CALIBRATION DATA PROBE CALIBRATION DATA Client agc-cert(鑫宇环) Certificate No: Z14-97116 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3953 Calibration Procedure(s) TMC-OS-E-02-195 Calibration Procedures for Dosimetric E-field Probes Calibration date: November 06, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | |-------------------------|-------------|--|--|--|--| | Power Meter NRP2 | 101919 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | | | Power sensor NRP-Z91 | 101547 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | | | Power sensor NRP-Z91 | 101548 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | | | Reference10dBAttenuator | BT0520 | 12-Dec-12(TMC,No.JZ12-867) | Dec-14 | | | | Reference20dBAttenuator | BT0267 | 12-Dec-12(TMC,No.JZ12-866) | Dec-14 | | | | Reference Probe EX3DV4 | SN 3617 | 28-Aug-14(SPEAG,No.EX3-3617_Aug14) | A STATE OF THE STA | | | | DAE4 | SN 1331 | 23-Jan-14 (SPEAG, DAE4-1331_Jan14) | Jan -15 | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | | SignalGeneratorMG3700A | 6201052605 | 01-Jul-14 (CTTL, No.J14X02145) | Jun-15 | | | | Network Analyzer E5071C | MY46110673 | 15-Feb-14 (TMC, No.JZ14-781) | Feb-15 | | | | | Name | Function | Signature | | | | Calibrated by: | Yu Zongying | SAR Test Engineer | 19 | | | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 203 | | | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | Br 43tz | | | | | | Issued: Nove | ombor 07, 2014 | | | Issued: November 07, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL NORMx,y,z ConvF DCP CF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx, y, z diode compression point crest factor (1/duty_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). ## Probe EX3DV4 SN: 3953 Calibrated: November 06, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY - Parameters of Probe: EX3DV4 - SN: 3953 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.53 | 0.54 | 0.48 | ±10.8% | | DCP(mV) ^B | 101.6 | 101.2 | 100.0 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|------------------------------|---|---------|-----------|--------------|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 0.00 192 | 192.6 | ±2.5% | | | | | Υ | 0.0 | 0.0 | 1.0 | | 191.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 179.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY - Parameters of Probe: EX3DV4 - SN: 3953 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 835 | 41.5 | 0.90 | 10.12 | 10.12 | 10.12 | 0.14 | 1.25 | ±12% | | 900 | 41.5 | 0.97 | 9.70 | 9.70 | 9.70 | 0.23 | 1.04 | ±12% | | 1810 | 40.0 | 1.40 | 8.00 | 8.00 | 8.00 | 0.17 | 1.34 | ±12% | | 1900 | 40.0 | 1.40 | 7.89 | 7.89 | 7.89 | 0.22 | 1.17 | ±12% | | 2100 | 39.8 | 1.49 | 8.05 | 8.05 | 8.05 | 0.16 | 1.42 | ±12% | | 2450 | 39.2 | 1.80 | 7.32 | 7.32 | 7.32 | 0.63 | 0.66 | ±12% | | 3500 | 37.9 | 2.91 | 7.35 | 7.35 | 7.35 | 0.50 | 0.88 | ±13% | | 3700 | 37.7 | 3.12 | 7.03 | 7.03 | 7.03 | 0.45 | 1.02 | ±13% | | 5200 | 36.0 | 4.66 | 5.64 | 5.64 | 5.64 | 0.29 | 1.53 | ±13% | | 5300 | 35.9 | 4.76 | 5.32 | 5.32 | 5.32 | 0.45 | 0.77 | ±13% | | 5500 | 35.6 | 4.96 | 4.78 | 4.78 | 4.78 | 0.36 | 0.90 | ±13% | | 5600 | 35.5 | 5.07 | 4.60 | 4.60 | 4.60 | 0.34 | 0.96 | ±13% | | 5800 | 35.3 | 5.27 | 4.40 | 4.40 | 4.40 | 0.32 | 0.84 | ±13% | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. GAIPha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY - Parameters of Probe: EX3DV4 - SN: 3953 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 835 | 55.2 | 0.97 | 10.08 | 10.08 | 10.08 | 0.19 | 1.27 | ±12% | | 900 | 55.0 | 1.05 | 9.84 | 9.84 | 9.84 | 0.25 | 1.11 | ±12% | | 1810 | 53.3 | 1.52 | 7.93 | 7.93 | 7.93 | 0.16 | 1.63 | ±12% | | 1900 | 53.3 | 1.52 | 7.79 | 7.79 | 7.79 | 0.20 | 1.24 | ±12% | | 2100 | 53.2 | 1.62 | 8.10 | 8.10 | 8.10 | 0.16 | 1.71 | ±12% | | 2450 | 52.7 | 1.95 | 7.48 | 7.48 | 7.48 | 0.48 | 0.84 | ±12% | | 3500 | 51.3 | 3.31 | 6.70 | 6.70 | 6.70 | 0.53 | 0.90 | ±13% | | 3700 | 51.0 | 3.55 | 6.73 | 6.73 | 6.73 | 0.48 | 0.97 | ±13% | | 5200 | 49.0 | 5.30 | 4.92 | 4.92 | 4.92 | 0.43 | 1.17 | ±13% | | 5300 | 48.9 | 5.42 | 4.74 | 4.74 | 4.74 | 0.42 | 1.20 | ±13% | | 5500 | 48.6 | 5.65 | 4.33 | 4.33 | 4.33 | 0.42 | 1.45 | ±13% | | 5600 | 48.5 | 5.77 | 4.23 | 4.23 | 4.23 | 0.43 | 1.56 | ±13% | | 5800 | 48.2 | 6.00 | 4.32 | 4.32 | 4.32 | 0.45 | 1.69 | ±13% | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z14-97116 Page 9 of 11 ### **Conversion Factor Assessment** #### f=900 MHz, WGLS R9(H_convF) #### f=1810 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** ## DASY - Parameters of Probe: EX3DV4 - SN: 3953 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 32 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 2mm | #### **DAE CALIBRATION DATA** Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates AGC-CERT (Auden) Certificate No: DAE4-1398_Mar15 #### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1398 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: March 11, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Oct-14 (No:15573) | Oct-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 06-Jan-15 (in house check) | In house check: Jan-16 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 06-Jan-15 (in house check) | In house check: Jan-16 | Nama Function Calibrated by: R.Mayoraz Technician Approved by: Fin Bomholt Deputy Technical Manager Issued: March 11, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1398_Mar15 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. full range = -100...+300 mV full range = -1......+3mV DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+30 Low Range: 1LSB = 61 n V, full range = -1.....+3n DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.177 ± 0.02% (k=2) | 404.159 ± 0.02% (k=2) | 403.623 ± 0.02% (k=2) | | Low Range | 3.97359 ± 1.50% (k=2) | 3.99241 ± 1.50% (k=2) | 3.96904 ± 1.50% (k=2) | #### **Connector Angle** | , | | | |---|---|-----------| | l | Connector Angle to be used in DASY system | 195.5°±1° | #### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199993.58 | -1.10 | -0.00 | | Channel X + Input | 20001.61 | 1.19 | 0.01 | | Channel X - Input | -19998.75 | 2.61 | -0.01 | | Channel Y + Input | 199994.17 | -0.06 | -0.00 | | Channel Y + Input | 19999.73 | -0.66 | -0.00 | | Channel Y - Input | -20002.27 | -0.74 | 0.00 | | Channel Z + Input | 199994.39 | -0.01 | -0,00 | | Channel Z + Input | 19999.60 | -0.65 | -0.00 | | Channel Z - Input | -20002.37 | -0.85 | 0.00 | | | | | | | Low Range | Reading (µV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.37 | -0.22 | -0.01 | | Channel X + Input | 201.03 | -0.14 | -0.07 | | Channel X - Input | -198.68 | 0.01 | -0.00 | | Channel Y + Input | 2000.16 | -0.39 | -0.02 | | Channel Y + Input | 199.64 | -1.42 | -0.71 | | Channel Y - Input | -200.57 | -1.84 | 0.93 | | Channel Z + Input | 2000.33 | -0.14 | -0.01 | | Channel Z + Input | 199.88 | -1.17 | -0.58 | | Channel Z - Input | -200.01 | -1.12 | 0.56 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -13.00 | -14.85 | | | - 200 | 16.87 | 14.74 | | Channel Y | 200 | 8.85 | 8.14 | | | - 200 | -11,30 | -11.41 | | Channel Z | 200 | 7.15 | 7.52 | | | - 200 | -9.35 | -9.51 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -3.68 | -0.69 | | Channel Y | 200 | 5.01 | - | -0.86 | | Channel Z | 200 | 8.26 | 0.74 | - | 4. AD-Converter Values with inputs shorted ent parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15958 | 16128 | | Channel Y | 15964 | 17962 | | Channel Z | 15846 | 14478 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω | 1171 | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.22 | -1.08 | 0.72 | 0.33 | | Channel Y | -1.19 | -1.94 | -0.30 | 0.32 | | Channel Z | -1.46 | -2.11 | 0.01 | 0.32 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | #### **DIPOLE CALIBRATION DATA** ## **SAR Reference Dipole Calibration Report** Ref: ACR.318.10.13.SATU.A ## ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. 1&2F, NO.2 BUILDING, HUAFENG NO.1 INDUSTRIAL PARK, GUSHU COMMUNITY XIXIANG STREET BAOAN DISTRICT, SHENZHEN, P.R. CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 46/11 DIP 0G835-190 Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 10/02/2014 Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. #### SAR REFERENCE DIPOLE CALIBRATION REPORT | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|---------------| | Prepared by : | Jérôme LUC | Product Manager | 10/02/2014 | JES | | Checked by : | Jérôme LUC | Product Manager | 10/02/2014 | JES | | Approved by : | Kim RUTKOWSKI | Quality Manager | 10/02/2014 | Hum Authousti | | | Customer Name | |-------------------|---------------| | | ATTESTATION | | District and an a | OF GLOBAL | | Distribution: | COMPLIANCE | | | CO. LTD. | | Issue | Date | Modifications | | |-------|------------|-----------------|--| | A | 10/02/2014 | Initial release | | | | | | | | | | | | | | | | | #### SAR REFERENCE DIPOLE CALIBRATION REPORT #### TABLE OF CONTENTS | 1 | Int | roduction4 | | |---|-----|---|---| | 2 | De | vice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Me | asurement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cal | ibration Measurement Results6 | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Va | lidation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | 7 | | | 7.3 | Body Liquid Measurement | | | | 7.4 | SAR Measurement Result With Body Liquid | 9 | | 8 | Lis | t of Equipment | | #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|----------------------------------|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID835 | | | Serial Number | SN 46/11 DIP 0G835-190 | | | Product Condition (new / used) | New | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - Satimo COMOSAR Validation Dipole Page: 4/11 #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | Page: 5/11 #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 835 | -24.46 | -20 | $55.4 \Omega + 2.4 j\Omega$ | #### 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h mm | | dı | mm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | J. | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | PASS | 89.8 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | Ĭ. | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | j. | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | 1 | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | J. | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | 7 | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1%, | | 26.4 ±1 %. | 1 | 3.6 ±1 %. | | Page: 6/11 #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. #### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (ε,') | Conductiv | ity (ơ) S/m | |------------------|--------------|-----------------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | PASS | 0.90 ±5 % | PASS | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | 0 | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | 8 | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | 0 | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | #### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V4 | | |---|--|--| | Phantom | SN 20/09 SAM71 | | | Probe | SN 18/11 EPG122 | | | Liquid | Head Liquid Values: eps': 42.3 sigma: 0.92 | | | Distance between dipole center and liquid | 15.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | Page: 7/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | |----------------------|---------------------|--| | Frequency | 835 MHz | | | Input power | 20 dBm | | | Liquid Temperature | 21 °C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | | Frequency
MHz | 1 g SAR (| W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|-----------|-------------|----------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | 9.60 (0.96) | 6.22 | 6.20 (0.62) | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41,1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 8/11 #### 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (ε,′) | Conductiv | ity (σ) S/m | |------------------|--------------|-----------------|------------|-------------| | 378750 | required | measured | required | measured | | 150 | 61.9 ±5 % | | 0.80 ±5 % | | | 300 | 58.2 ±5 % | | 0.92 ±5 % | | | 450 | 56.7 ±5 % | | 0.94 ±5 % | | | 750 | 55.5 ±5 % | | 0.96 ±5 % | | | 835 | 55.2 ±5 % | PASS | 0.97 ±5 % | PASS | | 900 | 55.0 ±5 % | | 1.05 ±5 % | | | 915 | 55.0 ±5 % | | 1.06 ±5 % |] | | 1450 | 54.0 ±5 % | | 1.30 ±5 % | | | 1610 | 53.8 ±5 % | | 1.40 ±5 % | | | 1800 | 53.3 ±5 % | | 1.52 ±5 % | | | 1900 | 53.3 ±5 % | | 1.52 ±5 % | | | 2000 | 53.3 ±5 % | | 1.52 ±5 % | | | 2100 | 53.2 ±5 % | | 1.62 ±5 % | | | 2450 | 52.7 ±5 % | | 1.95 ±5 % | | | 2600 | 52.5 ±5 % | | 2.16 ±5 % | | | 3000 | 52.0 ±5 % | | 2.73 ±5 % | | | 3500 | 51.3 ±5 % | | 3.31 ±5 % | | | 5200 | 49.0 ±10 % | | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | | 6.00 ±10 % | | #### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | OPENSAR V4 | | | |--|--|--| | SN 20/09 SAM71 | | | | SN 18/11 EPG122 | | | | Body Liquid Values: eps': 54.1 sigma: 0.97 | | | | 15.0 mm | | | | dx=8mm/dy=8mm | | | | dx=8mm/dy=8m/dz=5mm | | | | 835 MHz | | | | 20 dBm | | | | 21 °C | | | | 21 °C | | | | 45 % | | | | | | | #### SAR REFERENCE DIPOLE CALIBRATION REPORT | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W | | |------------------|------------------|------------------|--| | | measured | measured | | | 835 | 9.90 (0.99) | 6.39 (0.64) | | Page: 10/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT #### 8 LIST OF EQUIPMENT | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | |------------------------------------|-------------------------|--------------------|--|--|--|--| | SAM Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No ca
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | | Calipers | Carrera | CALIPER-01 | 12/2013 | 12/2016 | | | | Reference Probe | Satimo | EPG122 SN 18/11 | 10/2013 | 10/2014 | | | | Multimeter | Keithley 2000 | 1188656 | 12/2013 | 12/2016 | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to
test. No cal required. | Characterized prior to
test. No cal required. | | | | Power Meter | HP E4418A | US38261498 | 12/2013 | 12/2016 | | | | Power Sensor | HP ECP-E26A | US37181460 | 12/2013 | 12/2016 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required. | | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 8/2012 | 8/2015 | | | ### **SAR Reference Dipole Calibration Report** Ref: ACR.318.7.13.SATU.A ## ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. 1&2F, NO.2 BUILDING, HUAFENG NO.1 INDUSTRIAL PARK, GUSHU COMMUNITY XIXIANG STREET BAOAN DISTRICT, SHENZHEN, P.R. CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 1900 MHZ SERIAL NO.: SN 46/11 DIP 1G900-187 Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 #### 11/14/13 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 11/14/2013 | JES | | Checked by : | Jérôme LUC | Product Manager | 11/14/2013 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 11/14/2013 | tum Putthouski | | | Customer Name | |---------------|--| | Distribution: | ATTESTATION
OF GLOBAL
COMPLIANCE
CO. LTD. | | Issue | Date | Modifications | |-------|------------|-----------------| | A | 11/14/2013 | Initial release | | | | | | | | | | | | | #### TABLE OF CONTENTS | 1 | Intro | duction4 | | |---|-------|-----------------------------|---| | 2 | Dev | ice Under Test4 | | | 3 | Proc | luct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | 8 | | | 7.4 | Body Measurement Result | 9 | | 8 | List | of Equipment10 | | #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | |--------------------------------------|-----------------------------------|--|--| | Device Type | COMOSAR 1900 MHz REFERENCE DIPOLE | | | | Manufacturer | Satimo | | | | Model | SID1900 | | | | Serial Number SN 46/11 DIP 1G900-187 | | | | | Product Condition (new / used) Used | | | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole Page: 4/10 #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|-------------------------------------|--| | 400-6000MHz | 0.1 dB | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | | |-------------|--------------------------------|--|--| | 3 - 300 | 0.05 mm | | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | Page: 5/10 #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1900 | -32.90 | -20 | $48.9 \Omega + 2.3 j\Omega$ | #### 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Lm | nm | h mm | | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | PASS | 39.5 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. #### 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | | | |---|--|--|--| | Phantom | SN 20/09 SAM71 | | | | Probe | SN 18/11 EPG122 | | | | Liquid | Head Liquid Values: eps' : 39.8 sigma : 1.43 | | | | Distance between dipole center and liquid | 10.0 mm | | | | Area scan resolution | dx=8mm/dy=8mm | | | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | | | Frequency | 1900 MHz | | | | Input power | 20 dBm | | | | Liquid Temperature | 21 °C | | | | Lab Temperature | 21 °C | | | | Lab Humidity | 45 % | | | #### 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (s ,') | | ity (ơ) s/m | |------------------|--------------|--------------------------------------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87±5% | | | 450 | 43.5 ±5 % | | 0.87±5% | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97±5% | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | PASS | 1.40 ±5 % | PASS | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67±5% | | | 2 45 0 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/10 #### 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|--------------|-------------------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | 39.65 (3.96) | 20.5 | 20.24 (2.02) | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 8/10 #### 7.4 BODY MEASUREMENT RESULT | Software | OPENSAR V4 | | | |---|--|--|--| | Phantom | SN 20/09 SAM71 | | | | Probe | SN 18/11 EPG122 | | | | Liquid | Body Liquid Values: eps' : 52.5 sigma : 1.50 | | | | Distance between dipole center and liquid | 10.0 mm | | | | Area scan resolution | dx=8mm/dy=8mm | | | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | | | Frequency | 1900 MHz | | | | Input power | 20 dBm | | | | Liquid Temperature | 21 °C | | | | Lab Temperature | 21 °C | | | | Lab Humidity | 45 % | | | | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | | |---|------------------|------------------|-------------------|--| | | | m ea sure d | m ea sure d | | | Г | 1900 | 40.74 (4.07) | 21.43 (2.14) | | Page: 9/10 ### 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | | |------------------------------------|-------------------------|--------------------|---|---|--|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | | SAM Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | | | | Calipers | Carrera | CALIPER-01 | 12/2010 | 12/2013 | | | | | | Reference Probe | Satimo | EPG122 SN 18/11 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | | Multimeter | Keithley 2000 | 1188656 | 11/2010 | 11/2013 | | | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2010 | 12/2013 | | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | | Power Meter | HP E4418A | US38261498 | 11/2010 | 11/2013 | | | | | | Power Sensor | HP ECP-E26A | US37181460 | 11/2010 | 11/2013 | | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 3/2012 | 3/2014 | | | | |