: RSZ160603015-20 SAR Evaluation Report 57 of 165 ## LTE Band 12: | | | | | | Ave Tx Power (dBm) | | | | |--------------|------------------------|---|---------------------------------|---------------------------------|---|---|--|--| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | | 698.7MHz | 707.0MHz | 715.3MHz | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.27 | 23.10 | 23.25 | | | | | RB Size=1, RB Offset=2 | 0 | 0 | 23.26 | 23.17 | 22.51 | | | | | RB Size=1, RB Offset=5 | 0 | 0 | 22.54 | 23.82 | 22.13 | | | | QPSK | RB Size=3, RB Offset=0 | 1 | 1 | 21.53 | 22.13 | 21.39 | | | | | RB Size=3, RB Offset=1 | 1 | 1 | 21.71 | 22.52 | 21.53 | | | | | RB Size=3, RB Offset=2 | 1 | 1 | 21.86 | 22.43 | 21.71 | | | 1.4M | | RB Size=6, RB Offset=0 | 1 | 1 | 22.35 | 21.82 | 21.51 | | | 1.4IVI | | RB Size=1, RB Offset=0 | 1 | 1 | 23.35 | 23.29 | 22.88 | | | | | RB Size=1, RB Offset=2 | 1 | 1 | 23.31 | 23.78 | 22.82 | | | | | RB Size=1, RB Offset=5 | 1 | 1 | 22.18 | 23.53 | 22.67 | | | | 16QAM | RB Size=3, RB Offset=0 | 2 | 2 | 21.79 | 22.08 | 21.08 | | | | - | RB Size=3, RB Offset=1 | 2 | 2 | 21.57 | 21.76 | 21.29 | | | | | RB Size=3, RB Offset=2 | 2 | 2 | 21.83 | 22.63 | 21.66 | | | | | RB Size=6, RB Offset=0 | 2 | 2 | 21.54 | 21.88 | 21.90 | | | | | | | | | | * | | | | | | | | Ave | e Tx Power (d) | Bm) | | | BW | Modulation | Resource Block Size& | Target | Meas | Low | Mid | High | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
699.5 MHz | Mid
Channel
707.0 MHz | High
Channel
714.5 MHz | | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | MPR
0 | MPR 0 | Low
Channel
699.5 MHz
23.51 | Mid
Channel
707.0 MHz
23.74 | High
Channel
714.5 MHz
23.19 | | | BW | Modulation | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 | 0
0 | 0
0 | Low
Channel
699.5 MHz
23.51
22.79 | Mid
Channel
707.0 MHz
23.74
23.11 | High
Channel
714.5 MHz
23.19
23.08 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | 0
0
0 | 0
0
0 | Low
Channel
699.5 MHz
23.51
22.79
22.85 | Mid Channel 707.0 MHz 23.74 23.11 23.42 | High
Channel
714.5 MHz
23.19
23.08
22.52 | | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 | 0
0
0
1
1 | 0
0
0
1
1 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28 | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74 | | | BW 3M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98
21.52 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 21.91 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74
21.42 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98
21.52
22.02 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 21.91 23.10 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74
21.42
22.16 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 | MPR 0 0 1 1 1 1 1 1 1 | MPR 0 0 1 1 1 1 1 1 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98
21.52
22.02
22.24 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 21.91 23.10 23.65 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74
21.42
22.16
21.81 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 | MPR 0 0 1 1 1 1 1 1 1 1 | MPR 0 0 1 1 1 1 1 1 1 1 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98
21.52
22.02
22.24
22.09 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 21.91 23.10 23.65 22.85 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74
21.42
22.16
21.81
21.54 | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | MPR 0 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98
21.52
22.02
22.24
22.09
21.46 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 21.91 23.10 23.65 22.85 21.60 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74
21.42
22.16
21.81
21.54
20.99 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7
RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=0 | MPR 0 0 1 1 1 1 1 1 2 2 | MPR 0 0 1 1 1 1 1 2 2 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98
21.52
22.02
22.24
22.09
21.46
21.20 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 21.91 23.65 22.85 21.60 21.13 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74
21.42
22.16
21.81
21.54
20.99
20.70 | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 RB Size=8, RB Offset=4 RB Size=8, RB Offset=4 RB Size=8, RB Offset=7 RB Size=15, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=7 RB Size=1, RB Offset=7 RB Size=1, RB Offset=14 RB Size=8, RB Offset=0 | MPR 0 0 0 1 1 1 1 1 1 2 | MPR 0 0 1 1 1 1 1 1 2 | Low
Channel
699.5 MHz
23.51
22.79
22.85
21.74
21.67
21.98
21.52
22.02
22.24
22.09
21.46 | Mid Channel 707.0 MHz 23.74 23.11 23.42 22.15 21.91 22.46 21.91 23.10 23.65 22.85 21.60 | High
Channel
714.5 MHz
23.19
23.08
22.52
21.59
21.28
21.74
21.42
22.16
21.81
21.54
20.99 | | Report No: RSZ160603015-20 SAR Evaluation Report 58 of 165 | | | | | | Ave | Tx Power (d) | Bm) | |------|------------------------|---|---------------|-------------|-------------------------|-------------------------|-------------------------| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | 700.5 MHz | 707.0 MHz | 713.5 MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 23.15 | 24.55 | 24.19 | | | | RB Size=1, RB Offset=12 | 0 | 0 | 22.91 | 23.22 | 22.57 | | | | RB Size=1, RB Offset=24 | 0 | 0 | 24.22 | 23.99 | 23.53 | | | QPSK | RB Size=12, RB Offset=0 | 1 | 1 | 22.23 | 23.11 | 23.36 | | | | RB Size=12, RB Offset=6 | 1 | 1 | 22.58 | 23.24 | 21.91 | | | | RB Size=12, RB Offset=11 | 1 | 1 | 22.89 | 22.92 | 22.77 | | 5M | | RB Size=25, RB Offset=0 | 1 | 1 | 22.84 | 23.36 | 22.23 | | 3101 | RB Size=1, RB Offset=0 | 1 | 1 | 23.82 | 23.35 | 23.76 | | | | | RB Size=1, RB Offset=12 | 1 | 1 | 23.09 | 22.94 | 22.07 | | | | RB Size=1, RB Offset=24 | 1 | 1 | 22.67 | 22.45 | 23.10 | | | 16QAM | RB Size=12, RB Offset=0 | 2 | 2 | 21.82 | 21.75 | 22.36 | | | | RB Size=12, RB Offset=6 | 2 | 2 | 21.86 | 21.35 | 22.06 | | | | RB Size=12, RB Offset=11 | 2 | 2 | 20.98 | 21.97 | 22.37 | | | | RB Size=25, RB Offset=0 | 2 | 2 | 21.49 | 22.18 | 22.31 | | | | | | | | Tx Power (d) | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | 703.0 MHz | 707.0MHz | 711MHz | | | | RB Size=1, RB Offset=0 | 0 | 0 | 24.31 | 24.43 | 24.54 | | | | RB Size=1, RB Offset=24 | 0 | 0 | 23.77 | 23.39 | 23.58 | | | | RB Size=1, RB Offset=49 | 0 | 0 | 24.09 | 22.55 | 23.22 | | | QPSK | RB Size=25, RB Offset=0 | 1 | 1 | 22.20 | 22.05 | 23.32 | | | | RB Size=25, RB Offset=12 | 1 | 1 | 22.96 | 22.49 | 23.27 | | | | RB Size=25, RB Offset=24 | 1 | 1 | 23.73 | 22.23 | 22.63 | | 10M | | RB Size=50, RB Offset=0 | 1 | 1 | 22.41 | 22.38 | 22.81 | | TOM | | | | | | | | | | | RB Size=1, RB Offset=0 | 1 | 1 | 22.46 | 23.23 | 22.86 | | | | RB Size=1, RB Offset=0
RB Size=1, RB Offset=24 | 1 | 1 | 22.46
22.43 | 23.23
21.34 | 22.86
22.36 | | | | <u> </u> | | | | | | | | 16QAM | RB Size=1, RB Offset=24 | 1 | 1 | 22.43 | 21.34 | 22.36 | | | 16QAM | RB Size=1, RB Offset=24
RB Size=1, RB Offset=49 | 1 1 | 1 | 22.43
22.87 | 21.34
22.21 | 22.36
21.94 | | | 16QAM | RB Size=1, RB Offset=24
RB Size=1, RB Offset=49
RB Size=25, RB Offset=0 | 1
1
2 | 1
1
2 | 22.43
22.87
21.31 | 21.34
22.21
22.44 | 22.36
21.94
22.13 | Report No: RSZ160603015-20 SAR Evaluation Report 59 of 165 #### LTE Band 17: | | | | | | Ave | Tx Power (d) | Ave Tx Power (dBm) | | | | |--------|------------------------|--|---|---|--|--|---|--|--|--| | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | | | | | | 706.5 MHz | 710 MHz | 713.5 MHz | | | | | | | RB Size=1, RB Offset=0 | 0 | 0 | 25.20 | 25.45 | 24.57 | | | | | | | RB Size=1, RB Offset=12 | 0 | 0 | 24.64 | 25.23 | 24.60 | | | | | | | RB Size=1, RB Offset=24 | 0 | 0 | 25.34 | 24.75 | 24.59 | | | | | | QPSK | RB Size=12, RB Offset=0 | 1 | 1 | 23.95 | 23.61 | 24.24 | | | | | | | RB Size=12, RB Offset=6 | 1 | 1 | 24.08 | 24.04 | 23.68 | | | | | | | RB Size=12, RB Offset=11 | 1 | 1 | 24.25 | 24.01 | 23.63 | | | | | 5M | | RB Size=25, RB Offset=0 | 1 | 1 | 23.66 | 24.32 | 24.20 | | | | | 3101 | | RB Size=1, RB Offset=0 | 1 | 1 | 23.95 | 24.20 | 24.03 | | | | | | | RB Size=1, RB Offset=12 | 1 | 1 | 23.84 | 24.63 | 24.16 | | | | | | | RB Size=1, RB Offset=24 | 1 | 1 | 23.93 | 24.13 | 23.98 | | | | | | 16QAM | RB Size=12, RB Offset=0 | 2 | 2 | 22.88 | 22.75 | 22.98 | | | | | | | RB Size=12, RB Offset=6 | 2 | 2 | 22.80 | 22.83 | 22.80 | | | | | | | RB Size=12, RB Offset=11 | 2 | 2 | 23.29 | 23.52 | 23.49 | | | | | | | RB Size=25, RB Offset=0 | 2 | 2 | 22.98 | 22.69 | 22.68 | Tx Power (d) | , | | | | | BW | Modulation | Resource Block Size& | Target | Meas | Low | Mid | High | | | | | BW | Modulation | Resource Block Size&
Resource Block Offset | Target
MPR | Meas
MPR | Low
Channel | Mid
Channel | High
Channel | | | | | BW | Modulation | Resource Block Offset | MPR | MPR | Low
Channel
709 MHz | Mid
Channel
710 MHz | High
Channel
711 MHz | | | | | BW | Modulation | Resource Block Offset RB Size=1, RB Offset=0 | | | Low
Channel | Mid
Channel
710 MHz
25.41 | High
Channel | | | | | BW | Modulation | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | MPR 0 | MPR 0 | Low
Channel
709 MHz
24.64 | Mid
Channel
710 MHz | High
Channel
711 MHz
25.31 | | | | | BW | Modulation QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 | 0
0 | 0
0 | Low
Channel
709 MHz
24.64
25.34 | Mid
Channel
710 MHz
25.41
24.45 | High
Channel
711 MHz
25.31
25.13 | | | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 | 0
0
0 | 0
0
0 | Low
Channel
709 MHz
24.64
25.34
24.84 | Mid
Channel
710 MHz
25.41
24.45
24.29 | High
Channel
711 MHz
25.31
25.13
25.28 | | | | | BW | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
0
1 | 0
0
0
1 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58 | Mid
Channel
710 MHz
25.41
24.45
24.29
24.49 | High
Channel
711 MHz
25.31
25.13
25.28
24.29 | | | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 | 0
0
0
1
1 | 0
0
0
1 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58
24.45 | Mid
Channel
710 MHz
25.41
24.45
24.29
24.49
24.08 | High
Channel
711 MHz
25.31
25.13
25.28
24.29
24.42 | | | | | BW 10M | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 | 0
0
0
1
1
1 | 0
0
0
1
1 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58
24.45
23.53 | Mid Channel 710 MHz 25.41 24.45 24.29 24.49 24.08 24.29 | High
Channel
711 MHz
25.31
25.13
25.28
24.29
24.42
24.09 | | | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 | 0
0
0
1
1
1 | 0
0
0
1
1
1 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58
24.45
23.53
24.39 | Mid
Channel
710 MHz
25.41
24.45
24.29
24.49
24.08
24.29
23.98 | High
Channel
711 MHz
25.31
25.13
25.28
24.29
24.42
24.09
23.70 | | | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 | 0
0
0
1
1
1
1 | 0
0
0
1
1
1
1 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58
24.45
23.53
24.39
23.58 | Mid Channel 710 MHz 25.41 24.45 24.29 24.49 24.08 24.29 23.98 23.54 | High
Channel
711 MHz
25.31
25.13
25.28
24.29
24.42
24.09
23.70
23.58 | | | | | | | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=0 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=25, RB Offset=0 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB
Size=1, RB Offset=24 | 0
0
0
1
1
1
1
1 | 0
0
0
1
1
1
1
1 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58
24.45
23.53
24.39
23.58
23.39 | Mid
Channel
710 MHz
25.41
24.45
24.29
24.49
24.08
24.29
23.98
23.54
23.37 | High
Channel
711 MHz
25.31
25.13
25.28
24.29
24.42
24.09
23.70
23.58
23.43 | | | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=24 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 | 0
0
0
1
1
1
1
1
1 | 0
0
0
1
1
1
1
1
1 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58
24.45
23.53
24.39
23.58
23.39
23.22 | Mid Channel 710 MHz 25.41 24.45 24.29 24.49 24.08 24.29 23.98 23.54 23.37 23.26 | High
Channel
711 MHz
25.31
25.13
25.28
24.29
24.42
24.09
23.70
23.58
23.43
23.45 | | | | | | QPSK | RB Size=1, RB Offset=0 RB Size=1, RB Offset=24 RB Size=1, RB Offset=49 RB Size=25, RB Offset=49 RB Size=25, RB Offset=12 RB Size=25, RB Offset=12 RB Size=25, RB Offset=24 RB Size=50, RB Offset=0 RB Size=1, RB Offset=0 RB Size=1, RB Offset=49 RB Size=25, RB Offset=49 RB Size=25, RB Offset=0 | 0
0
0
1
1
1
1
1
1
1
2 | 0
0
0
1
1
1
1
1
1
1
2 | Low
Channel
709 MHz
24.64
25.34
24.84
23.58
24.45
23.53
24.39
23.58
23.39
23.22
22.59 | Mid Channel 710 MHz 25.41 24.45 24.29 24.49 24.08 24.29 23.98 23.54 23.37 23.26 22.56 | High
Channel
711 MHz
25.31
25.13
25.28
24.29
24.42
24.09
23.70
23.58
23.43
23.45
22.63 | | | | Report No: RSZ160603015-20 #### Note: - $1.\,\mathrm{SAR}$ for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02. - 2. The CMW500 Wideband Radio Communication tester is used for LTE output power measurements and SAR testing. Closed loop power control is used to keep the radio transmitters the max output power during the test. - 3. KDB941225D05v02- SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg SAR Evaluation Report 60 of 165 ### **Bluetooth:** | Mada | Channel | Channel frequency | Conducted C | Output Power | |--------------|---------|-------------------|-------------|--------------| | Mode | No. | (MHz) | (dBm) | (mW) | | | 0 | 2402 | 2.07 | 1.611 | | BDR(GFSK) | 39 | 2441 | 3.14 | 2.061 | | | 78 | 2480 | 4.11 | 2.576 | | | 0 | 2402 | 1.23 | 1.327 | | EDR(4-DQPSK) | 39 | 2441 | 2.47 | 1.766 | | | 78 | 2480 | 3.28 | 2.128 | | | 0 | 2402 | 1.52 | 1.419 | | EDR(8-DPSK) | 39 | 2441 | 2.60 | 1.820 | | | 78 | 2480 | 3.56 | 2.270 | | | 0 | 2402 | -4.18 | 0.382 | | BLE | 19 | 2440 | -2.51 | 0.561 | | | 39 | 2480 | -1.75 | 0.668 | Report No: RSZ160603015-20 ### Wi-Fi: | Dand | Channel | Channel frequency | Conducted (| Output Power | |--------------|---------|-------------------|-------------|--------------| | Band | No. | (MHz) | (dBm) | (mW) | | | 1 | 2412 | 8.58 | 7.211 | | 802.11b | 6 | 2437 | 8.24 | 6.668 | | | 11 | 2462 | 9.04 | 8.017 | | | 1 | 2412 | 8.83 | 7.638 | | 802.11g | 6 | 2437 | 9.15 | 8.222 | | | 11 | 2462 | 8.90 | 7.762 | | | 1 | 2412 | 8.93 | 7.816 | | 802.11n HT20 | 6 | 2437 | 9.22 | 8.356 | | | 11 | 2462 | 9.40 | 8.710 | | | 1 | 2422 | 8.02 | 6.339 | | 802.11n HT40 | 4 | 2437 | 7.73 | 5.929 | | | 7 | 2452 | 7.94 | 6.223 | ### Note: 1. The output power was tested under data rate 1Mbps for 802.11b, 6Mbps for 802.11g, MCS0 for 802.11n HT20, MCS0 for 802.11n HT40. SAR Evaluation Report 61 of 165 ### SAR MEASUREMENT RESULTS This page summarizes the results of the performed dosimetric evaluation. ## **SAR Test Data** #### **Environmental Conditions** | Temperature: | 22-24 | |--------------------|----------------| | Relative Humidity: | 50-53 % | | ATM Pressure: | 1001-1002 mbar | Testing was performed by Terry XiaHou on 2016-06-04 #### **GSM 850:** | EUT | Emaguanav | Test | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |--------------------------|--------------------|------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | Frequency
(MHz) | Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 824.2 | GSM | -0.155 | 33.77 | 33.80 | 1.007 | 0.237 | 0.239 | / | | Left Head Cheek | 836.6 | GSM | -0.037 | 33.64 | 33.70 | 1.014 | 0.276 | 0.280 | 1# | | | 848.8 | GSM | -0.038 | 33.16 | 33.20 | 1.009 | 0.243 | 0.245 | / | | | 824.2 | GSM | / | / | / | / | | / | / | | Left Head Tilt | 836.6 | GSM | -0.062 | 33.64 | 33.70 | 1.014 | 0.163 | 0.165 | / | | | 848.8 | GSM | / | / | / | / | | / | / | | | 824.2 | GSM | / | / | / | / | | / | / | | Right Head Cheek | 836.6 | GSM | -0.087 | 33.64 | 33.70 | 1.014 | 0.233 | 0.236 | / | | | 848.8 | GSM | / | / | / | / | | / | / | | | 824.2 | GSM | / | / | / | / | | / | / | | Right Head Tilt | 836.6 | GSM | 0.156 | 33.64 | 33.70 | 1.014 | 0.145 | 0.147 | / | | | 848.8 | GSM | / | / | / | / | / | / | / | | | 824.2 | GSM | / | / | / | / | / | / | / | | Body-Back-Headset (10mm) | 836.6 | GSM | 0.135 | 33.64 | 33.70 | 1.014 | 0.117 | 0.119 | / | | (') | 848.8 | GSM | / | / | / | / | / | / | / | Report No: RSZ160603015-20 #### Note: - 1 .When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. According to IEEE 1528-2013, the middle channel is required to be tested first. - 4. KDB 447498D01- When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. - 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tole rance limit according to the power applied to the individual channels tested to determine compliance. SAR Evaluation Report 62 of 165 #### **PCS Band:** | EUT | Frequency | Test | Power | Max.
Meas. | Max.
Rated |] | lg SAR (V | V/Kg) | | |--------------------------|-----------|------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1850.2 | GSM | -0.021 | 30.21 | 30.30 | 1.021 | 0.253 | 0.258 | / | | Left Head Cheek | 1880.0 | GSM | 0.062 | 30.53 | 30.60 | 1.016 | 0.275 | 0.279 | 2# | | | 1909.8 | GSM | -0.080 | 30.65 | 30.70 | 1.012 | 0.235 | 0.238 | / | | | 1850.2 | GSM | / | / | / | / | / | / | / | | Left Head Tilt | 1880.0 | GSM | 0.081 | 30.53 | 30.60 | 1.016 | 0.152 | 0.154 | / | | | 1909.8 | GSM | / | / | / | / | / | / | / | | | 1850.2 | GSM | / | / | / | / | / | / | / | | Right Head Cheek | 1880.0 | GSM | 0.155 | 30.53 | 30.60 | 1.016 | 0.238 | 0.242 | / | | | 1909.8 | GSM | / | / | / | / | / | / | / | | | 1850.2 | GSM | / | / | / | / | / | / | / | | Right Head Tilt | 1880.0 | GSM | -0.054 | 30.53 | 30.60 | 1.016 | 0.129 | 0.131 | / | | | 1909.8 | GSM | / | / | / | / | / | / | / | | | 1850.2 | GSM | / | / | / | / | / | / | / | | Body-Back-Headset (10mm) | 1880 | GSM | 0.158 | 30.53 | 30.60 | 1.016 | 0.327 | 0.332 | / | | , | 1909.8 | GSM | _/ | / | / | / | / | / | / | Report No: RSZ160603015-20 #### Note: - 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. According to IEEE 1528-2013, the middle channel is required to be tested first. - 4. KDB 447498D01- When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. - 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tole rance limit according to the power applied to the individual channels tested to determine compliance. SAR Evaluation Report 63 of 165 ## **WCDMA 850:** | EUT | Frequency | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |---------------------|-----------|-----------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 826.4 | RMC | -0.011 | 22.74 | 22.90 | 1.038 | 0.134 | 0.139 | / | | Left Head
Cheek | 836.6 | RMC | 0.156 | 22.86 | 22.90 | 1.009 | 0.15 | 0.151 | 3# | | | 846.6 | RMC | 0.145 | 22.89 | 22.90 | 1.002 | 0.129 | 0.129 | / | | | 826.4 | RMC | / | / | / | / | / | / | / | | Left Head Tilt | 836.6 | RMC | 0.159 | 22.86 | 22.90 | 1.009 | 0.098 | 0.099 | / | | | 846.6 | RMC | / | / | / | / | / | / | / | | | 826.4 | RMC | / | / | / | / | / | / | / | | Right Head
Cheek | 836.6 | RMC | 0.035 | 22.86 | 22.90 | 1.009 | 0.123 | 0.124 | / | | | 846.6 | RMC | / | / | / | / | / | / | / | | | 826.4 | RMC | / | / | / | / | / | / | / | | Right Head
Tilt | 836.6 | RMC | 0.016 | 22.86 | 22.90 | 1.009 | 0.057 | 0.058 | / | | | 846.6 | RMC | / | / | / | / | / | / | / | Report No: RSZ160603015-20 ## **WCDMA 1700:** | EUT | Frequency | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |---------------------|-----------|-----------|---------------|---------------|---------------|------------------|--------------
---------------|------| | Position | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1712.4 | RMC | -0.204 | 22.27 | 22.30 | 1.007 | 0.31 | 0.312 | / | | Left Head
Cheek | 1732.6 | RMC | -0.078 | 22.69 | 22.70 | 1.002 | 0.327 | 0.328 | 4# | | | 1752.6 | RMC | 0.208 | 22.95 | 23.00 | 1.012 | 0.302 | 0.305 | / | | | 1712.4 | RMC | / | / | / | / | / | / | / | | Left Head Tilt | 1732.6 | RMC | 0.190 | 22.69 | 22.70 | 1.002 | 0.221 | 0.222 | / | | | 1752.6 | RMC | / | / | / | / | / | / | / | | | 1712.4 | RMC | / | / | / | / | / | / | / | | Right Head
Cheek | 1732.6 | RMC | -0.096 | 22.69 | 22.70 | 1.002 | 0.318 | 0.319 | / | | | 1752.6 | RMC | / | / | / | / | / | / | / | | | 1712.4 | RMC | / | / | / | / | / | / | / | | Right Head
Tilt | 1732.6 | RMC | 0.182 | 22.69 | 22.70 | 1.002 | 0.089 | 0.089 | / | | | 1752.6 | RMC | / | / | / | / | / | / | / | SAR Evaluation Report 64 of 165 #### **WCDMA1900:** | EUT | Frequency | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (V | V/Kg) | | |------------------|-----------|-----------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1852.4 | RMC | -0.104 | 22.27 | 22.30 | 1.007 | 0.71 | 0.715 | / | | Left Head Cheek | 1880.0 | RMC | 0.085 | 22.62 | 22.70 | 1.019 | 0.726 | 0.739 | 5# | | | 1907.6 | RMC | -0.203 | 22.81 | 22.90 | 1.021 | 0.687 | 0.701 | / | | | 1852.4 | RMC | / | / | / | / | / | / | / | | Left Head Tilt | 1880.0 | RMC | 0.088 | 22.62 | 22.70 | 1.019 | 0.552 | 0.562 | / | | | 1907.6 | RMC | / | / | / | / | / | / | / | | | 1852.4 | RMC | / | / | / | / | / | / | / | | Right Head Cheek | 1880.0 | RMC | 0.002 | 22.62 | 22.70 | 1.019 | 0.638 | 0.650 | / | | | 1907.6 | RMC | / | / | / | / | / | / | / | | | 1852.4 | RMC | / | / | / | / | / | / | / | | Right Head Tilt | 1880.0 | RMC | -0.018 | 22.62 | 22.70 | 1.019 | 0.227 | 0.231 | / | | | 1907.6 | RMC | / | / | / | / | / | / | / | Report No: RSZ160603015-20 ### Note: - 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. According to IEEE 1528-2013, the middle channel is required to be tested first. - 4. KDB 447498D01- When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used. - 5. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model. - 6. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. SAR Evaluation Report 65 of 165 ## LTE Band 2: | EUT | Fraguenes | Bandwith | | Power | Max.
Meas. | Max.
Rated | 1 | lg SAR (V | W/Kg) | | |---------------|--------------------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | Frequency
(MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1860 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Left Head | 1880 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Cheek | 1900 | 20 | 1RB, Offset=49 | -0.077 | 24.36 | 24.40 | 1.009 | 0.586 | 0.591 | 6# | | | 1860 | 20 | 50%RB, Offset=49 | -0.026 | 23.19 | 24.40 | 1.321 | 0.437 | 0.577 | / | | | 1860 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Left Head | 1880 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Tilt | 1900 | 20 | 1RB, Offset=49 | -0.039 | 24.36 | 24.40 | 1.009 | 0.332 | 0.335 | / | | | 1860 | 20 | 50%RB, Offset=49 | -0.192 | 23.19 | 24.40 | 1.321 | 0.307 | 0.406 | / | | | 1860 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Right | 1880 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Head
Cheek | 1900 | 20 | 1RB, Offset=49 | -0.063 | 24.36 | 24.40 | 1.009 | 0.517 | 0.522 | / | | | 1860 | 20 | 50%RB, Offset=49 | -0.036 | 23.19 | 24.40 | 1.321 | 0.423 | 0.559 | / | | | 1860 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Right | 1880 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Head Tilt | 1900 | 20 | 1RB, Offset=49 | 0.130 | 24.36 | 24.40 | 1.009 | 0.335 | 0.338 | / | | | 1860 | 20 | 50%RB, Offset=49 | -0.086 | 23.19 | 24.40 | 1.321 | 0.332 | 0.439 | / | Report No: RSZ160603015-20 ## LTE Band 4: | EUT | Frequency | Randwith | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (V | W/Kg) | | |---------------|-----------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1720 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Left Head | 1732.5 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Cheek | 1745 | 20 | 1RB, Offset=0 | -0.013 | 24.01 | 24.10 | 1.021 | 0.366 | 0.374 | 7# | | | 1745 | 20 | 50%RB, Offset=0 | -0.048 | 22.95 | 24.10 | 1.303 | 0.255 | 0.332 | / | | | 1720 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Left Head | 1732.5 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Tilt | 1745 | 20 | 1RB, Offset=49 | 0.098 | 24.01 | 24.10 | 1.021 | 0.214 | 0.218 | / | | | 1745 | 20 | 50%RB, Offset=49 | 0.068 | 22.95 | 24.10 | 1.303 | 0.220 | 0.287 | | | | 1720 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Right | 1732.5 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Head
Cheek | 1745 | 20 | 1RB, Offset=49 | 0.160 | 24.01 | 24.10 | 1.021 | 0.317 | 0.324 | / | | | 1745 | 20 | 50%RB, Offset=49 | -0.060 | 22.95 | 24.10 | 1.303 | 0.238 | 0.310 | / | | | 1720 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Right | 1732.5 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Head Tilt | 1745 | 20 | 1RB, Offset=49 | -0.035 | 24.01 | 24.10 | 1.021 | 0.203 | 0.207 | / | | | 1745 | 20 | 50%RB, Offset=49 | -0.043 | 22.95 | 24.10 | 1.303 | 0.200 | 0.261 | / | SAR Evaluation Report 66 of 165 ## LTE Band 7: | EUT | Frequency | Randwith | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (V | V/Kg) | | |------------|-----------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Left Head | 2535 | 20 | 1RB, Offset=99 | -0.155 | 24.31 | 24.50 | 1.045 | 0.119 | 0.124 | 8# | | Cheek | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | -0.089 | 23.30 | 24.50 | 1.318 | 0.091 | 0.120 | / | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Left Head | 2535 | 20 | 1RB, Offset=99 | 0.110 | 24.31 | 24.50 | 1.045 | 0.064 | 0.067 | / | | Tilt | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | 0.108 | 23.30 | 24.50 | 1.318 | 0.067 | 0.088 | / | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Right Head | 2535 | 20 | 1RB, Offset=99 | -0.141 | 24.31 | 24.50 | 1.045 | 0.103 | 0.108 | / | | Cheek | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | -0.166 | 23.30 | 24.50 | 1.318 | 0.075 | 0.099 | / | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Right Head | 2535 | 20 | 1RB, Offset=99 | 0.036 | 24.31 | 24.50 | 1.045 | 0.038 | 0.040 | / | | Tilt | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | -0.161 | 23.30 | 24.50 | 1.318 | 0.037 | 0.049 | / | Report No: RSZ160603015-20 # LTE Band 12: | EUT | Engguener | Dandwith | | Power | Max.
Meas. | Max.
Rated | 1 | lg SAR (V | V/Kg) | | |------------|--------------------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | Frequency
(MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 703.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Left Head | 707.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Cheek | 711.0 | 10 | 1RB, Offset=0 | 0.057 | 24.54 | 24.60 | 1.014 | 0.085 | 0.086 | 9# | | | 703 | 10 | 50%RB, Offset=24 | -0.060 | 23.73 | 24.60 | 1.222 | 0.067 | 0.082 | / | | | 703.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Left Head | 707.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Tilt | 711.0 | 10 | 1RB, Offset=0 | 0.162 | 24.54 | 24.60 | 1.014 | 0.051 | 0.052 | / | | | 703 | 10 | 50%RB, Offset=24 | -0.055 | 23.73 | 24.60 | 1.222 | 0.053 | 0.065 | / | | | 703.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Right Head | 707.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Cheek | 711.0 | 10 | 1RB, Offset=0 | -0.016 | 24.54 | 24.60 | 1.014 | 0.083 | 0.084 | / | | | 703 | 10 | 50%RB, Offset=24 | -0.101 | 23.73 | 24.60 | 1.222 | 0.068 | 0.083 | / | | | 703.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Right Head | 707.0 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Tilt | 711.0 | 10 | 1RB, Offset=0 | 0.188 | 24.54 | 24.60 | 1.014 | 0.02 | 0.020 | / | | | 703 | 10 | 50%RB, Offset=24 | -0.030 | 23.73 | 24.60 | 1.222 | 0.035 | 0.043 | / | SAR Evaluation Report 67 of 165 #### LTE Band 17: | EUT | Frequency | Randwith | | Power | Max.
Meas.
 Max.
Rated | | 1g SAR (V | W/Kg) | | |------------|-----------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Left Head | 710 | 10 | 1RB, Offset=24 | -0.059 | 25.41 | 25.50 | 1.021 | 0.100 | 0.102 | 10# | | Cheek | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | 0.190 | 24.49 | 25.50 | 1.262 | 0.078 | 0.098 | / | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Left Head | 710 | 10 | 1RB, Offset=24 | 0.130 | 25.41 | 25.50 | 1.021 | 0.052 | 0.053 | / | | Tilt | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | 0.008 | 24.49 | 25.50 | 1.262 | 0.047 | 0.059 | / | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Right Head | 710 | 10 | 1RB, Offset=24 | -0.007 | 25.41 | 25.50 | 1.021 | 0.087 | 0.089 | / | | Cheek | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | -0.092 | 24.49 | 25.50 | 1.262 | 0.072 | 0.091 | / | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Right Head | 710 | 10 | 1RB, Offset=24 | -0.171 | 25.41 | 25.50 | 1.021 | 0.054 | 0.055 | / | | Tilt | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | 0.099 | 24.49 | 25.50 | 1.262 | 0.053 | 0.067 | / | Report No: RSZ160603015-20 #### Note: - 1. When the 1-g SAR is ≤ 0.8 W/Kg, testing for other channels are optional. - 2. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02. - 3. KDB941225D05- SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg - 4. KDB941225D05- For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional. - 5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤0.8 W/kg. - 6. KDB941225D05- Start with the largest channel bandwidth (20M) and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel. 7. Worst case SAR for 50% RB allocation is selected to be tested. SAR Evaluation Report 68 of 165 ### **Mobile Hot-Spot Test Result** The DUT is capable of functioning as a Wi-Fi to Cellular Mobile hotspot. Additional SAR testing was performed according to KDB 941225 D06. Testing was performed with a separation of 1cm between the DUT and the flat phantom. The DUT was positioned for SAR tests with the front and back surfaces facing the phantom, and also with the edges facing the phantom in which the transmitting antenna is <2.5 cm from the edge. Each transmit band was utilized for SAR testing. The tested mode has been selected within each band that exhibits the highest time average output power. Report No: RSZ160603015-20 ### Hot spot-GPRS (Frequency Band: 835) | EUT | Fraguency | Test | Power | Max.
Meas. | Max.
Rated | | 1g SAR (W | /Kg) | | |--------------------|--------------------|------|---------------|---------------|---------------|------------------|-----------|---------------|------| | Position | Frequency
(MHz) | Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas. SAR | Scaled
SAR | Plot | | | 824.2 | GPRS | 0.089 | 32.75 | 32.80 | 1.012 | 0.413 | 0.418 | / | | Body-Back (10mm) | 836.6 | GPRS | -0.027 | 32.74 | 32.80 | 1.014 | 0.475 | 0.482 | 11# | | | 848.8 | GPRS | -0.135 | 31.96 | 32.00 | 1.009 | 0.422 | 0.426 | / | | D 1 I 0 | 824.2 | GPRS | / | / | / | / | / | / | / | | Body-Left (10mm) | 836.6 | GPRS | 0.181 | 32.74 | 32.80 | 1.014 | 0.224 | 0.227 | / | | (1011111) | 848.8 | GPRS | / | / | / | / | / | / | / | | D - 4 - D:-14 | 824.2 | GPRS | / | / | / | / | / | / | / | | Body-Right (10mm) | 836.6 | GPRS | -0.134 | 32.74 | 32.80 | 1.014 | 0.124 | 0.126 | / | | (= v====) | 848.8 | GPRS | / | / | / | / | / | / | / | | D 1 D # | 824.2 | GPRS | / | / | / | / | / | / | / | | Body-Bottom (10mm) | 836.6 | GPRS | -0.070 | 32.74 | 32.80 | 1.014 | 0.308 | 0.312 | / | | () | 848.8 | GPRS | / | / | | / | / | / | / | #### Note: - 1 .When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. According to IEEE 1528-2013, the middle channel is required to be tested first. - 4. KDB 447498D01- When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. - 5. The EUT is a Capability Class B Mobile Phone which can be attached to both GPRS and GSM services. - 6. The Multi-slot Classes of EUT is Class12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 3DL+2UL is the worst case. - 7. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. SAR Evaluation Report 69 of 165 ### Hot spot-GPRS (Frequency Band: 1900) | EUT | Frequency | Test | Power | Max.
Meas. | Max.
Rated | | 1g SAR (V | V/Kg) | | |--------------------|-----------|------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1850.2 | GPRS | 0.029 | 28.25 | 28.30 | 1.012 | 0.770 | 0.779 | 12# | | Body-Back (10mm) | 1880.0 | GPRS | -0.085 | 27.4 | 27.50 | 1.023 | 0.671 | 0.687 | / | | (1011111) | 1909.8 | GPRS | -0.091 | 27.37 | 27.40 | 1.007 | 0.630 | 0.634 | / | | Dod. Loft | 1850.2 | GPRS | -0.038 | 28.25 | 28.30 | 1.012 | 0.443 | 0.448 | / | | Body-Left (10mm) | 1880.0 | GPRS | / | / | / | / | / | / | / | | (1011111) | 1909.8 | GPRS | / | / | / | / | / | / | / | | Body-Right | 1850.2 | GPRS | -0.141 | 28.25 | 28.30 | 1.012 | 0.327 | 0.331 | / | | (10mm) | 1880.0 | GPRS | / | / | / | / | / | / | / | | (1011111) | 1909.8 | GPRS | / | / | / | / | / | / | / | | Dady Dattom | 1850.2 | GPRS | 0.066 | 28.25 | 28.30 | 1.012 | 0.323 | 0.327 | / | | Body-Bottom (10mm) | 1880.0 | GPRS | / | / | / | / | / | / | / | | (1011111) | 1909.8 | GPRS | / | / | / | / | / | / | / | Report No: RSZ160603015-20 #### Note: - 1 .When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. According to IEEE 1528-2013, the middle channel is required to be tested first. - 4. KDB 447498D01- When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used. - 5. The EUT is a Capability Class B Mobile Phone which can be attached to both GPRS and GSM services. - 6. The Multi-slot Classes of EUT is Class12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 2DL+3UL is the worst case. - 7. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. ### **Hot Spot-WCDMA850** | EUT | Fraguency | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |---------------------|--------------------|-----------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | Frequency
(MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 826.4 | RMC | -0.051 | 22.74 | 22.9 | 1.038 | 0.142 | 0.147 | / | | Body-Back
(10mm) | 836.6 | RMC | -0.027 | 22.86 | 22.9 | 1.009 | 0.165 | 0.167 | 13# | | (1011111) | 846.6 | RMC | -0.195 | 22.89 | 22.9 | 1.002 | 0.139 | 0.139 | / | | Dody Loft | 826.4 | RMC | / | / | / | / | / | / | / | | Body-Left (10mm) | 836.6 | RMC | 0.129 | 22.86 | 22.9 | 1.009 | 0.078 | 0.079 | / | | (1011111) | 846.6 | RMC | / | / | / | / | / | / | / | | Body-Right | 826.4 | RMC | / | / | / | / | / | / | / | | (10mm) | 836.6 | RMC | 0.117 | 22.86 | 22.9 | 1.009 | 0.068 | 0.069 | / | | (101111) | 846.6 | RMC | / | / | / | / | / | / | / | | Dady Dattom | 826.4 | RMC | / | / | / | / | / | / | / | | Body-Bottom (10mm) | 836.6 | RMC | -0.073 | 22.86 | 22.9 | 1.009 | 0.079 | 0.080 | / | | (1011111) | 846.6 | RMC | / | / | / | / | / | / | / | SAR Evaluation Report 70 of 165 ### Hot Spot-WCDMA 1700 Band | EUT | Frequency | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |--------------------|-----------|-----------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1712.4 | RMC | 0.165 | 22.27 | 22.3 | 1.007 | 0.505 | 0.509 | / | | Body-Back (10mm) | 1732.6 | RMC | -0.053 | 22.69 |
22.7 | 1.002 | 0.549 | 0.550 | 14# | | (1011111) | 1752.6 | RMC | 0.012 | 22.95 | 23 | 1.012 | 0.473 | 0.478 | / | | | 1712.4 | RMC | / | / | / | / | / | / | / | | Body-Left (10mm) | 1732.6 | RMC | 0.017 | 22.69 | 22.7 | 1.002 | 0.387 | 0.388 | / | | (1011111) | 1752.6 | RMC | / | / | / | / | / | / | / | | D 1 D: 1 | 1712.4 | RMC | / | / | / | / | / | / | / | | Body-Right (10mm) | 1732.6 | RMC | -0.068 | 22.69 | 22.7 | 1.002 | 0.223 | 0.224 | / | | (1011111) | 1752.6 | RMC | / | / | / | / | / | / | / | | | 1712.4 | RMC | / | / | / | / | / | / | / | | Body-Bottom (10mm) | 1732.6 | RMC | -0.020 | 22.69 | 22.7 | 1.002 | 0.355 | 0.356 | / | | (1011111) | 1752.6 | RMC | / | / | / | / | / | / | / | Report No: RSZ160603015-20 ### **Hot Spot-WCDMA1900** | EUT | Emaguanay | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |--------------------|--------------------|-----------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | Frequency
(MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1852.4 | RMC | 0.030 | 22.27 | 22.3 | 1.007 | 0.827 | 0.833 | / | | Body-Back (10mm) | 1880.0 | RMC | 0.071 | 22.62 | 22.7 | 1.019 | 0.918 | 0.935 | 15# | | (1011111) | 1907.6 | RMC | -0.007 | 22.81 | 22.9 | 1.021 | 0.839 | 0.857 | / | | D. I. I. O. | 1852.4 | RMC | / | / | / | / | / | / | / | | Body-Left (10mm) | 1880.0 | RMC | 0.048 | 22.62 | 22.7 | 1.019 | 0.559 | 0.569 | / | | (1011111) | 1907.6 | RMC | / | / | / | / | / | / | / | | D I D' I | 1852.4 | RMC | / | / | / | / | / | / | / | | Body-Right (10mm) | 1880.0 | RMC | -0.001 | 22.62 | 22.7 | 1.019 | 0.459 | 0.468 | / | | (1011111) | 1907.6 | RMC | / | / | / | / | / | / | / | | D 1 D " | 1852.4 | RMC | / | / | / | / | / | / | / | | Body-Bottom (10mm) | 1880.0 | RMC | 0.142 | 22.62 | 22.7 | 1.019 | 0.324 | 0.330 | / | | (1011111) | 1907.6 | RMC | / | / | / | / | / | / | / | #### Note: - 1. When the 1-g SAR is 0.8W/Kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. According to IEEE 1528-2013, the middle channel is required to be tested first. - 4. KDB 447498D01- When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used. - 5. The default test configuration is to measure SA R with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model. SAR Evaluation Report 71 of 165 6. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. ## **Hot Spot-LTE Band 2** | EUT | Frequency | Randwith | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |-------------|-----------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 1860 | 20 | 1RB, Offset=49 | -0.094 | 24.11 | 24.4 | 1.069 | 0.897 | 0.959 | / | | Body-Back | 1880 | 20 | 1RB, Offset=49 | 0.008 | 23.42 | 24.4 | 1.253 | 0.723 | 0.906 | / | | (10mm) | 1900 | 20 | 1RB, Offset=49 | -0.075 | 24.36 | 24.4 | 1.009 | 0.955 | 0.964 | 16# | | | 1860 | 20 | 50%RB, Offset=49 | -0.131 | 23.19 | 24.4 | 1.321 | 0.602 | 0.795 | / | | | 1860 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Body-Left | 1880 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | (10mm) | 1900 | 20 | 1RB, Offset=49 | 0.051 | 24.36 | 24.4 | 1.009 | 0.521 | 0.526 | / | | | 1860 | 20 | 50%RB, Offset=49 | 0.075 | 23.19 | 24.4 | 1.321 | 0.402 | 0.531 | / | | | 1860 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Body-Right | 1880 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | (10mm) | 1900 | 20 | 1RB, Offset=49 | -0.061 | 24.36 | 24.4 | 1.009 | 0.563 | 0.568 | / | | | 1860 | 20 | 50%RB, Offset=49 | -0.010 | 23.19 | 24.4 | 1.321 | 0.52 | 0.687 | / | | | 1860 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | Body-Bottom | 1880 | 20 | 1RB, Offset=49 | / | / | / | / | / | / | / | | (10mm) | 1900 | 20 | 1RB, Offset=49 | 0.000 | 24.36 | 24.4 | 1.009 | 0.627 | 0.633 | / | | | 1860 | 20 | 50%RB, Offset=49 | 0.207 | 23.19 | 24.4 | 1.321 | 0.621 | 0.821 | / | ## **Hot Spot-LTE Band 4** | EUT
Position | Frequency
(MHz) | Bandwith (MHz) | Test Mode | Power
Drift
(dB) | Max.
Meas.
Power
(dBm) | Max.
Rated
Power
(dBm) | 1g SAR (W/Kg) | | | | |-----------------------|--------------------|----------------|-----------------|------------------------|---------------------------------|---------------------------------|------------------|--------------|---------------|------| | | | | | | | | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | Body-Back
(10mm) | 1720 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1732.5 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1745 | 20 | 1RB, Offset=0 | 0.072 | 24.01 | 24.1 | 1.021 | 0.752 | 0.768 | 17# | | | 1745 | 20 | 50%RB, Offset=0 | 0.197 | 22.95 | 24.1 | 1.303 | 0.557 | 0.726 | / | | Body-Left
(10mm) | 1720 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1732.5 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1745 | 20 | 1RB, Offset=0 | 0.195 | 24.01 | 24.1 | 1.021 | 0.438 | 0.447 | / | | | 1745 | 20 | 50%RB, Offset=0 | -0.046 | 22.95 | 24.1 | 1.303 | 0.441 | 0.575 | / | | Body-Right (10mm) | 1720 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1732.5 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1745 | 20 | 1RB, Offset=0 | -0.128 | 24.01 | 24.1 | 1.021 | 0.338 | 0.345 | / | | | 1745 | 20 | 50%RB, Offset=0 | -0.121 | 22.95 | 24.1 | 1.303 | 0.32 | 0.417 | / | | Body-Bottom
(10mm) | 1720 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1732.5 | 20 | 1RB, Offset=0 | / | / | / | / | / | / | / | | | 1745 | 20 | 1RB, Offset=0 | -0.150 | 24.01 | 24.1 | 1.021 | 0.422 | 0.431 | / | | | 1745 | 20 | 50%RB, Offset=0 | 0.123 | 22.95 | 24.1 | 1.303 | 0.441 | 0.575 | / | SAR Evaluation Report 72 of 165 # **Hot Spot-LTE Band 7** | EUT | Fraguency | Bandwith | | Power | Max.
Meas. | Max.
Rated | | 1g SAR (| W/Kg) | | |-------------|--------------------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | Frequency
(MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Body-Back | 2535 | 20 | 1RB, Offset=99 | 0.127 | 24.31 | 24.5 | 1.045 | 0.534 | 0.558 | 18# | | (10mm) | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | -0.205 | 23.3 | 24.5 | 1.318 | 0.401 | 0.529 | / | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Body-Left | 2535 | 20 | 1RB, Offset=99 | -0.182 | 24.31 | 24.5 | 1.045 | 0.332 | 0.347 | / | | (10mm) 25 | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | 0.168 | 23.3 | 24.5 | 1.318 | 0.257 | 0.339 | / | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Body-Right | 2535 | 20 | 1RB, Offset=99 | 0.119 | 24.31 | 24.5 | 1.045 | 0.227 | 0.237 | / | | (10mm) | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | 0.190 | 23.3 | 24.5 | 1.318 | 0.215 | 0.283 | / | | | 2510 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | Body-Bottom | 2535 | 20 | 1RB, Offset=99 | -0.062 | 24.31 | 24.5 | 1.045 | 0.32 | 0.334 | / | | (10mm) | 2560 | 20 | 1RB, Offset=99 | / | / | / | / | / | / | / | | | 2535 | 20 | 50%RB, Offset=49 | -0.024 | 23.3 | 24.5 | 1.318 | 0.331 | 0.436 | / | Report No: RSZ160603015-20 # **Hot Spot-LTE Band 12** | EUT | Frequency | Bandwith | | Power | Max.
Meas. | Max.
Rated | 1 | lg SAR (| W/Kg) | | |-------------|-----------|----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 703 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Body-Back | 707 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | (10mm) | 711 | 10 | 1RB, Offset=0 | -0.018 | 24.54 | 24.6 | 1.014 | 0.207 | 0.210 | 19# | | | 703 | 10 | 50%RB, Offset=24 | -0.039 | 23.73 | 24.6 | 1.222 | 0.166 | 0.203 | / | | | 703 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Body-Left | 707 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | (10mm) | 711 | 10 | 1RB, Offset=0 | 0.194 | 24.54 | 24.6 | 1.014 | 0.121 | 0.123 | / | | | 703 | 10 | 50%RB, Offset=24 | 0.058 | 23.73 | 24.6 | 1.222 | 0.115 | 0.141 | / | | | 703 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Body-Right | 707 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | (10mm) | 711 | 10 | 1RB, Offset=0 | 0.094 | 24.54 | 24.6 | 1.014 | 0.067 | 0.068 | / | | | 703 | 10 | 50%RB, Offset=24 | 0.187 | 23.73 | 24.6 | 1.222 | 0.072 | 0.088 | / | | | 703 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | Body-Bottom | 707 | 10 | 1RB, Offset=0 | / | / | / | / | / | / | / | | (10mm) | 711 | 10 | 1RB, Offset=0 | 0.054 | 24.54 | 24.6 | 1.014 | 0.082 | 0.083 | / | | | 703 | 10 | 50%RB, Offset=24 | 0.141 | 23.73 | 24.6 | 1.222 | 0.08 | 0.098 | / | SAR Evaluation Report 73 of 165 #### **Hot Spot-LTE Band 17** | EUT | Frequency | Bandwith | | Power | Max.
Meas. | Max.
Rated | | lg SAR (| W/Kg) | | |-------------|-----------
----------|------------------|---------------|---------------|---------------|------------------|--------------|---------------|------| | Position | (MHz) | (MHz) | Test Mode | Drift
(dB) | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Plot | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Body-Back | 710 | 10 | 1RB, Offset=24 | -0.053 | 25.41 | 25.50 | 1.021 | 0.209 | 0.213 | 20# | | (10mm) | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | 0.208 | 24.49 | 25.50 | 1.262 | 0.157 | 0.198 | / | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Body-Left | 710 | 10 | 1RB, Offset=24 | -0.205 | 25.41 | 25.50 | 1.021 | 0.122 | 0.125 | / | | (10mm) | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | 0.047 | 24.49 | 25.50 | 1.262 | 0.123 | 0.155 | / | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Body-Right | 710 | 10 | 1RB, Offset=24 | -0.074 | 25.41 | 25.50 | 1.021 | 0.087 | 0.089 | / | | (10mm) | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | -0.128 | 24.49 | 25.50 | 1.262 | 0.075 | 0.095 | / | | | 709 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | Body-Bottom | 710 | 10 | 1RB, Offset=24 | -0.180 | 25.41 | 25.50 | 1.021 | 0.077 | 0.079 | / | | (10mm) | 711 | 10 | 1RB, Offset=24 | / | / | / | / | / | / | / | | | 710 | 10 | 50%RB, Offset=24 | 0.191 | 24.49 | 25.50 | 1.262 | 0.075 | 0.095 | / | Report No: RSZ160603015-20 #### Note: - 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. - 2. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02. - 3. KDB941225D05- SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg - 4. KDB941225D05- For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional. - 5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. - 6. KDB941225D05- Start with the largest channel bandwidth (20M) and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel. 7. Worst case SAR for 50% RB allocation is selected to be tested. SAR Evaluation Report 74 of 165 # SAR SIMULTANEOUS TRANSMISSION DESCRIPTION Report No: RSZ160603015-20 # **Simultaneous Transmission:** | Description of Simultaneo | Description of Simultaneous Transmit Capabilities | | | | | | |---------------------------|---|--------------|------------------------|--|--|--| | Transmitter Combination | Simultaneous? | Hotspot? | Antennas Distance (mm) | | | | | GSM + WCDMA | × | × | 0 | | | | | GSM + LTE | × | × | 0 | | | | | GSM + Bluetooth | $\sqrt{}$ | × | 100 | | | | | GSM + Wi-Fi | √ | \checkmark | 100 | | | | | WCDMA + LTE | × | × | 0 | | | | | WCDMA + Bluetooth | √ | × | 100 | | | | | WCDMA + Wi-Fi | $\sqrt{}$ | \checkmark | 100 | | | | | LTE+ Bluetooth | √ | × | 100 | | | | | LTE+ Wi-Fi | √
√ | 1 | 100 | | | | # Standalone SAR test exclusion considerations | Mode | Frequency
(GHz) | Test
Position | P _{avg} (dBm) | P _{avg}
(mW) | Distance (mm) | Calculated value | Threshold (1-g) | SAR Test
Exclusion | |-----------|--------------------|------------------|------------------------|--------------------------|---------------|------------------|-----------------|-----------------------| | Bluetooth | 2.480 | Head | 4.20 | 2.630 | 0 | 0.8 | 3.0 | Yes | | Bluetooth | 2.480 | Body | 4.20 | 2.630 | 10 | 0.4 | 3.0 | Yes | | Wi-Fi | 2.462 | Head | 9.50 | 8.913 | 0 | 2.8 | 3.0 | Yes | | Wi-Fi | 2.462 | Body | 9.50 | 8.913 | 10 | 1.4 | 3.0 | Yes | SAR Evaluation Report 75 of 165 The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot \sqrt{f(GHz)} \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where - 1. f(GHz) is the RF channel transmit frequency in GHz. - 2. Power and distance are rounded to the nearest mW and mm before calculation. - 3. The result is rounded to one decimal place for comparison. - 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion. Report No: RSZ160603015-20 #### **Standalone SAR estimation:** | Mode | Frequency
(GHz) | Distance (mm) | P _{avg} (dBm) | P _{avg} (mW) | Estimated 1-g (W/kg) | |----------------|--------------------|---------------|------------------------|-----------------------|----------------------| | Bluetooth Head | 2.480 | 0 | 4.20 | 2.630 | 0.110 | | Bluetooth Body | 2.480 | 10 | 4.20 | 2.630 | 0.055 | | Wi-Fi Head | 2.462 | 0 | 9.50 | 8.913 | 0.373 | | Wi-Fi Body | 2.462 | 10 | 9.50 | 8.913 | 0.186 | When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion SAR Evaluation Report 76 of 165 # **Simultaneous SAR test exclusion considerations:** # **GSM** with BT: | Mode | Position | Reported | SAR (W/kg) | ΣSAR | |----------|-------------------|----------|------------|-----------| | Mode | Position | GSM | ВТ | < 1.6W/kg | | | Left Head Cheek | 0.280 | 0.110 | 0.390 | | | Left Head Tilt | 0.165 | 0.110 | 0.275 | | GSM 850 | Right Head Cheek | 0.236 | 0.110 | 0.346 | | | Right Head Tilt | 0.147 | 0.110 | 0.257 | | | Body-Headset-Back | 0.119 | 0.055 | 0.174 | | | Left Head Cheek | 0.279 | 0.110 | 0.389 | | | Left Head Tilt | 0.154 | 0.110 | 0.264 | | PCS 1900 | Right Head Cheek | 0.242 | 0.110 | 0.352 | | | Right Head Tilt | 0.131 | 0.110 | 0.241 | | | Body-Headset-Back | 0.332 | 0.055 | 0.387 | Report No: RSZ160603015-20 #### WCDMA with BT: | Mode | Position | Reporte
(W/ | | ΣSAR | |--------------|------------------|----------------|-------|-----------| | | | WCDMA | BT | < 1.6W/kg | | | Left Head Cheek | 0.151 | 0.110 | 0.261 | | WCDMA 850 | Left Head Tilt | 0.099 | 0.110 | 0.209 | | WCDMA 830 | Right Head Cheek | 0.124 | 0.110 | 0.234 | | | Right Head Tilt | 0.058 | 0.110 | 0.168 | | | Left Head Cheek | 0.328 | 0.110 | 0.438 | | WCDMA 1700 | Left Head Tilt | 0.222 | 0.110 | 0.332 | | WCDMA 1700 | Right Head Cheek | 0.319 | 0.110 | 0.429 | | | Right Head Tilt | 0.089 | 0.110 | 0.199 | | | Left Head Cheek | 0.739 | 0.110 | 0.849 | | WCDMA 1900 | Left Head Tilt | 0.562 | 0.110 | 0.672 | | WCDIVIA 1900 | Right Head Cheek | 0.650 | 0.110 | 0.760 | | | Right Head Tilt | 0.231 | 0.110 | 0.341 | SAR Evaluation Report 77 of 165 # LTE with BT: | Mode | Position | Reporte (W/ | | ΣSAR | |-------------|------------------|-------------|-------|-----------| | | | LTE | BT | < 1.6W/kg | | | Left Head Cheek | 0.591 | 0.110 | 0.701 | | LTE Band 2 | Left Head Tilt | 0.406 | 0.110 | 0.516 | | LIE Dang 2 | Right Head Cheek | 0.559 | 0.110 | 0.669 | | | Right Head Tilt | 0.439 | 0.110 | 0.549 | | | Left Head Cheek | 0.374 | 0.110 | 0.484 | | LTE Band 4 | Left Head Tilt | 0.287 | 0.110 | 0.397 | | LIE Band 4 | Right Head Cheek | 0.324 | 0.110 | 0.434 | | | Right Head Tilt | 0.261 | 0.110 | 0.371 | | | Left Head Cheek | 0.124 | 0.110 | 0.234 | | LTE Band 7 | Left Head Tilt | 0.088 | 0.110 | 0.198 | | LIE Danu / | Right Head Cheek | 0.108 | 0.110 | 0.218 | | | Right Head Tilt | 0.049 | 0.110 | 0.159 | | | Left Head Cheek | 0.086 | 0.110 | 0.196 | | LTE Band 12 | Left Head Tilt | 0.065 | 0.110 | 0.175 | | LIE Danu 12 | Right Head Cheek | 0.084 | 0.110 | 0.194 | | | Right Head Tilt | 0.043 | 0.110 | 0.153 | | | Left Head Cheek | 0.102 | 0.110 | 0.212 | | LTE Band 17 | Left Head Tilt | 0.059 | 0.110 | 0.169 | | LIE Dang 1/ | Right Head Cheek | 0.091 | 0.110 | 0.201 | | | Right Head Tilt | 0.067 | 0.110 | 0.177 | Report No: RSZ160603015-20 # **GSM** with Wi-Fi: | Mode | Position | Reported | SAR (W/kg) | ΣSAR | |----------|-------------------|----------|------------|-----------| | Mode | Position | GSM | Wi-Fi | < 1.6W/kg | | | Left Head Cheek | 0.280 | 0.373 | 0.653 | | | Left Head Tilt | 0.165 | 0.373 | 0.538 | | GSM 850 | Right Head Cheek | 0.236 | 0.373 | 0.609 | | | Right Head Tilt | 0.147 | 0.373 | 0.520 | | | Body-Headset-Back | 0.119 | 0.186 | 0.305 | | | Left Head Cheek | 0.279 | 0.373 | 0.652 | | | Left Head Tilt | 0.154 | 0.373 | 0.527 | | PCS 1900 | Right Head Cheek | 0.242 | 0.373 | 0.615 | | | Right Head Tilt | 0.131 | 0.373 | 0.504 | | | Body-Headset-Back | 0.332 | 0.186 | 0.518 | SAR Evaluation Report 78 of 165 # WCDMA with Wi-Fi: | Mode | Position | Reporte
(W/ | | ΣSAR | |--------------|------------------|----------------|-------|-----------| | | | WCDMA | Wi-Fi | < 1.6W/kg | | | Left Head Cheek | 0.151 | 0.373 | 0.524 | | WCDMA 850 | Left Head Tilt | 0.099 | 0.373 | 0.472 | | WCDMA 830 | Right Head Cheek | 0.124 | 0.373 | 0.497 | | | Right Head Tilt | 0.058 | 0.373 | 0.431 | | | Left Head Cheek | 0.328 | 0.373 | 0.701 | |
WCDMA 1700 | Left Head Tilt | 0.222 | 0.373 | 0.595 | | WCDMA 1700 | Right Head Cheek | 0.319 | 0.373 | 0.692 | | | Right Head Tilt | 0.089 | 0.373 | 0.462 | | | Left Head Cheek | 0.739 | 0.373 | 1.112 | | WCDMA 1900 | Left Head Tilt | 0.562 | 0.373 | 0.935 | | WCDIVIA 1900 | Right Head Cheek | 0.650 | 0.373 | 1.023 | | | Right Head Tilt | 0.231 | 0.373 | 0.604 | Report No: RSZ160603015-20 # LTE with Wi-Fi: | Mode | Position | | ed SAR
(kg) | ΣSAR | |-------------|------------------|-------|----------------|-----------| | | | LTE | Wi-Fi | < 1.6W/kg | | | Left Head Cheek | 0.591 | 0.373 | 0.964 | | LTE Band 2 | Left Head Tilt | 0.406 | 0.373 | 0.779 | | LIE Dailu 2 | Right Head Cheek | 0.559 | 0.373 | 0.932 | | | Right Head Tilt | 0.439 | 0.373 | 0.812 | | | Left Head Cheek | 0.374 | 0.373 | 0.747 | | LTE Band 4 | Left Head Tilt | 0.287 | 0.373 | 0.660 | | LIE Dang 4 | Right Head Cheek | 0.324 | 0.373 | 0.697 | | | Right Head Tilt | 0.261 | 0.373 | 0.634 | | | Left Head Cheek | 0.124 | 0.373 | 0.497 | | LTE Band 7 | Left Head Tilt | 0.088 | 0.373 | 0.461 | | LIE Dailu / | Right Head Cheek | 0.108 | 0.373 | 0.481 | | | Right Head Tilt | 0.049 | 0.373 | 0.422 | | | Left Head Cheek | 0.086 | 0.373 | 0.459 | | LTE Band 12 | Left Head Tilt | 0.065 | 0.373 | 0.438 | | LIE Danu 12 | Right Head Cheek | 0.084 | 0.373 | 0.457 | | | Right Head Tilt | 0.043 | 0.373 | 0.416 | | | Left Head Cheek | 0.102 | 0.373 | 0.475 | | LTE Band 17 | Left Head Tilt | 0.059 | 0.373 | 0.432 | | LIE Dang I/ | Right Head Cheek | 0.091 | 0.373 | 0.464 | | | Right Head Tilt | 0.067 | 0.373 | 0.440 | SAR Evaluation Report 79 of 165 # **Conclusion:** Σ SAR < 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is **not** required. Report No: RSZ160603015-20 | | Evaluations for Simultaneous SAR, BT+2G & 3G & LTE | | | | | | | | | | |-----------------|--|-------------------|----------------------|---------------------|---------------------|--|--|--|--|--| | Test Position | Body-Back
(1.0cm) | Body-Left (1.0cm) | Body-Right (1.0cm) | Body-Bottom (1.0cm) | Body-Top
(1.0cm) | | | | | | | Mode | | Stand | d Alone 1-g SAR (V | V/Kg) | | | | | | | | GPRS 850 | 0.482 | 0.227 | 0.126 | 0.312 | / | | | | | | | GPRS 1900 | 0.779 | 0.448 | 0.331 | 0.327 | / | | | | | | | WCDMA 850 | 0.167 | 0.079 | 0.069 | 0.080 | / | | | | | | | WCDMA 1700 | 0.550 | 0.388 | 0.224 | 0.356 | / | | | | | | | WCDMA 1900 | 0.935 | 0.569 | 0.468 | 0.330 | / | | | | | | | LTE Band 2 | 0.964 | 0.531 | 0.687 | 0.821 | / | | | | | | | LTE Band 4 | 0.768 | 0.575 | 0.417 | 0.575 | / | | | | | | | LTE Band 7 | 0.558 | 0.347 | 0.283 | 0.436 | / | | | | | | | LTE Band 12 | 0.210 | 0.141 | 0.088 | 0.098 | / | | | | | | | LTE Band 17 | 0.213 | 0.155 | 0.095 | 0.095 | / | | | | | | | BT | 0.074 | 0.074 | / | / | 0.074 | | | | | | | | | | \sum 1-g SAR(W/Kg) | | | | | | | | | GPRS 850 + BT | 0.556 | 0.301 | / | / | / | | | | | | | GPRS 1900 + BT | 0.853 | 0.522 | / | / | / | | | | | | | WCDMA 850 + BT | 0.241 | 0.153 | / | / | / | | | | | | | WCDMA 1700+ BT | 0.624 | 0.462 | / | / | / | | | | | | | WCDMA 1900+ BT | 1.009 | 0.643 | / | / | / | | | | | | | LTE Band 2+ BT | 1.038 | 0.605 | / | / | / | | | | | | | LTE Band 4+ BT | 0.842 | 0.649 | / | / | / | | | | | | | LTE Band 7+ BT | 0.632 | 0.421 | / | / | / | | | | | | | LTE Band 12+ BT | 0.284 | 0.215 | / | / | / | | | | | | | LTE Band 17+ BT | 0.287 | 0.229 | / | / | / | | | | | | SAR Evaluation Report 80 of 165 Report No: RSZ160603015-20 #### Note: LTE Band 17+ Wi-Fi If the sum of the 1g SAR measured for the simultaneously transmitting antennas is less than the SAR limit, SAR measurement for simultaneous transmission is not required. 0.322 0.380 / / / SAR Evaluation Report 81 of 165 #### **SAR Plots (Summary of the Highest SAR Values)** Test Laboratory: Bay Area Compliance Labs Corp.(Shenzhen) #### Test Plot 1#:GSM 850 Left Cheek Middle Channel **DUT: Mobile Phone; Type: F50G** Communication System: 2G Band; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; $\sigma = 0.92 \text{ S/m}$; $\epsilon r = 41.34$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(5.96, 5.96, 5.96); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 GSM850-head-left-Middle /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.316 mW/g GSM850-head-left-Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.386 V/m; Power Drift = -0.037 dBPeak SAR (extrapolated) = 0.381 W/kg SAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.154 mW/g Maximum value of SAR (measured) = 0.287 mW/g Report No: RSZ160603015-20 SAR Evaluation Report 82 of 165 #### Test Plot 2#:PCS 1900 Left Cheek Middle Channel #### **DUT: Mobile Phone; Type: F50G** Communication System: 2G Band; Frequency: 1880.0 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880.0 MHz; $\sigma = 1.42 \text{ S/m}$; $\epsilon r = 40.13$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.9, 4.9, 4.9); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 PCS 1900-head-left-mid /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.295 mW/g PCS 1900-head-left-mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.563 V/m; Power Drift = 0.062 dB Peak SAR (extrapolated) = 0.437 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.275 mW/g; SAR(10 g) = 0.142 mW/gMaximum value of SAR (measured) = 0.292 mW/g SAR Evaluation Report 83 of 165 #### Test Plot 3#:WCDMA 850 Left Cheek Middle Channel **DUT: Mobile Phone; Type: F50G** Communication System: 3G Band; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.92 \text{ S/m}$; $\epsilon r = 41.34$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(5.96, 5.96, 5.96); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 WCDMA 850-head-left-mid /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.178 mW/g WCDMA 850-head-left-mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.214 V/m; Power Drift = 0.156 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 0.201 W/kg SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.096 mW/g Maximum value of SAR (measured) = 0.152 mW/g SAR Evaluation Report 84 of 165 #### Test Plot 4#:WCDMA 1700 Left Cheek Middle Channel #### **DUT: Smart Phone; Type: S60L** Communication System: 3G Band; Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.36 \text{ S/m}$; $\epsilon r = 40.07$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(5.1, 5.1, 5.1); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **WCDMA 1700-head-left-mid /Area Scan (71x111x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.356 mW/g **WCDMA 1700-head-left-mid /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Report No: RSZ160603015-20 Reference Value = 4.24 V/m; Power Drift = -0.078 dB Peak SAR (extrapolated) = 0.485 W/kg SAR(1 g) = 0.327 mW/g; SAR(10 g) = 0.142 mW/g Maximum value of SAR (measured) = 0.331 mW/g SAR Evaluation Report 85 of 165 #### Test Plot 5#: WCDMA 1900 Left Cheek Middle Channel #### **DUT: Mobile Phone; Type: F50G** Communication System: 3G Band; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.42 \text{ S/m}$; $\epsilon r = 40.13$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.9, 4.9, 4.9); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 WCDMA 1900-head-left-mid /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.755 mW/g Report No: RSZ160603015-20 WCDMA 1900-head-left-mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.169 V/m; Power Drift = 0.085 dB Peak SAR (extrapolated) = 1.159 W/kg SAR(1 g) = 0.726 mW/g; SAR(10 g) = 0.353 mW/g Maximum value of SAR (measured) = 0.731 mW/g 86 of 165 SAR Evaluation Report #### Test Plot 6#:LTE Band 2 Left Cheek High Channel **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.41$ S/m; $\epsilon_r = 40.18$; $\rho = 1000$ kg/m³ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.9, 4.9, 4.9); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated:
17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 LTE Band 2-head-left-High /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.555 mW/g LTE Band 2-head-left-High /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.174 V/m; Power Drift = -0.077 dB Peak SAR (extrapolated) = 0.907 W/kg SAR(1 g) = 0.586 mW/g; SAR(10 g) = 0.313 mW/g Maximum value of SAR (measured) = 0.593 mW/g Report No: RSZ160603015-20 SAR Evaluation Report 87 of 165 #### Test Plot 7#:LTE Band 4 Left Cheek High Channel # **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; = 1.44 S/m; r = 40.09; $\rho = 1000$ kg/m³ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(5.1, 5.1, 5.1); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 # LTE Band 4 -head-left-high /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.335 mW/g LTE Band 4 -head-left-high /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.247 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 0.559 W/kg SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.213 mW/g Maximum value of SAR (measured) = 0.397 mW/g Report No: RSZ160603015-20 SAR Evaluation Report 88 of 165 #### Test Plot 8#:LTE Band 7 Left Cheek Middle Channel #### **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz; $\sigma = 1.90$ S/m; $\varepsilon_r = 39.13$; $\rho = 1000$ kg/m³ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.34, 4.34, 4.34); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 # LTE Band 7-head-left-mid /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.144 mW/g LTE Band 7-head-left-mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.282 V/m; Power Drift = -0.155 dB Peak SAR (extrapolated) = 0.205 W/kg SAR(1 g) = 0.119 mW/g; SAR(10 g) = 0.056 mW/g Maximum value of SAR (measured) = 0.125 mW/g Report No: RSZ160603015-20 SAR Evaluation Report 89 of 165 #### Test Plot 9#: LTE Band 12 Left Cheek High Channel **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 711.0MHz;Duty Cycle: 1:1 Medium parameters used: f = 711.0 MHz; $\sigma = 0.88 \text{ S/m}$; $\epsilon r = 41.64$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(6.1, 6.1, 6.1); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 LTE Band 5-head-left-High /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.093 mW/g LTE Band 5-head-left-High /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.064 V/m; Power Drift = 0.057 dB Peak SAR (extrapolated) = 0.113 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.047 mW/gMaximum value of SAR (measured) = 0.089 mW/g SAR Evaluation Report 90 of 165 #### Test Plot 10#:LTE Band 17 Left Cheek Middle Channel # **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 710 MHz; Duty Cycle: 1:1 Medium parameters used: f = 710 MHz; $\sigma = 0.90$ S/m; $\varepsilon_r = 41.57$; $\rho = 1000$ kg/m³ Phantom section: Left Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(6.13, 6.13, 6.13); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 LTE Band 17-head-left-mid /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.112 mW/g LTE Band 17-head-left-mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.224 V/m; Power Drift = -0.059 dB Peak SAR (extrapolated) = 0.137 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.100 mW/g; SAR(10 g) = 0.058 mW/gMaximum value of SAR (measured) = 0.103 mW/g SAR Evaluation Report 91 of 165 #### Test Plot 11#:GSM 850 Body-worn Back Middle Channel **DUT: Mobile Phone; Type: F50G** Communication System: 2G-gprs-2slots; Frequency: 836.6 MHz; Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz; $\sigma = 0.99$ S/m; $\epsilon r = 55.01$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(6.00, 6.00, 6.00); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 **GSM850-gprs-back -mid/Area Scan (101x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.507 mW/g GSM850-gprs-back -mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.572 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 0.632 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.475 mW/g; SAR(10 g) = 0.272 mW/gMaximum value of SAR (measured) = 0.488 mW/g SAR Evaluation Report 92 of 165 #### Test Plot 12#:PCS 1900 Body-worn Back Low Channel **DUT: Mobile Phone; Type: F50G** Communication System: 2G-gprs-3slots; Frequency: 1850.2 MHz; Duty Cycle: 1:2.67 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.55$ S/m; $\epsilon = 53.39$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.56, 4.56, 4.56); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 PCS 1900-gprs-back-low /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.795 mW/g PCS 1900-gprs-back-low /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.570 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 1.275 W/kg SAR(1 g) = 0.770 mW/g; SAR(10 g) = 0.363 mW/g Report No: RSZ160603015-20 Maximum value of SAR (measured) = 0.803 mW/g SAR Evaluation Report 93 of 165 #### Test Plot 13#:WCDMA 850 Body-worn Back Middle Channel # **DUT: Mobile Phone; Type: F50G** Communication System: 3G Band; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.99 \text{ S/m}$; $\epsilon r = 55.01$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(6.00, 6.00, 6.00); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 # **WCDMA 850-back -mid/Area Scan (101x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.199 mW/g WCDMA 850-back -mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.236 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 0.227 W/kg SAR(1 g) = 0.165 mW/g; SAR(10 g) = 0.095 mW/g Maximum value of SAR (measured) = 0.172 mW/g Report No: RSZ160603015-20 SAR Evaluation Report 94 of 165 #### Test Plot 14#:WCDMA 1700 Body-worn Back Middle Channel #### **DUT: Smart Phone; Type: S60L** Communication System: 3G Band; Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.48 \text{ S/m}$; $\varepsilon_r = 53.52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.75, 4.75, 4.75); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 WCDMA 1700-back -mid/Area Scan (71x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.592 mW/g WCDMA 1700-back -mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.729 V/m; Power Drift = -0.053 dB Peak SAR (extrapolated) = 0.810 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.549 mW/g; SAR(10 g) = 0.310 mW/gMaximum value of SAR (measured) = 0.572 mW/g SAR Evaluation Report 95 of 165 #### Test Plot 15#:WCDMA 1900 Body-worn Back Middle Channel #### **DUT: Mobile Phone; Type: F50G** Communication System: 3G Band; Frequency: 1880.0 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.59 \text{ S/m}$; $\varepsilon_r = 53.63$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.56, 4.56, 4.56); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE
SN:456: Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 WCDMA 1900-back -mid/Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.016 mW/g WCDMA 1900-back -mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.22 V/m; Power Drift = 0.071 dB Report No: RSZ160603015-20 Peak SAR (extrapolated) = 1.534 W/kg SAR(1 g) = 0.918 mW/g; SAR(10 g) = 0.566 mW/g Maximum value of SAR (measured) = 0.924 mW/g SAR Evaluation Report 96 of 165 #### Test Plot 16#:LTE BAND 2 Body-worn Back High Channel **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 1900.0 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ S/m; $\epsilon_r = 53.72$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.56, 4.56, 4.56); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 LTE BAND 2-back -high /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.087 mW/g LTE BAND 2-back -high /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.30 V/m; Power Drift = -0.075 dB Peak SAR (extrapolated) = 1.525 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.955 mW/g; SAR(10 g) = 0.498 mW/gMaximum value of SAR (measured) = 0.984 mW/g SAR Evaluation Report 97 of 165 #### Test Plot 17#:LTE BAND 4 Body-worn Back High Channel # **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 1745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.55$ S/m; $\varepsilon_r = 53.42$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.75, 4.75, 4.75); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 LTE BAND 4-back -high /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.829 mW/g LTE BAND 4-back -low /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.527 V/m; Power Drift = 0.072 dB Peak SAR (extrapolated) = 1.172 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.752 mW/g; SAR(10 g) = 0.408 mW/gMaximum value of SAR (measured) = 0.766 mW/g SAR Evaluation Report 98 of 165 #### Test Plot 18#:LTE BAND 7 Body-worn Back Middle Channel #### **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz; $\sigma = 2.11$ S/m; $\varepsilon_r = 52.63$; $\rho = 1000$ kg/m³ Phantom section: Flat Section # DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(4.19, 4.19, 4.19); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 # LTE BAND 7-back -mid /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.597 mW/g LTE BAND 7-back -mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.557 V/m; Power Drift = 0.127 dB Peak SAR (extrapolated) = 0.939 W/kg SAR(1 g) = 0.534 mW/g; SAR(10 g) = 0.217 mW/g Maximum value of SAR (measured) = 0.551 mW/g Report No: RSZ160603015-20 SAR Evaluation Report 99 of 165 #### Test Plot 19#: LTE BAND 12 Body-worn Back High Channel **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 711.0 MHz; Duty Cycle: 1:1 Medium parameters used: f = 711.0 MHz; $\sigma = 0.98$ S/m; $\epsilon r = 55.42$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(6.1, 6.1, 6.1); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 LTE BAND 12 -back -high /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.243 mW/g LTE BAND 12-back -high /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.350 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 0.284 W/kg Report No: RSZ160603015-20 SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.122 mW/gMaximum value of SAR (measured) = 0.215 mW/g SAR Evaluation Report 100 of 165 #### Test Plot 20#:LTE BAND 17 Body-worn Back Middle Channel #### **DUT: Mobile Phone; Type: F50G** Communication System: LTE 4G Band; Frequency: 710 MHz; Duty Cycle: 1:1 Medium parameters used: f = 710 MHz; $\sigma = 0.95 \text{ S/m}$; $\varepsilon_r = 55.40$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ES3DV3 SN3036; ConvF(6.1, 6.1, 6.1); Calibrated: 20/08/2015 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: Dummy DAE SN:456; Calibrated: 17/08/2015 - Phantom: TWIN SAM; Type: QD000P40CA; Serial: TP-1218 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145 # LTE BAND 17-back -mid /Area Scan (101x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.237 mW/g LTE BAND 17-back -mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.563 V/m; Power Drift = -0.053 dB Peak SAR (extrapolated) = 0.286 W/kg SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.136 mW/g Maximum value of SAR (measured) = 0.216 mW/g Report No: RSZ160603015-20 SAR Evaluation Report 101 of 165 # APPENDIX A MEASUREMENT UNCERTAINTY The uncertainty budget has been determined for the DASY4 measurement system and is given in the following Table. Report No: RSZ160603015-20 | DASY4 Uncertainty Budget | | | | | | | | | | | | |------------------------------|------------------------|---------|------------|-------|-------|-----------|-----------|-------|--|--|--| | | According to IEEE 1528 | | | | | | | | | | | | Error Description | Uncertainty | Prob. | Div. | (c i) | (c i) | Std. Unc. | Std. Unc. | (v i) | | | | | | Value | Dist. | | 1g | 10g | (1g) | (10g) | veff | | | | | Measurement System | | | | | | | | | | | | | Probe Calibration | ± 6.0 % | N | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | | | | | Axial Isotropy | ± 4.7 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | | | | | Hemispherical Isotropy | ± 9.6 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | | | | | Boundary Effects | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | | | Linearity | ± 4.7 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.7 % | ± 2.7 % | | | | | | System Detection Limits | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | | | Readout Electronics | ± 0.3 % | N | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | | | | | Response Time | ± 0.8 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.5 % | ± 0.5 % | | | | | | Integration Time | ± 2.6 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.5 % | ± 1.5 % | | | | | | RF Ambient Noise | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | | RF Ambient Conditions | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | | Probe Positioner | ± 0.4 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.2 % | ± 0.2 % | | | | | | Probe Positioning | ± 2.9 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | | Max. SAR Eval. | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | | | | | Test Sa | ample Re | lated | | | | | | | | | Device Positioning | ± 2.9 % | N | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | | | | Device Holder | ± 3.6 % | N | 1 | 1 | 1 | ± 3.6 % | ± 2.6 % | 5 | | | | | Power Drift | ± 5.0 % | R | | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | | | | | Phanto | om and S | etup | | | | | | | | | Phantom Uncertainty | ± 4.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.3 % | ± 2.3 % | | | | | | Liquid Conductivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | | | | | Liquid Conductivity (meas.) | ± 2.5 % | N | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | | | | | Liquid Permittivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | | | | | Liquid Permittivity (Target) | ± 2.5 % | N | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.0 % | | | | | | Combined Std. Uncertainty | - | - | - | - | - | ± 10.7 % | ± 10.4 % | 330 | | | | | Expanded STD Uncertainty | - | - | - | - | - | ± 21.4 % | ± 20.8 % | - | | | | SAR Evaluation Report 102 of 165 | DASY4 Uncertainty Budget | | | | | | | | | | | |------------------------------|-------------|---------|------------|-------|-------|-----------|-----------|-------|--|--| | According to IEC 62209-2 | | | | | | | | | | | | | Uncertainty | Prob. | | (c i) | (c i) | Std. Unc. | Std. Unc. | (v i) | | | | Error Description | Value | Dist. | Div. | 1g | 10g | (1g) | (10g) | veff | | | | Measurement System | | | | | | | | | | | | Probe Calibration | ± 6.0 % | N | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | | | | Axial Isotropy | ± 4.7 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | | | | Boundary Effects | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | | Linearity | ± 4.7 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.7 % | ± 2.7 % | | | | | System Detection Limits | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | | Readout Electronics | ± 0.3 % | N | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | | | | Response Time | ± 0.8 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.5 % | ± 0.5 % | | | | | Integration Time | ± 2.6 % | R | $\sqrt{3}$ | 1 | 1 | ±
1.5 % | ± 1.5 % | | | | | RF Ambient Noise | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | RF Ambient Conditions | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | Probe Positioner | ± 0.4 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.2 % | ± 0.2 % | | | | | Probe Positioning | ± 2.9 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | | | | | Max. SAR Eval. | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | | | | | | | Test Sa | ample Re | lated | | | | | | | | Device Positioning | ± 2.9 % | N | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | | | Device Holder | ± 3.6 % | N | 1 | 1 | 1 | ± 3.6 % | ± 2.6 % | 5 | | | | Power Drift | ± 5.0 % | R | | 1 | 1 | ± 2.9 % | ± 2.9 % | | | | | | | Phante | om and S | etup | | | | | | | | Phantom Uncertainty | ± 4.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.3 % | ± 2.3 % | | | | | Liquid Conductivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | | | | Liquid Conductivity (meas.) | ± 2.5 % | N | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | | | | Liquid Permittivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | | | | Liquid Permittivity (Target) | ± 2.5 % | N | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.0 % | | | | | Combined Std. Uncertainty | - | - | - | - | - | ± 10.7 % | ± 10.4 % | 330 | | | | Expanded STD Uncertainty | - | - | - | - | - | ± 21.4 % | ± 20.8 % | | | | Report No: RSZ160603015-20 SAR Evaluation Report 103 of 165 # APPENDIX B PROBE CALIBRATION CERTIFICATES Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Report No: RSZ160603015-20 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACL Certificate No: ES3-3036_Aug15 CALIBRATION CERTIFICATE Object ES3DV3 - SN:3036 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date August 20, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1D | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|--|--| | Power meter E44198 | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: \$5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: SS129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013 Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | | The second secon | The state of s | Calibrated by: Name Jeton Kastrati Function Laboratory Technician Signature Approved by: Katja Pokovic This calibration certificate shall not be reproduced except in full without written approval of the laboratory Technical Manager Issued: August 20, 2015 Certificate No: ES3-3036_Aug15 Page 1 of 11 SAR Evaluation Report 104 of 165 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Report No: RSZ160603015-20 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 8 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty
inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax.y.z; Bx.y.z; Cx.y.z; Dx.y.z; VRx.y.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3036_Aug15 Page 2 of 11 SAR Evaluation Report 105 of 165 _ Report No: RSZ160603015-20 ES3DV3 - SN:3036 August 20, 2015 # Probe ES3DV3 SN:3036 Manufactured: August 21, 2003 Calibrated: August 20, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ES3-3036_Aug15 Page 3 of 11 SAR Evaluation Report 106 of 165 ES3DV3-SN:3036 August 20, 2015 Report No: RSZ160603015-20 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3036 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|--| | Norm $(\mu V/(V/m)^2)^A$ | 1.22 | 1.34 | 1.49 | ± 10.1 % | | DCP (mV) ^B | 102.6 | 104.5 | 104.8 | 1, | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [±]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 207.4 | ±3.5 % | | | 7 | Y | 0.0 | 0.0 | 1.0 | | 222.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 226.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ES3-3036_Aug15 Page 4 of 11 107 of 165 **SAR Evaluation Report** A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ES3DV3-SN:3036 August 20, 2015 Report No: RSZ160603015-20 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3036 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 7.06 | 7.06 | 7.06 | 0.05 | 1.20 | ± 13.3 % | | 450 | 43.5 | 0.87 | 6.58 | 6.58 | 6.58 | 0.19 | 1.90 | ± 13.3 % | | 750 | 41.9 | 0.89 | 6.13 | 6.13 | 6.13 | 0.25 | 2.28 | ± 12.0 % | | 835 | 41.5 | 0.90 | 5.96 | 5.96 | 5.96 | 0.31 | 1.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.10 | 5.10 | 5.10 | 0.58 | 1.37 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 4.90 | 4.90 | 4.90 | 0.71 | 1.22 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.34 | 4.34 | 4.34 | 0.59 | 1.44 | ± 12.0 % | | 3700 | 37.7 | 3.12 | 3.84 | 3.84 | 3.84 | 0.35 | 2.20 | ± 13.1 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Falt frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: ES3-3036_Aug15 Page 5 of 11 SAR Evaluation Report 108 of 165 ES3DV3-SN:3036 August 20, 2015 Report No: RSZ160603015-20 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3036 # Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 6.82 | 6.82 | 6.82 | 0.08 | 1.20 | ± 13.3 % | | 450 | 56.7 | 0.94 | 6.69 | 6.69 | 6.69 | 0.14 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 6.10 | 6.10 | 6.10 | 0.40 | 1.64 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.00 | 6.00 | 6.00 | 0.49 | 1.55 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.75 | 4.75 | 4.75 | 0.51 | 1.48 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.56 | 4.56 | 4.56 | 0.48 | 1.60 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.19 | 4.19 | 4.19 | 0.80 | 1.09 | ± 12.0 % | | 3700 | 51.0 | 3.55 | 3.58 | 3.58 | 3.58 | 0.50 | 2.12 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Factorized to \pm 110 MHz. Factorized to \pm 110 MHz. The validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: ES3-3036_Aug15 Page 6 of 11 SAR Evaluation Report 109 of 165 SAR Evaluation Report 110 of 165 SAR Evaluation Report 111 of 165 SAR Evaluation Report 112 of 165 SAR Evaluation Report 113 of 165 ES3DV3- SN:3036 August 20, 2015 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3036 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 17.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Certificate No: ES3-3036_Aug15 Page 11 of 11 SAR Evaluation Report 114 of 165 # APPENDIX C DIPOLE CALIBRATION CERTIFICATES #### NCL CALIBRATION LABORATORIES Report No: RSZ160603015-20 Calibration File No: DC-1532 Project Number: BACL-5745 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole Manufacturer: APREL Laboratories Part number: ALS-D-750-S-2 Frequency: 750 MHz Serial No: 177-00505 Customer: BACL Calibrated: 8th of
October 2013 Released on: 8th of October 2013 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES 303 Terry Fox Drive, Suite 102 Kanata, Onterio CANADA K2K3J1 Division of APREL TEL: (613) 435-8300 FAX: (613) 435-8306 SAR Evaluation Report 115 of 165 Division of APREL Laboratories. #### Conditions Dipole 177-00505 was a new calibration, removed from stock. Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 21 °C +/- 0.5 °C We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Report No: RSZ160603015-20 Art Brennan, Quality Manager Dan Brooks, Test Engineer This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 116 of 165 Division of APREL Laboratories. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. #### **Mechanical Dimensions** **Length:** 180.2 mm **Height:** 97.0 mm #### **Electrical Calibration** | Test | Result Head | Result Body | |-----------|-------------|-------------| | S11 R/L | -27.621 dB | -21.672 dB | | SWR | 1.106 U | 1.201 U | | Impedance | 52.505 Ω | 55.933 Ω | #### System Validation Results | Frequency
750 MHz | 1 Gram | 10 Gram | |----------------------|--------|---------| | Head | 8.5 | 54.0 | | Body | 8.54 | 5.42 | This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 117 of 165 3 Division of APREL Laboratories #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 177-00505. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 2225. #### References - SSI-TP-018-ALSAS Dipole Calibration Procedure - SSI-TP-016 Tissue Calibration Procedure - IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" - IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures" - Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" - IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures" - Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" - TP-D01-032-E020-V2 E-Field probe calibration procedure - D22-012-Tissue dielectric tissue calibration procedure - D28-002-Dipole procedure for validation of SAR system using a dipole - IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz #### Conditions Dipole 177-00505 was a new calibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C 4 Report No: RSZ160603015-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 118 of 165 Division of APREL Laboratories. # **Dipole Calibration Results** #### **Mechanical Verification** | APREL | APREL | Measured | Measured | |----------|---------|----------|----------| | Length | Height | Length | Height | | 180.0 mm | 97.8 mm | 180.2 mm | 97.0 mm | #### **Tissue Validation** | Tissue 750MHz | Measured
Head | Measured
Body | |------------------------|------------------|------------------| | Dielectric constant, & | 42.7 | 56.6 | | Conductivity, o [S/m] | 0.85 | 0.94 | #### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 119 of 165 5 Report No: RSZ160603015-20 Division of APREL Laboratories. #### **Electrical Calibration** | Test | Result Head | Result Body | |-----------|-------------|-------------| | S11 R/L | -27.621 dB | -21.672 dB | | SWR | 1.106 U | 1.201 U | | Impedance | 52.505 Ω | 55.933 Ω | The Following Graphs are the results as displayed on the Vector Network Analyzer. #### S11 Parameter Return Loss #### HEAD #### BODY This page has been reviewed for content and attested to by signature within this document. 6 SAR Evaluation Report 120 of 165 Division of APREL Laboratories. #### SWR #### Head #### Body This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 121 of 165 7 Division of APREL Laboratories. # Smith Chart Dipole Impedance # Head CH 1 - 311 5.0504 ee REF 0.000 dB OFFSET 0.000 OFFSET 311 FORWARD REFLECTION IMPEDANCE mwakes 2 e.75emes 6Hz 52.585 0 2.731 gs MARKER READOUT FUNCTIONS 8.399145 - 1.188776 GHz This page has been reviewed for content and attested to by signature within this document. 122 of 165 SAR Evaluation Report 8 Division of APREL Laboratories. # **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2013. This page has been reviewed for content and attested to by signature within this document. 1 Report No: RSZ160603015-20 SAR Evaluation Report 123 of 165 # NCL CALIBRATION LABORATORIES Report No: RSZ160603015-20 Calibration File No: DC-1599 Project Number: BAC-dipole-cal-5779 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole(Head and Body) Manufacturer. APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835 MHz Serial No: 180-00558 Customer: Bay Area Compliance Laboratory (China) Calibrated: 8th October 2014 Released on: 8th October 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES Suite 102, 303 Terry Fox Dr. Kaneta, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306 SAR Evaluation Report 124 of 165 Division of APREL Laboratories. #### Conditions Dipole 180-00558 was received with a damaged connection for a re-calibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Report No: RSZ160603015-20 Art Brennan, Quality Manager Maryna Nesterova Calibration Engineer #### **Primary Measurement Standards** Instrument Serial Number Cal due date Tektronix USB Power Meter 11C940 May 14, 2015 Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 125 of 165 #### Division of APREL Laboratories. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. #### **Mechanical Dimensions** **Length:** 162.2 mm **Height:** 89.4 mm #### **Electrical Specification** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 835 MHz | 1.066 U | -30.344 dB | 49.001 Ω | | Body | 835 MHz | 1.089 U | -28.118 dB | 53.117 Ω | # System Validation Results | Tissue | Frequency | 1 Gram | 10 Gram | Peak | |--------|-----------|--------|---------|--------| | Head | 835 MHz | 9.773 | 6.174 | 14.713 | | Body | 835 MHz | 9.736 | 6.297 | 14.513 | This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 126 of 165 3 Report No: RSZ160603015-20 Division of APREL Laboratories #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00558. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. ####
References - SSI-TP-018-ALSAS Dipole Calibration Procedure - SSI-TP-016 Tissue Calibration Procedure - IEEE 1528:2013 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques" - IEC-62209-1:2006 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" - IEC-62209-2:2010 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" - D28-002 Procedure for validation of SAR system using a dipole #### Conditions Dipole 180-00558 was repaired prior to this calibration. The repair reliability depends upon correct usage of the dipole. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C #### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) 4 Report No: RSZ160603015-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 127 of 165 # NCL Calibration Laboratories Division of APREL Laboratories. # **Dipole Calibration Results** # **Mechanical Verification** | APREL | APREL | Measured | Measured | |----------|---------|----------|----------| | Length | Height | Length | Height | | 161.0 mm | 89.8 mm | 162.2 mm | 89.4 mm | # **Electrical Verification** | Tissue Type | Return Loss: | SWR: | Impedance: | |-------------|--------------|---------|------------| | Head | -30.344 dB | 1.066 U | 49.001Ω | | Body | -28.118 dB | 1.089 U | 53.117 Ω 🗆 | #### **Tissue Validation** | | Dielectric constant, ε _r | Conductivity, o [S/m] | |--------------------|-------------------------------------|-----------------------| | Head Tissue 835MHz | 43.42 | 0.94 | | Body Tissue 835MHz | 55.77 | 1.01 | This page has been reviewed for content and attested to by signature within this document. **SAR Evaluation Report** 128 of 165 5 Report No: RSZ160603015-20 Division of APREL Laboratories. The Following Graphs are the results as displayed on the Vector Network Analyzer. #### S11 Parameter Return Loss #### Head Tissue: Frequency Range 0.817 to 0.848 GHz # Body Tissue: Frequency Range 0.823 to 0.851 GHz This page has been reviewed for content and attested to by signature within this document. 6 SAR Evaluation Report 129 of 165 Division of APREL Laboratories. #### SWR #### Body This page has been reviewed for content and attested to by signature within this document. 7 SAR Evaluation Report 130 of 165 Division of APREL Laboratories. # Smith Chart Dipole Impedance #### Body This page has been reviewed for content and attested to by signature within this document. 8 SAR Evaluation Report 131 of 165 Division of APREL Laboratories. # **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2014. This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 132 of 165 9 Report No: RSZ160603015-20 #### NCL CALIBRATION LABORATORIES Report No: RSZ160603015-20 Calibration File No: DC-1531 Project Number: BACL-5745 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. BACL Head & Body Validation Dipole Manufacturer: APREL Laboratories Part number: ALS-D-1750-S-2 Frequency: 1750 MHz Serial No: 198-00304 Customer: ISL Calibrated: 8th October, 2013 Released on: 8th October, 2013 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager CL CALIBRATION LABORATORIES Suite 102, 303 Terry Fox Dr. Division of APREL Lab. OTTAWA, ONTARIO TEL: (613) 435-8300 CANADA K2K 3J1 FAX: (613) 435-8306 SAR Evaluation Report 133 of 165 Division of APREL Laboratories. # Conditions Dipole 198-00304 was an original calibration. Ambient Temperature of the Laboratory: $22 \degree C +/- 0.5 \degree C$ Temperature of the Tissue: $21 \degree C +/- 0.5 \degree C$ We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Art Brennan, Quality Manager Constantin Teodorian, Test Engineer This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 134 of 165 2 Report No: RSZ160603015-20 3 #### **NCL Calibration Laboratories** Division of APREL Laboratories. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. #### **Mechanical Dimensions** Length: 75 mm Height: 42 mm #### **Electrical Calibration** | Test | Result Head | Result Body | |-----------|-------------|-------------| | S11 R/L | -25.567 | -20.548 dB | | SWR | 1.111U | 1.207 U | | Impedance | 53.637Ω | 55.929 Ω | #### System Validation Results, 1750 MHz | | 1g | 10g | | |------|-------|-------|--| | Head | 37.02 | 18.99 | | | Body | 36.65 | 18.85 | | | Туре | Epsilon | Sigma | | |------|---------|-------|--| | Head | 38.51 | 1.36 | | | Body | 51.79 | 1.53 | | This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 135 of 165 Division of APREL Laboratories. #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-030 130 MHz to 26 GHz E-Field Probe Serial Number 215. #### References SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - Human models, instrumentation, and procedures" Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices - Human models, instrumentation, and Part 2 Draft: "Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" #### Conditions **Ambient Temperature of the Laboratory:** 22 °C +/- 0.5°C **Temperature of the Tissue:** 20 °C +/- 0.5°C This was an original calibration taken from stock. #### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical 1% **Positioning Error** 1.22% **Electrical** 1.7% Tissue 2.2% **Dipole Validation** 2.2% TOTAL 8.32% (16.64% K=2) This page has been reviewed for content and attested to by signature within this document. 4 Report No: RSZ160603015-20 SAR Evaluation Report 136 of 165 Division of APREL Laboratories. # **Dipole Calibration Results** # **Mechanical Verification** | Measured | Measured | |----------|----------| | Length | Height | | 75 mm | 42 mm | #### **Tissue Validation** | Frequency | Permittivity
ε | Conductivity
σ | |-----------|-------------------|-------------------| | 1750 Head | 38.23 | 1.38 | | 1750 Body | 52.86 | 1.54 | This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 137 of 165 5 Report No: RSZ160603015-20 Division of APREL Laboratories. #### **Electrical Calibration** | Test | Result Head | Result Body | | |-----------|-------------|-------------|--| | S11 R/L | -25.567 | -20.548 dB | | | SWR | 1.111U | 1.207 U | | | Impedance | 53.637Ω | 55.929 Ω | | The Following Graphs are the results as displayed on the Vector Network Analyzer. **S11 Parameter Return Loss** #### Head This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 138 of 165 6 Division of APREL Laboratories. #### SWR ### Head # Body 1.249442 This page has been reviewed for content and attested to by signature within this document. 2.250210 MARKER REMODUT FUNCTIONS 7 SAR Evaluation Report 139 of 165 Division of APREL Laboratories. # **Smith Chart Dipole Impedance** This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 140 of 165 8 Division of APREL Laboratories. # **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration
Equipment\Instrument List May 2013 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 141 of 165 7 Report No: RSZ160603015-20 #### NCL CALIBRATION LABORATORIES Report No: RSZ160603015-20 Calibration File No: DC-1601 Project Number: BAC-dipole –cal-5779 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole (Head & Body) Manufacturer. APREL Laboratories Part number: ALS-D-1900-S-2 Frequency: 1900 MHz Serial No: 210-00710 Customer: Bay Area Compliance Laboratory (China) Calibrated: 9th October, 2014 Released on: 9th October, 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES Suite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306 SAR Evaluation Report 142 of 165 Division of APREL Laboratories. #### Conditions Dipole 210-00710 was received in good condition and was a re-calibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Report No: RSZ160603015-20 Art Brennan, Quality Manager Maryna Nesterova Calibration Engineer #### **Primary Measurement Standards** Instrument Serial Number Cal due date Tektronix USB Power Meter 11C940 May 14, 2015 Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 143 of 165 Division of APREL Laboratories. #### Calibration Results Summary The following results relate the Calibrated Dipole and should be used as a quick reference for the user. #### **Mechanical Dimensions** **Length:** 67.1 mm **Height:** 38.9 mm **Electrical Specification** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 1900MHz | 1.084 U | -27.92 dB | 52.247 Ω | | Body | 1900MHz | 1.128 U | -24.40 dB | 52.618 Ω | #### System Validation Results | Tissue | Frequency | 1 Gram | 10 Gram | Peak | |--------|-----------|--------|---------|--------| | Head | 1900 MHz | 39.481 | 20.44 | 73.364 | | Body | 1900 MHz | 39.715 | 20.552 | 73.565 | This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 144 of 165 3 Division of APREL Laboratories. #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00710. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References - SSI-TP-018-ALSAS Dipole Calibration Procedure - SSI-TP-016 Tissue Calibration Procedure - IEEE 1528:2013 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques" - IEC-62209-1:2006 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" - IEC-62209-2:2010 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" - D28-002 Procedure for validation of SAR system using a dipole #### Conditions Dipole 210-00710 was a recalibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C #### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) 4 Report No: RSZ160603015-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 145 of 165 Division of APREL Laboratories. # **Dipole Calibration Results** ### **Mechanical Verification** | APREL | APREL | Measured | Measured | |---------|---------|----------|----------| | Length | Height | Length | Height | | 68.0 mm | 39.5 mm | 67.1mm | 38.9 mm | #### **Electrical Validation** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 1900MHz | 1.084 U | -27.92 dB | 52.247 Ω | | Body | 1900MHz | 1.128 U | -24.40 dB | 52.618 Ω | # **Tissue Validation** | | Dielectric constant, ε _Γ | Conductivity, o [S/m] | |---------------------|-------------------------------------|-----------------------| | Head Tissue 1900MHz | 40.20 | 1.38 | | Body Tissue 1900MHz | 52.63 | 1.46 | This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 146 of 165 5 Division of APREL Laboratories. The Following Graphs are the results as displayed on the Vector Network Analyzer. # Body: Frequency Range 1.869 to 1.931 MHz This page has been reviewed for content and attested to by signature within this document. **SAR Evaluation Report** 147 of 165 Division of APREL Laboratories. ### SWR This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 148 of 165 Division of APREL Laboratories. # Smith Chart Dipole Impedance ### Body This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 149 of 165 Division of APREL Laboratories. # **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2014 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 150 of 165 9 #### NCL CALIBRATION LABORATORIES Report No: RSZ160603015-20 Calibration File No: DC-1602 Project Number: BAC-dipole-cal-5779 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. Validation Dipole (Head & Body) Manufacturer: APREL Laboratories Part number: ALS-D-2450-S-2 Frequency: 2450 MHz Serial No: 220-00758 Customer: Bay Area Compliance Laboratory Calibrated: 9th October, 2014 Released on: 9th October, 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES uite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306 SAR Evaluation Report 151 of 165 Division of APREL Laboratories. #### Conditions Dipole 220-00758 was received in good condition and was a re-calibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 21 °C +/- 0.5 °C #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Report No: RSZ160603015-20 Art Brennan, Quality Manager Maryna Nesterova Calibration Engineer #### **Primary Measurement Standards** Instrument Serial Number Cal due date Tektronix USB Power Meter 11 C940 May 14, 2015 Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 152 of 165 Division of APREL Laboratories. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. #### **Mechanical Dimensions** **Length:** 52.4 mm **Height:** 30.3 mm #### **Electrical Specification** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 2450 MHz | 1.014 U | -45.184 dB | 50.006Ω | | Body | 2450 MHz | 1.070 U | -29.453 dB | 50.672 Ω | ### System Validation Results | Tissue | Frequency | 1 Gram | 10 Gram | Peak | |--------|-----------|--------|---------|--------| | Head | 2450 MHz | 54.916 | 25.327 | 111.97 | | Body | 2450 MHz | 52.418 | 24.691 | 103.91 | 3 Report No: RSZ160603015-20 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 153 of 165 Division of APREL Laboratories. #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration
Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 220-00758. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" IEC-62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" IEC-62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 2 Draft. "Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" #### Conditions Dipole 220-00758 was a re-calibration. Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ #### **Dipole Calibration uncertainty** The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 154 of 165 4 # NCL Calibration Laboratories Division of APREL Laboratories. # **Dipole Calibration Results** # **Mechanical Verification** | APREL | APREL | Measured | Measured | |---------|---------|----------|----------| | Length | Height | Length | Height | | 51.5 mm | 30.4 mm | 52.4 mm | 30.3 mm | **Electrical Specification** | Tissue | Frequency | SWR: | Return Loss | Impedance | |--------|-----------|---------|-------------|-----------| | Head | 2450 MHz | 1.014 U | -45.184 dB | 50.006Ω | | Body | 2450 MHz | 1.070 U | -29.453 dB | 50.672 Ω | # **Tissue Validation** | | Dielectric constant, ε _Γ | Conductivity, o [S/m] | |---------------------|-------------------------------------|-----------------------| | Head Tissue 2450MHz | 37.26 | 1.84 | | Body Tissue 2450MHz | 53.61 | 1.90 | This page has been reviewed for content and attested to by signature within this document. **SAR Evaluation Report** 155 of 165 5 Division of APREL Laboratories. The Following Graphs are the results as displayed on the Vector Network Analyzer. 6 This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 156 of 165 Division of APREL Laboratories. ### SWR This page has been reviewed for content and attested to by signature within this document. 7 SAR Evaluation Report 157 of 165 Division of APREL Laboratories. # Smith Chart Dipole Impedance This page has been reviewed for content and attested to by signature within this document, SAR Evaluation Report 158 of 165 Division of APREL Laboratories. # **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2014. This page has been reviewed for content and attested to by signature within this document. SAR Evaluation Report 159 of 165 9 # APPENDIX D EUT TEST POSITION PHOTOS Liquid depth ≥ 15cm Report No: RSZ160603015-20 **Left Head Touch Setup Photo** SAR Evaluation Report 160 of 165 # **Left Head Tilt Setup Photo** Report No: RSZ160603015-20 **Right Head Touch Setup Photo** SAR Evaluation Report 161 of 165 Report No: RSZ160603015-20 **Body-worn Back Setup Photo** SAR Evaluation Report 162 of 165 Report No: RSZ160603015-20 **Body-worn Left Setup Photo** SAR Evaluation Report 163 of 165 # **Body-worn Bottom Setup Photo** Report No: RSZ160603015-20 SAR Evaluation Report 164 of 165 #### APPENDIX F INFORMATIVE REFERENCES [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996. Report No: RSZ160603015-20 - [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O ce of Engineering & Technology, Washington, DC, 1997. - [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetricPage 165 of 165 assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996. - [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997. - [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997. - [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992. - [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24. - [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175. - [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996. - [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press. - [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992. - [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9 - [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994. - [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10. ***** END OF REPORT ***** SAR Evaluation Report 165 of 165