48 LTE Band 41 20M QPSK 1RB 0Offset Back 15mm Ch40620 Communication System: UID 0, LTE-TDD (0); Frequency: 2593 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600 Medium parameters used: f = 2593 MHz; $\sigma = 1.915$ S/m; $\epsilon_r = 38.309$; $\rho = 1000$ kg/m³ Date: 2022.3.1 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.28, 7.28, 7.28); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Area Scan (91x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.686 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.659 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.866 W/kg **SAR(1 g) = 0.431 W/kg; SAR(10 g) = 0.201 W/kg**Maximum value of SAR (measured) = 0.702 W/kg 0 dB = 0.702 W/kg = -1.54 dBW/kg # 49 FR1 n7 20M QPSK 25RB 13Offset Back 15mm Ch507000 Communication System: UID 0, 5G NR (0); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2535 MHz; $\sigma = 1.867$ S/m; $\epsilon_r = 38.532$; $\rho = 1000$ kg/m³ Date: 2022.3.1 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.28, 7.28, 7.28); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (91x161x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.10 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.200 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.17 W/kg **SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.287 W/kg**Maximum value of SAR (measured) = 0.954 W/kg # 50 FR1 n41 100M QPSK 137RB 10ffset Back 15mm Ch518598 Communication System: UID 0, 5G NR (0); Frequency: 2592.99 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2593 MHz; $\sigma = 1.915$ S/m; $\epsilon_r = 38.309$; $\rho = 1000$ kg/m³ Date: 2022.3.1 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.28, 7.28, 7.28); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Area Scan (91x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.996 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.545 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.31 W/kg **SAR(1 g) = 0.656 W/kg; SAR(10 g) = 0.318 W/kg**Maximum value of SAR (measured) = 1.02 W/kg 0 dB = 1.02 W/kg = 0.09 dBW/kg # 51 FR1 n77 100M QPSK 135RB 69Offset Back 15mm Ch656000 Communication System: UID 0, 5G NR (0); Frequency: 3840 MHz; Duty Cycle: 1:1 Medium: HSL_3900 Medium parameters used: f = 3840 MHz; $\sigma = 3.134$ S/m; $\epsilon_r = 38.468$; $\rho = 1000$ kg/m³ Date: 2022.3.5 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.58, 6.58, 6.58); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (111x201x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.23 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.028 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.62 W/kg SAR(1 g) = 0.671 W/kg; SAR(10 g) = 0.284 W/kg Maximum value of SAR (measured) = 1.23 W/kg 0 dB = 1.23 W/kg = 0.90 dBW/kg # 52_WLAN2.4GHz_802.11b 1Mbps_Front_15mm_Ch6 Communication System: UID 0, WLAN2.4GHz (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.877$ S/m; $\epsilon_r = 40.852$; $\rho = 1000$ kg/m³ Date: 2022.3.1 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.53, 7.53, 7.53); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Area Scan (91x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.233 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.103 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.285 W/kg **SAR(1 g) = 0.156 W/kg; SAR(10 g) = 0.092 W/kg**Maximum value of SAR (measured) = 0.234 W/kg 0 dB = 0.234 W/kg = -6.31 dBW/kg # 53_Bluetooth_1Mbps_Front_15mm_Ch39 Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1.301 Medium: HSL_2450 Medium parameters used: f = 2441 MHz; $\sigma = 1.882$ S/m; $\epsilon_r = 40.84$; $\rho = 1000$ kg/m³ Date: 2022.3.1 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.53, 7.53, 7.53); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Area Scan (91x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0184 W/kg **Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.009 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.0710 W/kg **SAR(1 g) = 0.002 W/kg; SAR(10 g) = 0.001 W/kg**Maximum value of SAR (measured) = 0.0287 W/kg 0 dB = 0.0287 W/kg = -15.42 dBW/kg # 54 WLAN5GHz 802.11a 6Mbps Back 15mm Ch60 Communication System: UID 0, WLAN5GHz (0); Frequency: 5300 MHz; Duty Cycle: 1:1.026 Medium: HSL_5000 Medium parameters used: f = 5300 MHz; $\sigma = 4.619$ S/m; $\epsilon_r = 36.257$; $\rho = 1000$ kg/m³ Date: 2022.3.2 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.05, 5.05, 5.05); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (111x201x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.828 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.310 W/kg; SAR(10 g) = 0.160 W/kg Maximum value of SAR (measured) = 0.856 W/kg # 55_WLAN5GHz_802.11a 6Mbps_Back_15mm_Ch116 Communication System: UID 0, WLAN5GHz (0); Frequency: 5580 MHz; Duty Cycle: 1:1.026 Medium: HSL_5000 Medium parameters used: f = 5580 MHz; $\sigma = 4.941$ S/m; $\epsilon_r = 35.808$; $\rho = 1000$ kg/m³ Date: 2022.3.3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.69, 4.69, 4.69); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (111x201x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.751 W/kg **Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.8290 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.43 W/kg **SAR(1 g) = 0.323 W/kg; SAR(10 g) = 0.147 W/kg**Maximum value of SAR (measured) = 0.831 W/kg # 56_WLAN5GHz_802.11a 6Mbps_Back_15mm_Ch165 Communication System: UID 0, WLAN5GHz (0); Frequency: 5825 MHz; Duty Cycle: 1:1.026 Medium: HSL_5000 Medium parameters used: f = 5825 MHz; $\sigma = 5.22$ S/m; $\epsilon_r = 35.438$; $\rho = 1000$ kg/m³ Date: 2022.3.4 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.92, 4.92, 4.92); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1649; Calibrated: 2021.2.3 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Area Scan (111x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.597 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.005 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.13 W/kg **SAR(1 g) = 0.240 W/kg; SAR(10 g) = 0.108 W/kg**Maximum value of SAR (measured) = 0.623 W/kg # 57_WLAN5GHz_802.11a 6Mbps_Top Side_0mm_Ch60 Communication System: UID 0, WLAN5GHz (0); Frequency: 5300 MHz; Duty Cycle: 1:1.026 Medium: HSL_5000 Medium parameters used: f = 5300 MHz; $\sigma = 4.619$ S/m; $\epsilon_r = 36.257$; $\rho = 1000$ kg/m³ Date: 2022.3.2 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.05, 5.05, 5.05); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Area Scan (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 9.47 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 10.28 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 45.7 W/kg SAR(1 g) = 6.21 W/kg; SAR(10 g) = 1.26 W/kg Maximum value of SAR (measured) = 23.2 W/kg # 58_WLAN5GHz_802.11a 6Mbps_Top Side_0mm_Ch116 Communication System: UID 0, WLAN5GHz (0); Frequency: 5580 MHz; Duty Cycle: 1:1.026 Medium: HSL_5000 Medium parameters used: f = 5580 MHz; $\sigma = 4.941$ S/m; $\epsilon_r = 35.808$; $\rho = 1000$ kg/m³ Date: 2022.3.3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.69, 4.69, 4.69); Calibrated: 2021.11.24 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1650; Calibrated: 2021.6.9 - Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Area Scan (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 12.7 W/kg **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 5.403 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 69.1 W/kg SAR(1 g) = 8.21 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 31.6 W/kg # Appendix C. DASY Calibration Certificate Report No. : FA211901 The DASY calibration certificates are shown as follows. Sporton International Inc. (Kunshan) # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Certificate No: D835V2-4d258_May20 # CALIBRATION CERTIFICATE Object D835V2 - SN:4d258 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 07, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | F | | | Calibrated by | Name of the second seco | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | A STA | | | | | O. Elm | | Approved by: | Katja Pokovic | Technical Manager | Muc | | | | | Ju - g | Issued: May 7, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d258_May20 Page 1 of 7 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d258_May20 Page 2 of 7 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # **SAR** result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.44 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.55 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.13 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d258_May20 # Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.0 Ω - 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.5 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|-----------| | | 1.507 115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | | |-----------------|---------| | Manadalaca by | SPEAG | | | SI E/IG | Certificate No: D835V2-4d258_May20 # **DASY5 Validation Report for Head TSL** Date: 07.05.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d258 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.60 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.55 W/kg # SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 67% Maximum value of SAR (measured) = 3.16 W/kg 0 dB = 3.16 W/kg = 5.00 dBW/kg Certificate No: D835V2-4d258_May20 # Impedance Measurement Plot for Head TSL # Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ # **Evaluation Condition** | Phantom | SAM Head Phantom | For usage with cSAR3D V2 -R/L | |---------|------------------|--------------------------------------| |---------|------------------|--------------------------------------| # SAR result with SAM Head (Top \cong C0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 8.93 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Mouth \cong F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.38 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Neck \cong H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 8.91 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear \cong D90) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 7.66 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | | | | - Additional assessments outside the current scope of SCS 0108 # D835V2, Serial No. 4d258 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D835V2 – serial no. 4d258 | | | | | | | |---------------------------|---------------------|--------------|----------------------|----------------|---------------------------|----------------| | 835 Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real Impedance (ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2020.5.7 | -31.51 | | 51.04 | | -2.48 | | | 2021.5.6 | -29.29 | 0.07 | 52.16 | -1.13 | -2.7607 | 0.28 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### Dipole Verification Data> D835V2, serial no. 4d258 #### 835MHz - Head TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl:achinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60084 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1090 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60084 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.com Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60084 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) *C | 41.3 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 41100 | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mha/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 1.45 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | Page 1 | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.89 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60084 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.5Ω- 2.34 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 29,2 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 43.9Ω- 2.19 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.2 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.085 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60084 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 41.27$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.03 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg Certificate No: Z19-60084 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.com # DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.449$ S/m; $\varepsilon_r = 54.97$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.13 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.89 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg Certificate No: Z19-60084 Page 7 of 8