

CFR 47 FCC PART 15 SUBPART C(DSS)

TEST REPORT

For

Portable Thermal Printer

MODEL NUMBER: ITP06, A49, A49H, ITP06S, TPA49, A49Pro, TPA49H, A49S, APA49, APA49H

REPORT NUMBER: E04A24100909F00401

ISSUE DATE: January 22, 2025

FCC ID: 2A74AA49

Prepared for

Xiamen Lujiang Technology Co., Ltd.

Room 601-2,No.63-1,Wanghai Road, Software Park Phase II,Torch Hi-Tech Zone, Xiamen, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

REPORT NO.: E04A24100909F00401 Page 2 of 73

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	January 22, 2025	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC Part 15.247 (b)(1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC Part 15.247 (a)(1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC Part 15.247 (a)(1)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	FCC Part 15.247 (b)(1)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	FCC Part 15.247 (a)(1)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC Part 15.205/15.209	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DSS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTEST	ATION OF TEST RESULTS	.5
2.	TEST ME	ETHODOLOGY	.6
3.	FACILITI	IES AND ACCREDITATION	.6
4.	CALIBRA	ATION AND UNCERTAINTY	.7
4	.1. N	MEASURING INSTRUMENT CALIBRATION	.7
4	.2. N	MEASUREMENT UNCERTAINTY	.7
5.	EQUIPM	ENT UNDER TEST	.8
5	5.1. L	DESCRIPTION OF EUT	.8
5	j.2. (CHANNEL LIST	.8
5	5.3. N	MAXIMUM EIRP	.9
5	5.4. 7	TEST CHANNEL CONFIGURATION	.9
5	5.5. 7	THE WORSE CASE POWER SETTING PARAMETER	.9
5	5.6. L	DESCRIPTION OF AVAILABLE ANTENNAS1	10
5	5.7. E	EUT ACCESSORY1	10
5	5.8. 5	SUPPORT UNITS FOR SYSTEM TEST1	10
5	i.9. S	SETUP DIAGRAM1	10
6.	MEASUR	RING EQUIPMENT AND SOFTWARE USED1	2
7.	ANTENN	IA PORT TEST RESULTS1	4
7	.1. C	Conducted Output Power1	14
7	.2. 2	20 dB Bandwidth and 99% Occupied Bandwidth1	15
7	.3. C	Carrier Hopping Channel Separation1	16
7	.4. N	Number of Hopping Frequency1	18
7	.5. T	Time of Occupancy (Dwell Time)1	19
7	.6. C	Conducted Bandedge and Spurious Emission2	21
7	.7. L	Duty Cycle2	23
8.	RADIATE	ED TEST RESULTS	<u>2</u> 4
8	B.1. F	Radiated Band edge and Spurious Emission	30
9.	ANTENN	IA REQUIREMENT4	12
10.	ļ	AC POWER LINE CONDUCTED EMISSION4	13
11.	1	TEST DATA - Appendix A4	16

1. ATTESTATION OF TEST RESULTS

Applicant Information

Xiamen Lujiang Technology Co., Ltd.
Room 601-2,No.63-1,Wanghai Road, Software Park Phase II,Torch Hi-Tech Zone, Xiamen, China
Xiamen Lujiang Technology Co., Ltd.
Room 601-2,No.63-1,Wanghai Road, Software Park Phase II,Torch Hi-Tech Zone, Xiamen, China

EUT Information

Product Description: Model:	Portable Thermal Printer ITP06
Series Model:	A49, A49H, ITP06S, TPA49, A49Pro, TPA49H, A49S, APA49, APA49H
Brand:	1
Sample Received Date:	November 20, 2024
Sample Status:	Normal
Sample ID:	A24100909 001
Date of Tested:	November 20, 2024 to January 22, 2025

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C(DSS)

Pass

Prepared By:

r=n9

Win Huang

Checked By:

lan the

Alan He Laboratory Leader

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DSS)

3. FACILITIES AND ACCREDITATION

A2LA (Certificate No.: 6947.01)
Guangdong Global Testing Technology Co., Ltd.
has been assessed and proved to be in compliance with A2LA.
FCC (FCC Designation No.: CN1343)
Guangdong Global Testing Technology Co., Ltd.
has been recognized to perform compliance testing on equipment
Accreditation Certificate subject to Supplier's Declaration of Conformity (SDoC) and
Certification rules
ISED (Company No.: 30714)
Guangdong Global Testing Technology Co., Ltd.
has been registered and fully described in a report filed with ISED.
The Company Number is 30714 and the test lab Conformity
Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty				
DTS Bandwidth	1.96	±9.2 PPM				
20dB Emission Bandwidth	1.96	±9.2 PPM				
Carrier Frequency Separation	1.96	±9.2 PPM				
Time of Occupancy	1.96	±0.57%				
Conducted Output Power	1.96	±1.5 dB				
Power Spectral Density Level	1.96	±1.9 dB				
Power Spectral Density Level 1.96 ±1.9 dB Conducted Spurious Emission 9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1.96 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1d						
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.						

Test Item	Measurement Frequency Range	К	U(dB)			
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37			
Radiated emissions	9 kHz ~ 30 MHz	2	4.16			
Radiated emissions	30 MHz ~ 1 GHz	2	3.79			
Radiated emissions	1 GHz ~ 18 GHz	2	5.62			
Radiated emissions	18 GHz ~ 40 GHz	2	5.54			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.						

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Portable Thermal Printer		
Model		ITP06		
Series Model		A49, A49H, ITP06S, TPA49, A49Pro, TPA49H, A49S, APA49, APA49H		
Model Difference		Note: Only the model name difference.		
Hardware Version	n	V0		
Software Version		V1.0		
Ratings		DC 5V - 2A		
DC		5V		
Power Supply	Battery	DC 7.4V 2600mAh, 19.24Wh		

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth 5.2
Bluetooth Mode:	Bluetooth BR + EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK
Number of Channels:	79
Channel Separation:	1 MHz
Maximum Peak Power:	-3.50 dBm
Antenna Type:	PCB Antenna
Antenna Gain:	-0.93 dBi
Normal Test Voltage:	5 Vdc
EUT Test software:	fcc_test_tool
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471

TRF No.: 04-E001-0B

Global Testing , Great Quality.

10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM EIRP

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
GFSK	2402 ~ 2480	0-78[79]	-3.50	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz

Note: The hop is hopping mode.

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software fcc_test_tool					
Modulation Type	Transmit Antenna	Test Software setting value			
	Number	CH 00	CH 39	CH 78	
GFSK	1	Default	Default	Default	

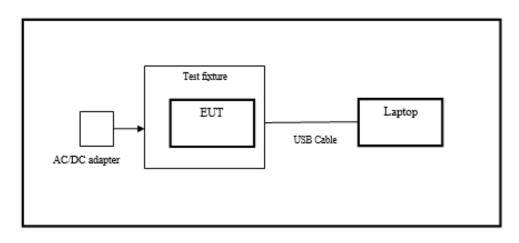
5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PCB	-0.93

Test Mode	Transmit and Receive Mode	Description	
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.	

5.7. EUT ACCESSORY

Cable				
Accessory:	USB-C cable			
Model No.:	/			
Description:	USB Type-C Plug Cable			
Cable Type:	Unshielded without ferrite			
Length:	1.2 Meter			


5.8. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand Model/Type No.		Series No.	Note
E-1	Laptop	Lenovo	Thinkpad T14	PF-3EAKYR	GTG Support
E-2	Adapter	Xiaomi	MDY-11-EX	N/A	GTG Support

5.9. SETUP DIAGRAM

Radiated emissions & AC Power Line Conducted Emission:

6.	MEASURING EQUIPMENT	AND SOFTWARE USED
----	----------------------------	-------------------

	Test Equipment of Conducted RF						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2024/09/14	2025/09/13		
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2024/09/14	2025/09/13		
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2024/09/14	2025/09/13		
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2024/09/14	2025/09/13		
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2024/09/14	2025/09/13		
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2024/09/14	2025/09/13		
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2024/09/14	2025/09/13		
temperature humidity chamber	Espec	SH-241	SH-241-2014	2024/09/14	2025/09/13		
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A		

	Test Equipment of Radiated emissions below 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29		
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2024/09/14	2025/09/13		
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13		
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2024/09/14	2025/09/13		
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09		
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22		
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29		
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A		

	Test Equipment of Radiated emissions above 1GHz				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2024/09/14	2025/09/13
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2024/09/14	2025/09/13

TRF No.: 04-E001-0B

Global Testing , Great Quality.

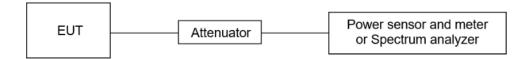
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

	Test Equipment of Conducted emissions				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2024/09/14	2025/09/13
LISN/AMN	Rohde & Schwarz	ENV216	102843	2024/09/14	2025/09/13
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2024/09/14	2025/09/13
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
BBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247),				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TRF No.: 04-E001-0B

Global Testing, Great Quality.

TEST RESULTS

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C				
Section Test Item Limit				
CFR 47 15.247 (a) (1) III	at least 15 hopping channels			

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak	
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.	
VBW	≥RBW	
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.	
Trace	Max hold	
Sweep time	Auto couple	

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.5. TIME OF OCCUPANCY (DWELL TIME)

<u>LIMITS</u>

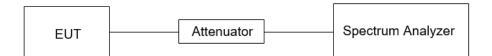
CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	1 MHz	
VBW	≥RBW	
Span	Zero span, centered on a hopping channel	
Trace	Max hold	
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel	


Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel): DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

15040	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

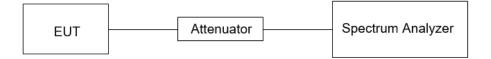
TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.8°C	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m	
((47)) at 8	Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

 RBW
 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)

 VBW
 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)

 Sweep
 Auto

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

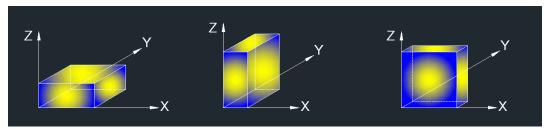
Above 1 GHz

RBW	1 MHz
NRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

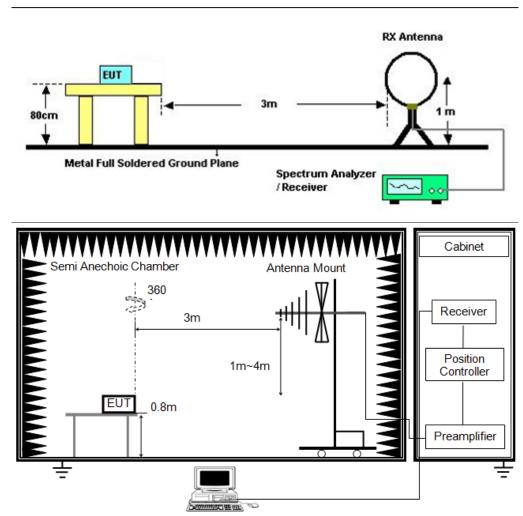
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

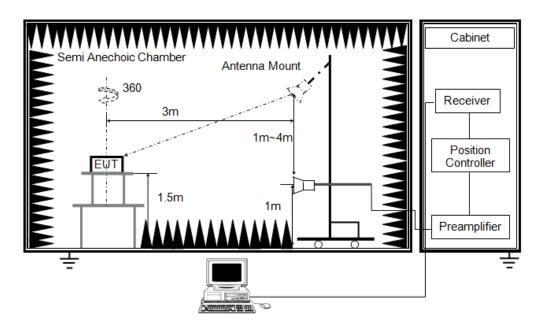

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:



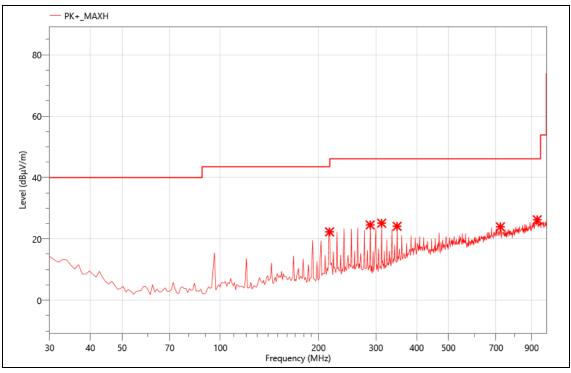
Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST SETUP

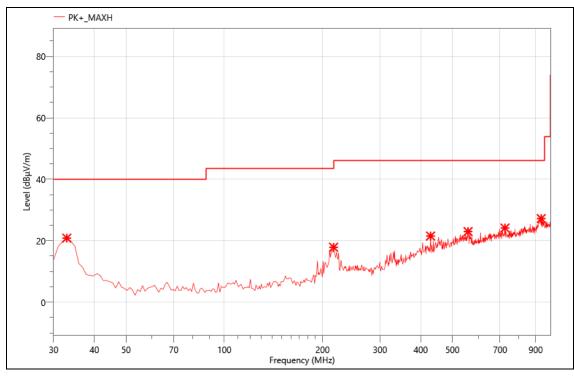
TEST ENVIRONMENT

Temperature	24.9°C	Relative Humidity	53%
Atmosphere Pressure	101kPa		


TEST RESULTS

8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

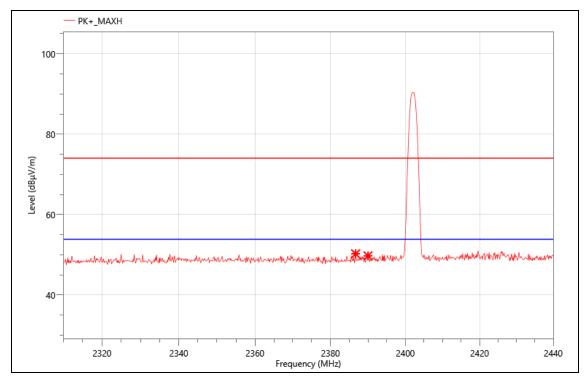
Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)


All modes have been tested and the worst result as bellow:

Mode:	1-DH5-2402
Power:	DC 5V
TE:	Berny
Date	2024/11/26
T/A/P	24.9°C/53%/101Kpa

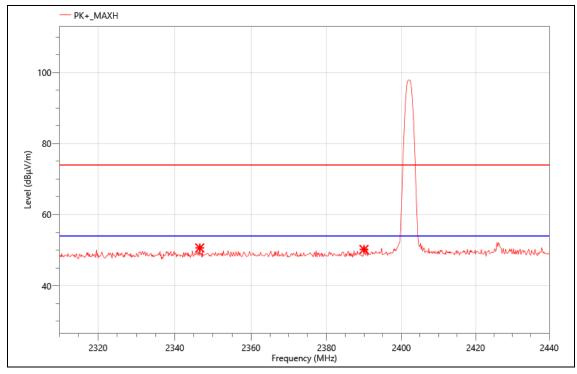
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	216.240	43.24	-20.95	22.29	46.00	23.71	PK+	Н
2	288.020	44.02	-19.48	24.54	46.00	21.46	PK+	Н
3	312.270	43.44	-18.34	25.10	46.00	20.90	PK+	Н
4	348.160	40.60	-16.51	24.09	46.00	21.91	PK+	Н
5	721.610	30.88	-6.96	23.92	46.00	22.08	PK+	Н
6	935.980	29.35	-3.12	26.23	46.00	19.77	PK+	Н

Mode:	1-DH5-2402
Power:	DC 5V
TE:	Berny
Date	2024/11/26
T/A/P	24.9°C/53%/101Kpa

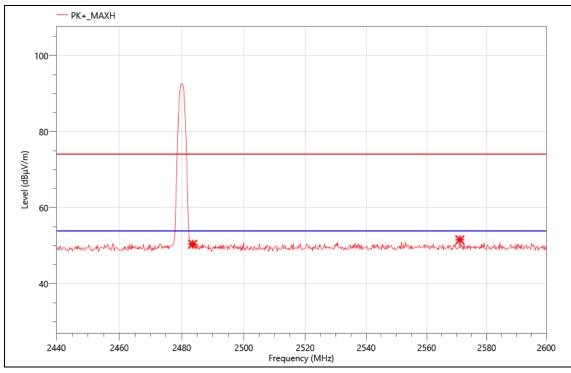


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	32.910	36.75	-15.91	20.84	40.00	19.16	PK+	V
2	216.240	38.82	-20.95	17.87	46.00	28.13	PK+	V
3	428.670	35.55	-14.04	21.51	46.00	24.49	PK+	V
4	558.650	33.23	-10.25	22.98	46.00	23.02	PK+	V
5	724.520	31.16	-7.03	24.13	46.00	21.87	PK+	V
6	935.980	30.33	-3.12	27.21	46.00	18.79	PK+	V

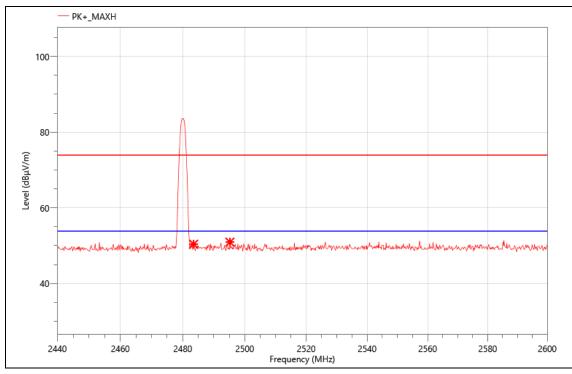
Band Edge


All modes have been tested and the worst result as bellow:

Mode:	1-DH5-2402
Power:	DC 5V
TE:	Berny
Date	2024/11/23
T/A/P	24.9°C/53%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2386.700	27.59	22.66	50.25	74.00	23.75	PK+	V
2	2390.000	27.03	22.72	49.75	74.00	24.25	PK+	V

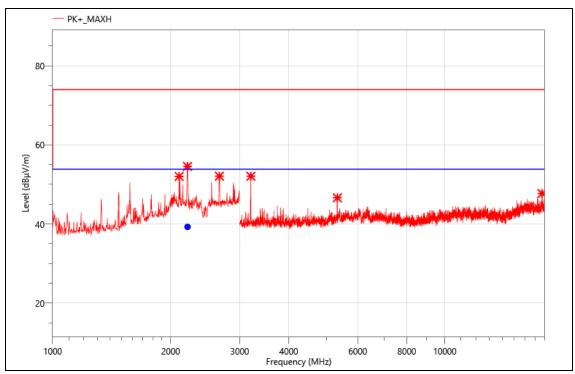
Mode:	1-DH5-2402
Power:	DC 5V
TE:	Berny
Date	2024/11/23
T/A/P	24.9°C/53%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2346.530	27.91	22.71	50.62	74.00	23.38	PK+	Н
2	2390.000	27.48	22.72	50.20	74.00	23.80	PK+	Н

Mode:	1-DH5-2480
Power:	DC 5V
TE:	Berny
Date	2024/11/26
T/A/P	24.9°C/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	27.22	23.15	50.37	74.00	23.63	PK+	Н
2	2571.040	28.29	23.23	51.52	74.00	22.48	PK+	Н

Mode:	1-DH5-2480
Power:	DC 5V
TE:	Berny
Date	2024/11/26
T/A/P	24.9°C/53%/101Kpa

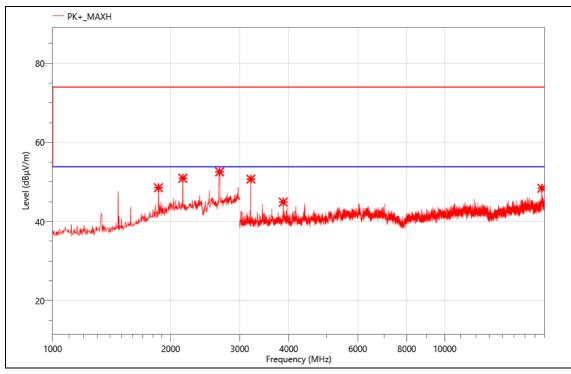


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	27.24	23.15	50.39	74.00	23.61	PK+	V
2	2495.200	27.83	23.12	50.95	74.00	23.05	PK+	V

Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz)

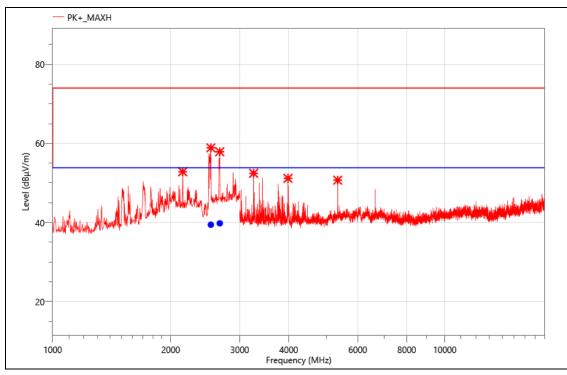
Mode:	1-DH5-2402
Power:	DC 5V
TE:	Berny
Date	2025/01/22
T/A/P	24.9°C/53%/101Kpa

All modes have been tested and the worst result as bellow:


Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2102.000	61.32	-9.3	52.02	74.00	21.98	PK+	Н
2	2208.000	63.84	-9.28	54.56	74.00	19.44	PK+	Н
3	2662.000	60.73	-8.66	52.07	74.00	21.93	PK+	Н
4	3202.500	66.86	-14.79	52.07	74.00	21.93	PK+	Н
5	5322.000	56.69	-10.06	46.63	74.00	27.37	PK+	Н
6	17697.000	47.51	0.2	47.71	74.00	26.29	PK+	Н

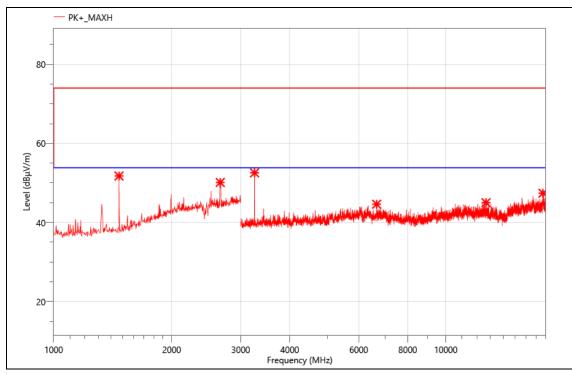
Final_Result


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	2207.785	48.54	-9.28	39.26	53.90	14.64	AVG	Н	PASS

Mode:	1-DH5-2402
Power:	DC 5V
TE:	Berny
Date	2025/01/22
T/A/P	24.9°C/53%/101Kpa

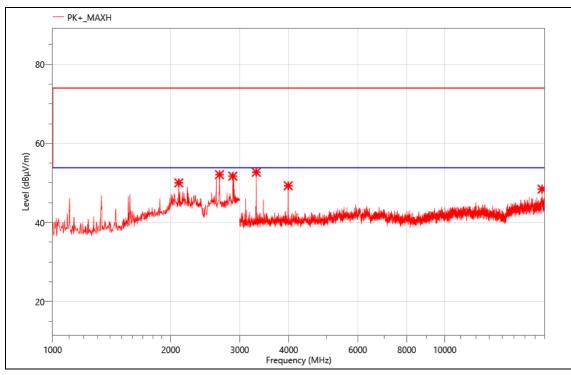
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1862.000	58.95	-10.41	48.54	74.00	25.46	PK+	V
2	2148.000	59.98	-9.05	50.93	74.00	23.07	PK+	V
3	2666.000	61.13	-8.59	52.54	74.00	21.46	PK+	V
4	3202.500	65.50	-14.79	50.71	74.00	23.29	PK+	V
5	3874.500	58.18	-13.28	44.90	74.00	29.10	PK+	V
6	17688.000	48.16	0.25	48.41	74.00	25.59	PK+	V

Mode:	1-DH5-2441
Power:	DC 5V
TE:	Berny
Date	2025/01/22
T/A/P	24.9°C/53%/101Kpa

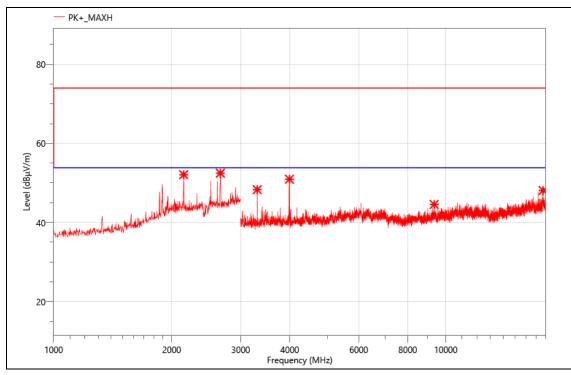


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2146.000	61.86	-9.05	52.81	74.00	21.19	PK+	V
2	2532.000	67.48	-8.61	58.87	74.00	15.13	PK+	V
3	2668.000	66.43	-8.55	57.88	74.00	16.12	PK+	V
4	3255.000	67.19	-14.76	52.43	74.00	21.57	PK+	V
5	3982.500	64.38	-13.2	51.18	74.00	22.82	PK+	V
6	5331.000	60.77	-10.07	50.70	74.00	23.30	PK+	V

Final_Result


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	2531.754	48.05	-8.62	39.43	53.90	14.47	AVG	V	PASS
2	2667.772	48.35	-8.56	39.79	53.90	14.11	AVG	V	PASS

Mode:	1-DH5-2441
Power:	DC 5V
TE:	Berny
Date	2025/01/22
T/A/P	24.9°C/53%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1468.000	65.61	-13.85	51.76	74.00	22.24	PK+	Н
2	2660.000	58.81	-8.69	50.12	74.00	23.88	PK+	Н
3	3253.500	67.31	-14.76	52.55	74.00	21.45	PK+	Н
4	6663.000	52.83	-8.22	44.61	74.00	29.39	PK+	Н
5	12666.000	49.16	-4.15	45.01	74.00	28.99	PK+	Н
6	17689.500	47.16	0.24	47.40	74.00	26.60	PK+	Н

Mode:	1-DH5-2480
Power:	DC 5V
TE:	Berny
Date	2025/01/22
T/A/P	24.9°C/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2098.000	59.36	-9.34	50.02	74.00	23.98	PK+	Н
2	2664.000	60.72	-8.62	52.10	74.00	21.90	PK+	Н
3	2880.000	59.99	-8.28	51.71	74.00	22.29	PK+	Н
4	3306.000	67.10	-14.4	52.70	74.00	21.30	PK+	Н
5	3987.000	62.53	-13.24	49.29	74.00	24.71	PK+	Н
6	17700.000	48.26	0.18	48.44	74.00	25.56	PK+	Н

Mode:	1-DH5-2480
Power:	DC 5V
TE:	Berny
Date	2025/01/22
T/A/P	24.9°C/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2146.000	61.14	-9.05	52.09	74.00	21.91	PK+	V
2	2662.000	61.12	-8.66	52.46	74.00	21.54	PK+	V
3	3306.000	62.70	-14.4	48.30	74.00	25.70	PK+	V
4	3994.500	64.24	-13.3	50.94	74.00	23.06	PK+	V
5	9342.000	51.75	-7.19	44.56	74.00	29.44	PK+	V
6	17706.000	48.03	0.05	48.08	74.00	25.92	PK+	V

For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

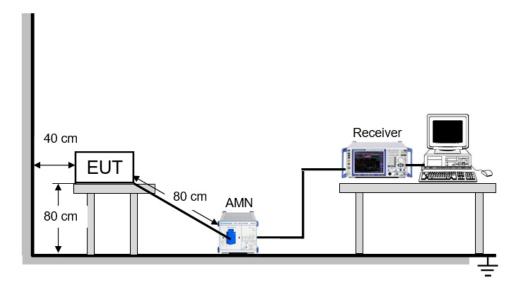
Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

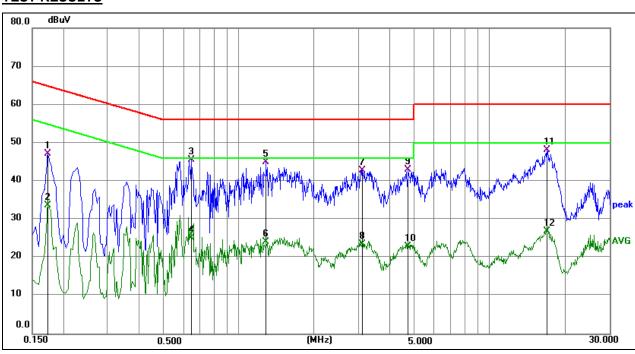
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

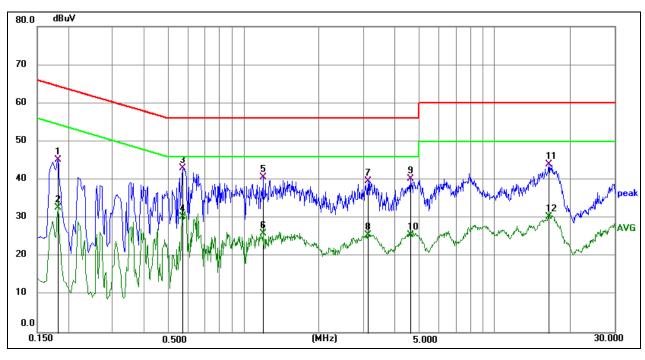
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver is used to test the emissions from the AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	23°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		



TEST RESULTS

Phase:	L1

Mode: DH5 2402MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1725	37.47	9.71	47.18	64.84	-17.66	QP
2	0.1725	23.96	9.71	33.67	54.84	-21.17	AVG
3	0.6450	35.71	9.83	45.54	56.00	-10.46	QP
4	0.6450	15.38	9.83	25.21	46.00	-20.79	AVG
5	1.2885	35.20	9.80	45.00	56.00	-11.00	QP
6	1.2885	14.26	9.80	24.06	46.00	-21.94	AVG
7	3.1110	32.98	9.89	42.87	56.00	-13.13	QP
8	3.1110	13.61	9.89	23.50	46.00	-22.50	AVG
9	4.7310	33.03	9.86	42.89	56.00	-13.11	QP
10	4.7310	13.04	9.86	22.90	46.00	-23.10	AVG
11	16.9890	38.09	10.11	48.20	60.00	-11.80	QP
12	16.9890	16.75	10.11	26.86	50.00	-23.14	AVG

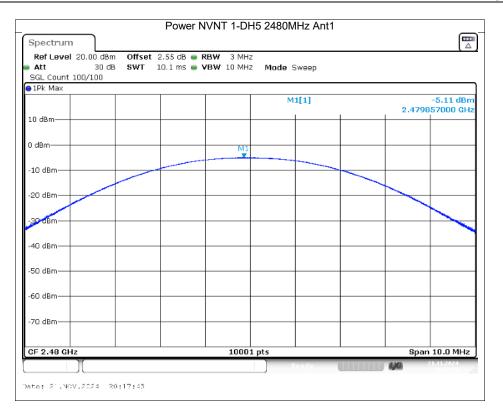
Phase: N	Mode: DH5 2402MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1815	35.40	9.85	45.25	64.42	-19.17	QP
2	0.1815	22.72	9.85	32.57	54.42	-21.85	AVG
3	0.5730	33.22	9.76	42.98	56.00	-13.02	QP
4	0.5730	20.50	9.76	30.26	46.00	-15.74	AVG
5	1.1940	30.77	9.82	40.59	56.00	-15.41	QP
6	1.1940	16.13	9.82	25.95	46.00	-20.05	AVG
7	3.1245	29.80	9.81	39.61	56.00	-16.39	QP
8	3.1245	15.62	9.81	25.43	46.00	-20.57	AVG
9	4.6275	30.25	9.88	40.13	56.00	-15.87	QP
10	4.6275	15.66	9.88	25.54	46.00	-20.46	AVG
11	16.4490	33.93	9.99	43.92	60.00	-16.08	QP
12	16.4490	20.36	9.99	30.35	50.00	-19.65	AVG

Note: 1. Result = Reading + Correct Factor.

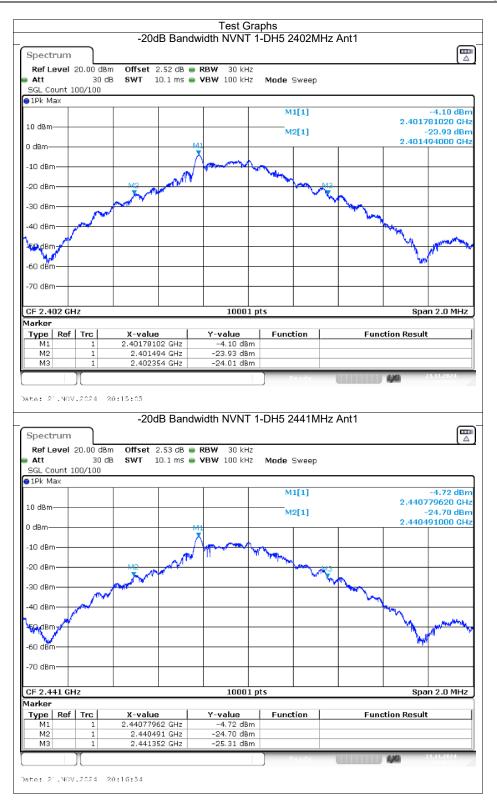
2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

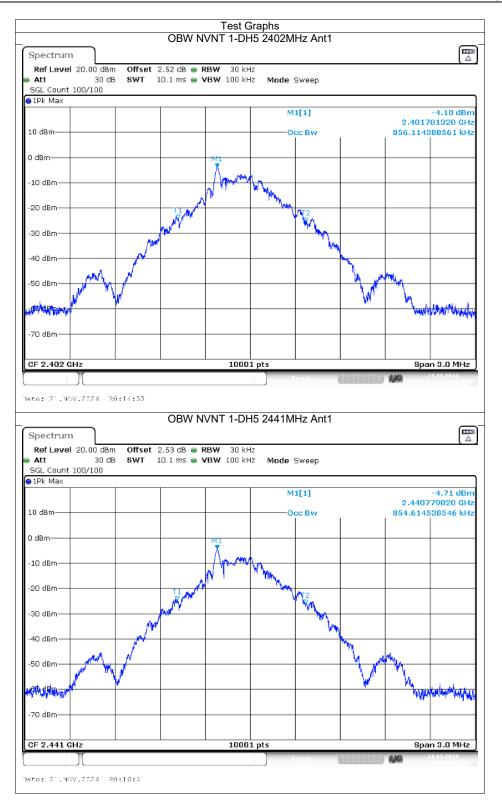

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

11. TEST DATA - Appendix A

			-p			
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	-3.5	21	Pass
NVNT	1-DH5	2441	Ant1	-4.12	21	Pass
NVNT	1-DH5	2480	Ant1	-5.11	21	Pass


Maximum Conducted Output Power

-20dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.86	N/A	N/A
NVNT	1-DH5	2441	Ant1	0.86	N/A	N/A
NVNT	1-DH5	2480	Ant1	0.86	N/A	N/A

Occupied Channel Bandwidth

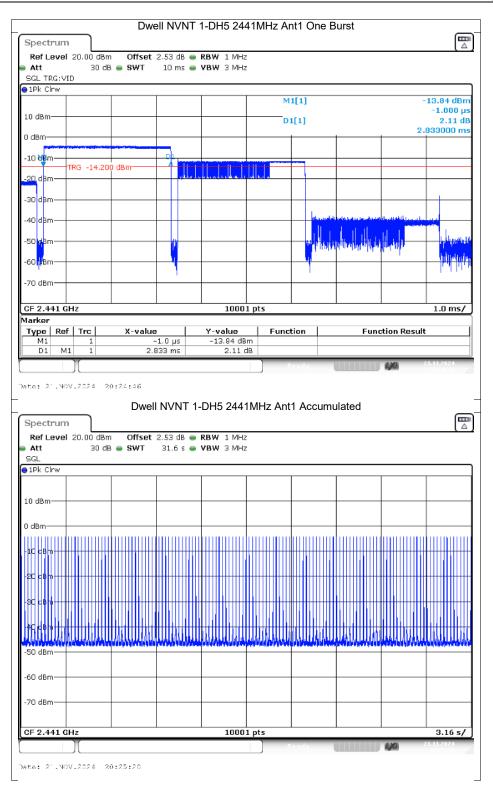

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.856
NVNT	1-DH5	2441	Ant1	0.855
NVNT	1-DH5	2480	Ant1	0.859

Carrier Frequencies Separation

Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.78	2402.78	1	0.573	Pass
NVNT	1-DH5	Ant1	2440.778	2441.78	1.002	0.573	Pass
NVNT	1-DH5	Ant1	2478.778	2479.778	1	0.573	Pass

Ref Le	vel :	20.00 dBr		2.55 dB 🖷						
Att		30 d	B SWT	1 ms 🧉	• VBW 100 kHz	Mode S	Sweep			
) 1Pk Ma	ax -		,		_,,					
						M	1[1]			-5.68 dBr
10 dBm-	_						2[1]			77800 GH -5.70 dBr
						IVI.	2[1]			77800 GH
0 dBm—	_	M1					M2		+	
		X					X			
-10 dBm	+	$f \sim$	mon				$-\Lambda$	-man		
		J V	1	m			ALV.		m	
-20 dBm	⊸≁			<u> </u>		m	/		- Nor	0
N	1				41.	N				\sim
-30 dBm	+				~~~~					
-40 dBm										
-50 dBm										
-30 ubm										
-60 dBm										
00 0011										
-70 dBm	\rightarrow									
CF 2.47	'95 G	Hz			1001	nts			Sna	n 2.0 MHz
darker					1001				opu	
Type	Ref	Trc	X-value	• 1	Y-value	Func	tion	Fun	ction Result	
M1		1	2.4787		-5.68 dBi					
M2		1	2.4797	78 GHz	-5.70 dBr	n				

Number of Hopping Channel


			U			
C	ondition	Mode	Antenna	Hopping Number	Limit	Verdict
	NVNT	1-DH5	Ant1	79	15	Pass

0			!		Braphs		14		
			opping No	D. NVNI 1	-DH5 240	2101Hz Ar	nt1		Ē
Spectrum									
Ref Level 2				BW 100 kH					
1Pk Max	30 dB	SWT	1 ms 🖷 V	' BW 300 kH	z Mode S	Sweep			
IPK Max					M	1[1]			-4.22 dBm
						-[-]		2.40	17535 GH
10 dBm					M	2[1]			-6.05 dBm
01dBm-								2.47	99930 GH
Таркана	5.05.06.0	\^^ \		8.6.6.6.6.6.6.					M2
-10 dem)	\mathbb{H}		HHHHHH	MUUU	hannad	ANNIND			1111111
WUYWW	ARRAA	WWWW	WANNA	ACTIVAL	umma	M M M M	NIMANA	INNINA	44/14/14
-20 8611	HAAAIIIA	*****	********		<u> </u>	648.4484	ĸ₀∝ぃ₀ӷ₀ ₽	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	RIDAR
-80 dBm									
40 dBm									
50 dBm									
-60 dBm									10 M
-70 dBm									
Start 2.4 GHz	2			1001	pts		1	Stop 2	.4835 GHz
1arker									
Type Ref M1	1 1	2.401753		<u>Y-value</u> -4.22 dB	Funct	tion	Fund	tion Result	t
M1 M2	1	2.40175		-4.22 UB -6.05 dB					
	ſ) Mea	suring		430	21.11.2024
	L							-	
ate: 21.NOV.	2024 - 20	:19:34							

Dwell Time

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1- DH5	2402	Ant1	2.833	382.455	135	31600	400	Pass
NVNT	1- DH5	2441	Ant1	2.833	382.455	135	31600	400	Pass
NVNT	1- DH5	2480	Ant1	2.833	379.622	134	31600	400	Pass

					Dwe	ell N	WN.	T 1	-DF	165 2	t Gr 240:	aph 2M⊦	s Iz Ai	nt1	One	e B	urs	t							
Spectr	•um	1	١		Dire	51111		• •		10 1			1270		011	00	are	•						ſ	H
Ref Le	evel	20.0			ffset																				
Att SGL TR	G:VI	D	30 dB) 🖷 SI	ЖT	10	ms (•	/BW	З М	1Hz														
∋1Pk Ck								_			_														
													м	1[1]										24 dB 0000	
10 dBm-													D	1[1]								2		49 c 300 n	
0 dBm— M1	_		*****								+														-
-10 dem		TRO	12.60	0 dBm-				_					~ ~												-
-20 dBm		110 -	13.00				101	<u>,</u> 111	idy A.C	L III	ni" ir	iluu													_
-30 dBm																									_
-40 dBm															wh		-	Maral,	Ander	-1 and	and the	are all	1000		
-40 dam							a.									цĻ	ul i	JU.	ارا ا	Ľ.	J.,**	- Town		hulud	ul.
Brn 1 Griff	'+						,	-							ni. N	d to a	ηų,	ul i li	at th	n. dt	u q			Mille	ĮI,
-60 dBm	-+							-			+			<u> </u>	-								-		1
-70 dBm	-										_												_		_
																							L		
CF 2.40 Aarker	JZG	HZ							_	10	001	pts		_	_	_	_	_	_	_	_	_	1.) ms,	-
Type M1	Ref		1	Х-	value	9 0.0	5			alue	e dBm		Func	tion				ſ	unc	tior	n Re	sult	1		
D1	M		1		2.8	833 r					9 dB														
		\mathbf{T}											_	10.01		_				1,0	h	_	21.11.5	2024	
ate: 2′	. NC	v.202	4 2	0:19:4	42																				
ate: 2′	. NC	V.202	4 2		42 Dwel	I NV	'NT	1-1	DH	5 24	021	MHz	: Ant	1 A	ccu	ımı	lat	ed							///
			4 2			INV	'nt	1-	DH	5 24	021	MHz	: Ant	1 A	ccu	Imu	Ilat	ed							
Spectr Ref Le	rum	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A	.ccu	IMU	llat	ed		_					
Spectr Ref Le Att SGL	rum evel	1	0 dBm	[Dwell	2.52		• F	RBW	1 M	1Hz	MHz	: Ant	1 A	ccu	imu	llat	ed							
Spectr Ref Le Att SGL	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A	ccu	imu	ilati	ed						[
Spectr Ref Le Att SGL 1Pk Cir	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A	locu	IMU	llat	ed							HA
Spectr Ref Le Att SGL 1Pk Cir	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A	ccu	imu	llat	ed							H
Spectr Ref Le SGL IPk Clr 10 dBm-	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A		imu	llati	ed							
Spectr Ref Le SGL) IPk Clr 10 dBm-	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A				ed							
Spectr Ref Le Att SGL IPk Cir 10 dBm- 0 dBm-	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A				ed							
Spectr Ref Le Att SGL 1Pk Clr 10 dBm-	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant	1 A				ed							
Spectr Ref Le Att SGL IPk Cir 10 dBm- 0 dBm-	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	z Ant	1 A				ed							
Spectr Ref Le Att SGL IPk Cir 10 dBm- 0 dBm-	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (• F	RBW	1 M	1Hz	MHz	: Ant												
Spectr Ref Le Att SGL 1Pk Clr 10 dBm- 0 dBm-	rum evel	1	0 dBm] 1 01	Dwell	2.52	dB (1 M 3 M			: Ant												
Ref Le Att SGL 1Pk Clr 10 dBm- 0 dBm- -1C dBm -2C dBm -3C dBm -4C dBm	rw	1	0 dBm] 1 01	Dwell	2.52	dB (1 M 3 M															
Spectr Ref Le Att SGL 1Pk Clr 10 dBm- 0 dBm-	rw	1	0 dBm] 1 01	Dwell	2.52	dB (1 M 3 M															
Spectr Ref Le Att SGL IPk Cir IO dBm- O dBm- IC dBm - C dBm - C dBm - SC dBm		1	0 dBm] 1 01	Dwell	2.52	dB (1 M 3 M															
Spectr Ref Le Att SGL 10 dBm- 0 dBm- 0 dBm- -0C dBm -0C dBm -50 dBm -60 dBm	rw	1	0 dBm] 1 01	Dwell	2.52	dB (1 M 3 M															
Spectr Ref Le Att SGL IPk Clr 10 dBm- 0 dBm- -1C dBm -2C dBm -2C dBm	rw	1	0 dBm] 1 01	Dwell	2.52	dB (1 M 3 M															
Spectr Ref Le Att SGL 10 dBm- 0 dBm- 0 dBm- 0 dBm- - 10 dBm- 10 dBm- 10 dBm- 10 dBm- 10 dBm- 10 dBm- 10 dBm- 10 dBm-	rum	20.0	0 dBm] 1 01	Dwell	2.52	dB (1 M 3 M															

'no otrum	Dw	ell NVNT	1-0115 24	001011270		alot		Ē
Ref Level 20.00 dBr Att 30 d	m Offset B e SWT		RBW 1 MHz VBW 3 MHz					
GGL TRG:VID	0 - 001	10 115	1011 3 1111	-				
1Pk Cirw				M	1[1]			-10.67 dBr
0 dBm								00000000
				D	1[1]		2.	-2.09 d 833000 m
dBm								
10 dam		Di						
TRG -15.20)0 dBm							
30 d3m								
10 dBm	-							
50 <mark>H</mark> am		the relation		esti pitrita en leb	d all all the topological	n ann sa dh	del lo bipoli la	ditter to be the
50 <mark>lå</mark> am		a ha			, ldt. , senene (k de al de la de	والإلام الأرور احد	Ladda, ar al
1		in the second	and the state	n al miri	a also a co	leart lie a	ի դերը էրըն	din di
70 dBm								
F 2.48 GHz			1000	1 pts				1.0 ms,
arker				1 -				-
Type Ref Trc M1 1	X-valu	0.0 s	<u>Y-value</u> -10.67 dB	Func	tion	Fun	ction Result	t
		833 ms	-2.09 (ЗB				
D1 M1 1	2.			<u> </u>			4.562	21.11.2024
D1 M1 1	2.				Ready		- Martin	
D1 M1 1					Ready		- NAVE	
	20:25:33	II NVNT 1	I-DH5 248	OMHz Ant	teady	ilated		
te: 21.NOV.2024	20:25:33	II NVNT 1	I-DH5 248	OMHz Ant	t1 Accumu	ulated	- Agent	Ē
te: 21.NOV.2024 - 3	20:25:33 Dwe		I-DH5 248	-	1 Accumu	ulated		
be: 21.NOV.2024 3 Spectrum Ref Level 20.00 dBi Att 30 d	20:25:33 Dwe m Offset	2.55 dB 👄		2	1 Accumu	ılated		
spectrum Ref Level 20.00 dBi Att 30 d	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu	ulated	, ngent	[
spectrum Ref Level 20.00 dBi Att 30 d	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu	ulated		[
spectrum Ref Level 20.00 dBi Att 30 d SGL IPK Cirw	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu	lated		
ipectrum Ref Level 20.00 dBi Att 30 d SGL D dBm	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu			
ipectrum Ref Level 20.00 dBi Att 30 d SGL D dBm	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
Image: State of the s	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu			
Det 21. NOV. 2024 31 pectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
xe: 21.3093.2024 pectrum Ref Level 20.00 dBi Att 30 d GL 1Pk Cirw 0 dBm dBm C dBm	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
a: 21.000.2024 3 cpectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
a: 21.000.2024 3 cpectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu			
a: 21.000.2024 3 cpectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu			
ice: 21. NOV.2024 3 icpectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
ice: 21. NOV.2024 3 icpectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
be: 21. NOV.2024 3 Spectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
be: 21. NOV.2024 3 Spectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2				
be: 21. NOV.2024 3 Ref Level 20.00 dBit 30 d GGL 30 d 30 d IPk Clrw 0 dBm 0 dBm dBm 0 dBm 0 dBm dBm 0 dBm 0 dBm 30 dBm 0 dBm 0 dBm	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz	2	1 Accumu			
ice: 21. NOV.2024 3 ice: 21. NOV.2024 3 ice: 21. NOV.2024 3 ice: 20.00 dBit 30 d ice: 30 d 30 d ice: 40 d 30 d	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MH2 VBW 3 MH2		1 Accumu			
be: 21. NOV.2024 3 Spectrum	20:25:33 Dwe m Offset	2.55 dB 👄	RBW 1 MHz		1 Accumu			

Band	d Edge	9					
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-51.27	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-49.89	-20	Pass

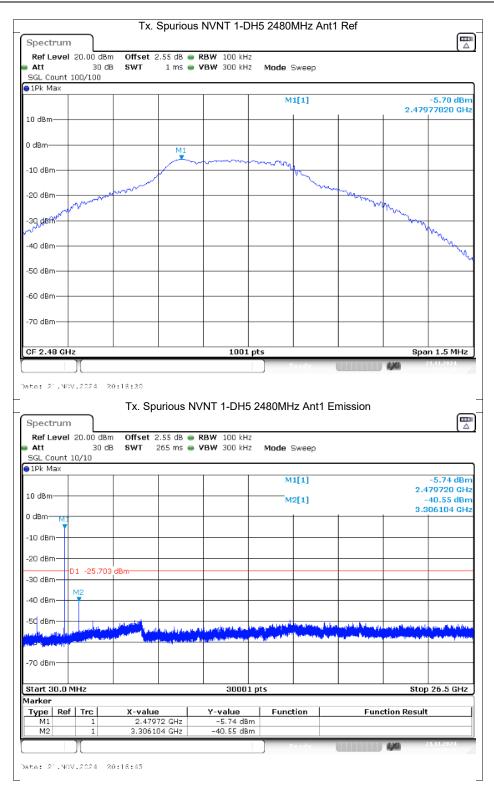
		Band Edd		Test G 1-DH5 240		nt1 No-Ho	nning Ref	F	
Spectrum					21011 12 7 4		pping rici		Ē
Ref Level 2				BW 100 kH					(^Δ
SGL Count 1	30 dB 00/100	SWT	1 ms 👄 V	' BW 300 kH:	Z Mode S	Sweep			
1Pk Max	,								
					м	1[1]		2 401	-4.09 dBn 78420 GH:
10 dBm								2.401	-70420 GH
0 dBm				M1 X -					
-10 dBm				/V	٩				
-20 dBm				- <u>f</u>	\rightarrow				
					h				
-30 dBm				1					
-40 dBm				(
			$ \sim$		1	Λ			
-50 dBm						5			
Ale althour	mound	month	mm			way	man	Muma	Margan AA
-70 dBm									
CF 2.402 GH	z			1001	nte			Spa	n 8.0 MHz
				1001	pcs				
ate: 2′.NCV			JVNT 1-D			No-Hopp	ing Emiss	ion	2 1.11.2024 20:15:11
ate: 21.NeV Spectrum	Ba	nd Edge N		H5 2402N	/Hz Ant1	No-Hopp	ing Emiss	ion	21.11.2024
Spectrum Ref Level 2	Ba	nd Edge N	2.52 dB 👄 R	H5 2402N	/Hz Ant1		ing Emiss	ion	21.11.2024
Spectrum Ref Level 2 Att SGL Count 10	Bar 20.00 dBm 30 dB	nd Edge N	2.52 dB 👄 R	H5 2402N	/Hz Ant1		ing Emiss	ion	
Spectrum Ref Level 2 Att SGL Count 10	Bar 20.00 dBm 30 dB	nd Edge N	2.52 dB 👄 R	H5 2402N	/Hz Ant1	Sweep	ing Emiss	ion	
Spectrum Ref Level 2 Att SGL Count 11 1Pk Max	Bar 20.00 dBm 30 dB	nd Edge N	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBr 75000 GH
Spectrum Ref Level 2 Att SGL Count 11 1Pk Max 10 dBm	Bar 20.00 dBm 30 dB	nd Edge N	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr
Spectrum Ref Level 2 Att SGL Count 11 1Pk Max 10 dBm	Bar 20.00 dBm 30 dB	nd Edge N	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr
Spectrum Ref Level 2 Att SGL Count 11 91Pk Max 10 dBm	Bar 20.00 dBm 30 dB	nd Edge N	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm	Ba 20.00 dBm 30 dB 00/100	nd Edge N Offset 2 SWT	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr
Spectrum Ref Level 2 Att SGL Count 11 IPk Max 0 dBm 0 dBm -10 dBm -20 dBm D	Bar 20.00 dBm 30 dB	nd Edge N Offset 2 SWT	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr
Spectrum Ref Level 2 Att SGL Count 11 IPk Max 0 dBm 0 dBm -10 dBm -20 dBm D	Ba 20.00 dBm 30 dB 00/100	nd Edge N Offset 2 SWT	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr
Spectrum Ref Level 2 Att SGL Count 11 9 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Ba 20.00 dBm 30 dB 00/100	nd Edge N Offset 2 SWT	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr
Spectrum Ref Level 2 Att SGL Count 11 IPk Max I0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Ba 20.00 dBm 30 dB 00/100	nd Edge N Offset 2 SWT	2.52 dB 👄 R	H5 2402N	//Hz Ant1 z Mode s	Sweep 1[1]	ing Emiss	2.401	-4.19 dBi 75000 GH 57.00 dBi 00000 CH
Spectrum Ref Level 2 Att SGL Count 11 IPk Max I0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm	Bai 20.00 dBm 30 dB 00/100	dBm	2.52 dB • R 1 ms • V	H5 2402N	/Hz Ant1	Sweep 1[1] 2[1]	ing Emiss	2.401	-4.19 dBr 75000 GH 57.00 dBr 00000 GH
Spectrum Ref Level 2 Att SGL Count 11 IPk Max I0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Bai 20.00 dBm 30 dB 00/100	dBm	2.52 dB • R 1 ms • V	H5 2402N BW 100 kH BW 300 kH	/Hz Ant1	Sweep 1[1] 2[1]		2.401	-4.19 dBr 75000 GH 57.00 dBr 00000 CH
Spectrum Ref Level 2 Att SGL Count 11 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50	Bai 20.00 dBm 30 dB 00/100	dBm	2.52 dB • R 1 ms • V	H5 2402N BW 100 kH BW 300 kH	/Hz Ant1	Sweep 1[1] 2[1]		2.401	-4.19 dBr 75000 GH 57.00 dBr 00000 GH
Spectrum Ref Level 2 Att SGL Count 11 IPK Max I0 dBm I0 dB	Bai 20.00 dBm 30 dB 00/100	dBm	2.52 dB • R 1 ms • V	H5 2402N	/Hz Ant1	Sweep 1[1] 2[1]		2.401 - 2.400	-4.19 dBr 75000 GH 57.00 dBr 00000 GH
Spectrum Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm	Bai 20.00 dBm 30 dB 00/100	dBm	2.52 dB • R 1 ms • V	H5 2402N BW 100 kH BW 300 kH	/Hz Ant1	Sweep 1[1] 2[1]		2.401 - 2.400	-4.19 dBr 75000 GH 57.00 dBr 00000 GH
Spectrum Ref Level 2 Att SGL Count 11 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 dMarker Type	Bai 20.00 dBm 30 dB 00/100 1 -24.087 1 -24.087 GHz	nd Edge N Offset 2 SwT dBm dBm	2.52 dB • R 1 ms • V	H5 2402N BW 100 kH 300	/Hz Ant1	Sweep 1[1] 2[1] 	d, b Mond al flegh	2.401 - 2.400	2.406 GHz
Spectrum Ref Level 2 Att SGL Count 11 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm	Bai 20.00 dBm 30 dB 00/100 1 -24.087 1 -24.087 GHz GHz 1 1	dBm	2.52 dB • R 1 ms • V	H5 2402N BW 100 kH BW 300 kH BW 300 kH BW 300 kH BW BW 300 kH BW BW 300 kH BW BW 300 kH BW BW 300 kH BW BW 300 kH BW BW BW BW BW BW BW BW BW BW BW BW BW	MHz Ant1	Sweep 1[1] 2[1] 	d, b Mond al flegh	2.401 - 2.400 	-4.19 dBr 75000 GH
Spectrum Ref Level 2 Att SGL Count 11 IPK Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Bai 20.00 dBm 30 dB 00/100 1 -24.087 1 -24.087 GHz Trc 1	dBm	2.52 dB • R 1 ms • V 4	H5 2402N BW 100 kH BW 300	MHz Ant1	Sweep 1[1] 2[1] 	d, b Mond al flegh	2.401 - 2.400 	-4.19 dBr 75000 GH

	Band Edg	ge NVNT 1	-DH5 248	80MHz Ar	nt1 No-Ho	pping Re	f	Ē
Ref Level 20.00 c	iBm Offset 2	2.55 dB 👄 R	BW 100 kH;	2				
Att 30	dB SWT		BW 300 kH:		Sweep			
SGL Count 100/100 1Pk Max								
				М	1[1]		9.470	-5.70 dBn 78420 GH
10 dBm							2.479	78420 GH
0 dBm			M1					
-10 dBm			$- \sim$	<u>ک</u>				
				1				
-20 dBm			1					
-30 dBm			1					
			{					
-40 dBm		~ ~]			0			
-50 dBm				1	۲ <u>٦</u>			
	maron	ww			Lorne	man.	mm	Buches
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								a low. W.J
-70 dBm								
-yo dbiii								
CF 2.48 GHz			1001	nts			Sna	n 8.0 MHz
Ĩ					eady		100	21.11.2024
Spectrum	20:18:19 Band Edge I				No-Hopp	ing Emiss	ion	
Spectrum Ref Level 20.00 c Att 30	Band Edge I IBm Offset 2 dB SWT	2.55 dB 👄 R		2		ing Emiss	ion	
Spectrum Ref Level 20.00 c Att 30 SGL Count 100/100	Band Edge I IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kH:	2		ing Emiss	ion	
Spectrum Ref Level 20.00 c Att 30 SGL Count 100/100	Band Edge I IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 2 Mode S		ing Emiss		-5.74 dBr
Spectrum Ref Level 20.00 c Att 30 SGL Count 100/100 1Pk Max	Band Edge I IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 Mode S	Sweep	ing Emiss	2.479	-5.74 dBr 75000 GH 57.99 dBr
Spectrum Ref Level 20.00 c Att 30	Band Edge I IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 Mode S	Sweep 1[1]	ing Emiss	2.479	-5.74 dBn 75000 GH 57.99 dBn
Spectrum           Ref Level 20.00 c           Att         30           SGL Count 100/100           IPk Max           10 dBm           0 qBm	Band Edge I IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 Mode S	Sweep 1[1]	ing Emiss	2.479	-5.74 dBr 75000 GH 57.99 dBr
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 qBm           -10 dBm	Band Edge I IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 Mode S	Sweep 1[1]	ing Emiss	2.479	-5.74 dBn 75000 GH 57.99 dBn
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 qBm           -10 dBm           -20 dBm           D1 -25.7	Band Edge I	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 Mode S	Sweep 1[1]	ing Emiss	2.479	-5.74 dBn 75000 GH 57.99 dBn
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           -10 dBm           -10 dBm	Band Edge I	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 Mode S	Sweep 1[1]	ing Emiss	2.479	-5.74 dBn 75000 GH 57.99 dBn
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 qBm           -10 dBm           -20 dBm           D1 -25.7	Band Edge I	2.55 dB 👄 R	<b>BW</b> 100 kH:	2 Mode S	Sweep 1[1]	ing Emiss	2.479	-5.74 dBn 75000 GH 57.99 dBn 50000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 qBm           -10 dBm           -20 dBm           -30 cBm           -40 cBm	Band Edge I Bm Offset 2 dB SwT 	2.55 dB • R	BW 100 kH; BW 300 kH;	2 Mode 9	Sweep 1[1] 2[1]		2.479	-5.74 dBr 75000 GH 557.99 dBr 50000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 qBm           -10 dBm           -20 dBm           -30 cBm           -40 cBm	Band Edge I Bm Offset 2 dB SwT 	2.55 dB • R	BW 100 kH; BW 300 kH;	2 Mode 9	Sweep 1[1] 2[1]		2.479	-5.74 dBr 75000 GH 557.99 dBr 50000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 qPm           -10 dBm           -20 dBm           -20 dBm           -30 cBm           -40 dBm           -50 dBm           -60 dBm	Band Edge I Bm Offset 2 dB SwT 	2.55 dB • R	BW 100 kH; BW 300 kH;	2 Mode 9	Sweep 1[1] 2[1]		2.479	-5.74 dBr 75000 GH 557.99 dBr 550000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 dPm           -10 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -60 dBm	Band Edge I Bm Offset 2 dB SwT 	2.55 dB • R	BW 100 kH; BW 300 kH;	2 Mode 9	Sweep 1[1] 2[1]		2.479	-5.74 dBr 75000 GH 557.99 dBr 550000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -20 dBm           -30 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm	Band Edge I Bm Offset 2 dB SwT 	2.55 dB • R	BW 100 kH; BW 300 kH;	2 Mode s Mode s M	Sweep 1[1] 2[1]		2.479 - 2.483 	-5.74 dBr 75000 GH 557.99 dBr 50000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -20 dBm           -30 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm	Band Edge I	2.55 dB • R	BW 100 kH BW 300 kH 300	2 Mode s M M	Sweep 1[1] 2[1] #rg/dut/du	Burney (mark)	2.479 - 2.483 - 	-5.74 dBn 75000 GH 57.99 dBn 50000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 qBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm	Band Edge I Bm Offset 2 dB SwT	2.55 dB • R 1 ms • V	BW 100 kH; BW 300 kH; 	2 2 Mode s M M M M Pts Func	Sweep 1[1] 2[1] #rg/dut/du	Burney (mark)	2.479 - 2.483 	-5.74 dBn 75000 GH 57.99 dBn 50000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           0 dBm           -20 dBm           -30 cBm           -50 dBm           -50 dBm           -70 dBm	Band Edge I IBm Offset 2 dB SWT 102 dBm 102	2.55 dB   R	BW 100 kH; BW 300 kH; 	2 2 Mode ( ۲ ۳ ۳	Sweep 1[1] 2[1] #rg/dut/du	Burney (mark)	2.479 - 2.483 - 	-5.74 dBn 75000 GH 57.99 dBn 50000 GH
Spectrum           Ref Level 20.00 c           Att 30           SGL Count 100/100           IPk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -20 dBm           -30 dBm           -30 dBm           -70 dBm	Band Edge I IBm Offset 2 dB SWT 102 dBm 102	2.55 dB   R  1 ms  V	BW 100 kH; BW 300 kH; 	2 2 Mode ( ۲ ۳ ۳	Sweep 1[1] 2[1] #rg/dut/du	Burney (mark)	2.479 - 2.483 - 	-5.74 dBn 75000 GH 57.99 dBn 50000 GH

# **Band Edge(Hopping)**

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-50.3	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-49.02	-20	Pass

	D			Graphs	I- A - +4	in a Daf	
Cruce et au	Ba	nd Edge(Hop	ping) NVNT 1-E	DH5 2402MF	Hz Ant1 Hopp	ing Ref	
Spectrum Ref Level	20.00 dBr	n Offset 2.52	dB 👄 RBW 100 kH	47			
Att	30 di		ms - VBW 300 kH		eep		
SGL Count 2 9 1Pk Max	2000/2000						
				M1[	1]	0.40	-4.09 dBm 578020 GHz
10 dBm						2.40	
0 dBm				n m	n Arm	. non	M1
-10 dBm			/*	n /	<u>\</u>	<u>n / 1</u>	+
-20 dBm			ſ		$\mathcal{A}$	$\mathcal{N}$	hr
-20 UBII			Ŋ	V	V	Ŵ	พัง
-30 dBm			ſ~				
-40 dBm			(				
			M				
-50 dBm		. h					
-60 dBm	when	Murrall	ΨV				
-70 dBm							
CF 2.402 GF	1z		100:	1 pts		Spa	an 8.0 MHz
	Л			Rea	dy	44	
Date: 21.NOV	1.2024 - 2	0:20:37					
	Band	Edge(Hoppin	g) NVNT 1-DH	5 2402MHz	Ant1 Hopping	Emission	_
Spectrum							
Ref Level	20.00 dBr 30 dl		dB 👄 <b>RBW</b> 100 kH ms 👄 <b>VBW</b> 300 kH		ieen		
SGL Count 2				ie indue on	cop		
●1Pk Max				M1[	1]		-3.87 dBm
10 dBm				M2[			495000 GHz -57.41 dBm
0 dBm				m2L	*1		000000 GHZ
-10 dBm							barti
-20 dBm-0	1 -24.088	dBm					1.04
-30 dBm							
-40 dBm							
-50 88m							
-60 dBm	whenwhe	awardhamana	uniashiered have a strategi	monormeter	waterstyneration	manyun	EM The second
-70 dBm							
Start 2.306	GHz		100	1 pts		Stop	2.406 GHz
Marker	Trol	V-uslus	Y-value	Functio		Function Docu	
Type Ref	1 Trc	X-value 2.40495 G	Hz -3.87 di	Bm		Function Resul	ι
M1				Direc	1		
	1	2.4 G 2.3112 G					
M1 M2	1				dy	4/0	21.11.2024
M1 M2		2.3112 G			dy	490	21.11.2024


	anu Luge(i	iopping) i	NVINT T-D	H5 2480	MHz Ant1	Hopping	Ret	Ē
Ref Level 20.00 d	IBm Offset 2	2.55 dB 🗰 R	BW 100 kHz	,				
Att 30	dB SWT		<b>BW</b> 300 kHz		Sweep			
SGL Count 2000/200 9 1Pk Max	00							
				М	1[1]		0.470	-5.64 dBm
10 dBm							2.476	77920 GHz
0 dBm M1								
	m	m	m	۹				
$\lambda / \lambda$	1 4			1				
-20\dBm	nd n	x -	Not the second s	<u></u>				
-30 dBm								
				<i>/</i>				
-40 dBm				{				
-50 dBm					m.			
					Vin	Maria	a marken	and a start
-60 dBm							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-70 dBm								
-yo dbiii								
CF 2.48 GHz			1001	pts			Spa	n 8.0 MHz
				P	leady.		4,44	21.11.2024
Spectrum	ia Eage(Hop	oping) NV	NT 1-DH5	2480MH	z Ant1 Ho	opping Em	nission	
Spectrum Ref Level 20.00 d Att 30	IBm Offset 2 dB SWT	2.55 dB 👄 R	NT 1-DH5	2		opping Err	nission	
Spectrum Ref Level 20.00 d Att 30 SGL Count 2000/200	IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kHz	2		opping Em	nission	
Spectrum Ref Level 20.00 d Att 30 SGL Count 2000/200	IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9		opping Em		-5.72 dBn
Spectrum Ref Level 20.00 d Att 30 SGL Count 2000/200	IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9 M	Sweep	opping Em	2.477	-5.72 dBn 85000 GH
Spectrum Ref Level 20.00 d Att 30 SGL Count 2000/200 1Pk Max	IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9 M	Gweep 1[1]	ppping Em	2.477	-5.72 dBn 85000 GH: 56.37 dBn
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/201           IPk Max           10 dBm           AgBm	IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9 M	Gweep 1[1]	ppping Em	2.477	-5.72 dBn 85000 GH: 56.37 dBn
Spectrum           Ref Level         20.00 d           Att         30           SGL         Count         2000/200           1Pk         Max         10 dBm           0 dBm         0 dBm         0 dBm	IBm Offset 2 dB SWT	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9 M	Gweep 1[1]	ppping Em	2.477	-5.72 dBn 85000 GH: 56.37 dBn
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/201           IPk Max           10 dBm           Address           Address           10 dBm           Address           Address           Address           Sign dBm           Address           Addres  <	IBm Offset 2 dB SWT 00	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9 M	Gweep 1[1]	ppping Em	2.477	-5.72 dBn 85000 GH: 56.37 dBn
Spectrum           Ref Level         20.00 d           Att         30           SGL         Count         2000/200           IPk Max         10 dBm         0           Age         0         0           Age         0         0           Age         0         0           SGL         0         0           Age         0         0	IBm Offset 2 dB SWT 00	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9 M	Gweep 1[1]	ppping Em	2.477	-5.72 dBn 85000 GH: 56.37 dBn
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/201           IPk Max           10 dBm           Adbm           Adbm           Adbm           Adbm           Adbm           Adbm           Sign dBm           Adbm           Adbm           Adbm	IBm Offset 2 dB SWT 00	2.55 dB 👄 R	<b>BW</b> 100 kHz	2 2 Mode 9 M	Gweep 1[1]	ppping Em	2.477	-5.72 dBn 85000 GH: 56.37 dBn
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/200           IPk Max           10 dBm           AgdBm           IC dBm           -30 cBm           -40 cBm           -50 dBm	IBm Offset 2 dB SWT 00 39 dBm	2.55 dB • R	28W 100 kH 28W 300 kH 200 kH	2 Mode s Mode s	Sweep 1[1] 2[1]		2.477	-5.72 dBn 85000 GH 5000 GH
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/200           IPk Max           10 dBm           AgBm           IC dBm           -30 cBm           -30 cBm           -50 dBm	IBm Offset 2 dB SWT 00	2.55 dB • R	28W 100 kH 28W 300 kH 200 kH	2 Mode s Mode s	Sweep 1[1] 2[1]		2.477	-5.72 dBn 85000 GH 5000 GH
Spectrum           Ref Level 20.00 d           Att         30           SGL Count 2000/200           1Pk Max           10 dBm           Add BBm           Add BB	IBm Offset 2 dB SWT 00 39 dBm	2.55 dB • R	28W 100 kH 28W 300 kH 200 kH	2 Mode s Mode s	Sweep 1[1] 2[1]		2.477	-5.72 dBn 85000 GH 5000 GH
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/200           IPk Max           10 dBm           AgBm           IC dBm           -30 cBm           -30 cBm           -50 dBm	IBm Offset 2 dB SWT 00 39 dBm	2.55 dB • R	28W 100 kH 28W 300 kH 200 kH	2 Mode s Mode s	Sweep 1[1] 2[1]		2.477	-5.72 dBn 85000 GH 5000 GH
Spectrum           Ref Level 20.00 d           Att         30           SGL Count 2000/200           1Pk Max           10 dBm           Add BBm           Add BB	IBm Offset 2 dB SWT 00 39 dBm	2.55 dB • R	28W 100 kH 28W 300 kH 200 kH	2 2 Mode S M M	Sweep 1[1] 2[1]		2.477 - 2.483 	-5.72 dBn 95000 GH: 56.37 dBn 50000 GH:
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/200           Thk Max           10 dBm           AgdBm           10 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.476 GHz	IBm Offset 2 dB SWT 00 39 dBm 39 dBm	2.55 dB • R	2BW 100 kH2 2BW 300 kH2	2 Mode s M M M	Sweep 1[1] 2[1]		2.477 	-5.72 dBn 95000 GH: 56.37 dBn 50000 GH: 2.576 GHz
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/200           IPk Max           10 dBm           AgBm           Ind dBm           AgBm           Ind dBm           Ind dBm           AgBm           Ind dBm	Bm Offset 2 dB SWT 00 39 dBm 39 dBm 39 dBm X-value	2.55 dB	28W 100 kH 78W 300 kH 78W 30	2 Mode S M M M	Sweep 1[1] 2[1]		2.477 - 2.483 	2.576 GHz
Spectrum           Ref Level         20.00 d           Att         30           SGL         Count         2000/200           IPk Max         10 dBm	Bm Offset 2 dB SWT 00 39 dBm 39 dBm X-value 2.477 2.487	2.55 dB  1 ms  V 1 ms  V	28W 100 kH2 78W 300 kH2 78W 3	2 Mode 5	Sweep 1[1] 2[1]		2.477 	-5.72 dBn 95000 GH: 56.37 dBn 50000 GH: 2.576 GHz
Spectrum           Ref Level         20.00 d           Att         30           SGL         Count         2000/200           1Pk         Max         10           IPk         Max         10           IO         dBm         10           Add         Bm         10           Add         Bm         10           -30 dBm         D1         -25.6           -40 dBm         -40 dBm         -40 dBm           -50 dBm/2         -50 dBm/2         -50 dBm           -70 dBm         -70 dBm         -70 dBm           Start 2.476 GHz         Marker         Type           Type         Ref         Trc           M1         1         1	Bm Offset 2 dB SWT 00 39 dBm 39 dBm X-value 2.477 2.487	2.55 dB 1 ms V v v v v v v v v v	28W 100 kHz /BW 300 kHz /BW 3	2 Mode 5	Sweep 1[1] 2[1]		2.477 	-5.72 dBn 95000 GH: 56.37 dBn 50000 GH: 2.576 GHz
Spectrum           Ref Level 20.00 d           Att 30           SGL Count 2000/200           IPk Max           10 dBm           Add Bm           10 dBm           Add Bm           Add Bm           Add Bm           Add Bm           Add Bm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.476 GHz           Marker           Type           Ref         Trc           M1         1	Bm Offset 2 dB SWT 00 39 dBm 39 dBm X-value 2.477 2.487	2.55 dB  1 ms  V 1 ms  V	28W 100 kH2 78W 300 kH2 78W 3	2 Mode 5	Sweep 1[1] 2[1]		2.477 	-5.72 dBr 85000 GH 56.37 dBr 50000 GH

## **Conducted RF Spurious Emission**

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-33.4	-20	Pass
NVNT	1-DH5	2441	Ant1	-34.57	-20	Pass
NVNT	1-DH5	2480	Ant1	-34.85	-20	Pass

	Tv (	Sourious		apns I5 2402MHz Ant	1 Pof		
Spectrum	1	Spurious i			i Kei		Ē
Ref Level 20.00 dBr	n Offset 2	52 dB 👄 P	<b>BW</b> 100 kHz				
■ Att 30 d			BW 300 kHz	Mode Sweep			
SGL Count 100/100							
The way				M1[1]			-4.08 dBm
						2.401	77970 GHz
10 dBm							
0 dBm		M1					
		- <u> </u>		man			
-10 dBm				~ " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	a manun			m	mm		
-20 dBm					- and	m.	
-30/dBm						Marine .	
-3000000							Mar
-40 dBm							Man
							પ
-50 dBm							
co. In							
-60 dBm							
-70 dBm							
CF 2.402 GHz			1001 p	ts		Sna	n 1.5 MHz
Υ Π				Deady		430	21.11.2024
	Tx. Spi	urious NV	NT 1-DH5 2	2402MHz Ant1 E	mission		_
Spectrum Ref Level 20.00 dBr	n Offset 2	.52 dB 👄 R	<b>BW</b> 100 kHz		Emission		
· _	n Offset 2	.52 dB 👄 R		2402MHz Ant1 E Mode Sweep	Emission		
RefLevel 20.00 dBr Att 30 d	n Offset 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep	Emission		
Ref Level 20.00 dBr Att 30 d SGL Count 10/10	n Offset 2	.52 dB 👄 R	<b>BW</b> 100 kHz		mission	2.4	-4.19 dBm
Ref Level 20.00 dBr Att 30 d SGL Count 10/10	n Offset 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep	Emission	-	-4.19 dBm 102070 GHz -37.48 dBm
Ref Level 20.00 dBr Att 30 d SGL Count 10/10 1Pk Max	n Offset 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep M1[1]	Emission	-	-4.19 dBm 102070 GHz -37.48 dBm
Ref Level         20.00 dBr           Att         30 dl           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         Max	n Offset 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep M1[1]		-	-4.19 dBm 102070 GHz -37.48 dBm
Ref Level         20.00 dBr           Att         30 dl           SGL Count         10/10           1Pk Max         10 dBm	n Offset 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep M1[1]	mission	-	-4.19 dBm 402070 GHz
Ref Level         20.00 dBr           Att         30 dl           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         10 dBm           -10 dBm         -20 dBm	n Offset 2 B SWT 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep M1[1]		-	-4.19 dBm 102070 GHz -37.48 dBm
Ref Level         20.00         dBR           Att         30 dl         SGL Count         10/10           1Pk Max         10 dBm         0 dBm         10 dBm           0 dBm         M1         -10 dBm         -20 dBm         01 -24.079	n Offset 2 B SWT 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep M1[1]		-	-4.19 dBm 102070 GHz -37.48 dBm
Ref Level         20.00         dBr           Att         30 dl         30 dl           SGL         Count         10/10           1Pk         Max           10 dBm         0           0 dBm         M1           -10 dBm         0           -20 dBm         D1 -24.079           -30 dBm         M2	n Offset 2 B SWT 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep M1[1]		-	-4.19 dBm 102070 GHz -37.48 dBm
Ref Level         20.00         dBR           Att         30 dl         SGL Count         10/10           1Pk Max         10 dBm         0 dBm         10 dBm           0 dBm         Max         10 dBm         10 dBm           -10 dBm         -10 dBm         -20 dBm         01 -24.079	n Offset 2 B SWT 2	.52 dB 👄 R	<b>BW</b> 100 kHz	Mode Sweep M1[1]		-	-4.19 dBm 102070 GHz -37.48 dBm
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         10 dBm           -10 dBm         01 -24.079           -30 dBm         M2           -40 dBm         10 dBm	n Offset 2 B SWT 2	.52 dB 👄 R	BW 100 kHz BW 300 kHz	Mode Sweep M1[1] M2[1] M2[1]		3.2	-4.19 dBm I02070 GHz -37.48 dBm 201988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         10 dBm           -10 dBm         01 -24.079           -30 dBm         M2           -40 dBm         40 dBm	n Offset 2 B SWT 2	. 52 dB • R 265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep M1[1] M2[1] M2[1]		3.2	-4.19 dBm 102070 GHz 37.48 dBm 201988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         10 dBm           -10 dBm         01 -24.079           -30 dBm         M2           -40 dBm         40 dBm	n Offset 2 B SWT 2	52 dB • R 265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep M1[1] M2[1] M2[1]		- 3.2	-4.19 dBm 102070 GHz 37.48 dBm 201988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         10 dBm           -10 dBm         0 1 -24.079           -30 dBm         M2           -40 dBm         -50 dBm	n Offset 2 B SWT 2	52 dB • R 265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep M1[1] M2[1] M2[1]		- 3.2	-4.19 dBm 102070 GHz 37.48 dBm 201988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         40 dBm           -20 dBm         01 -24,079           -30 dBm         M2           -40 dBm         -30 dBm           -50 dBm         -30 dBm	n Offset 2 B SWT 2	52 dB • R 265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep M1[1] M2[1] M		3.2	-4.19 dBm 102070 GHz 37.48 dBm 201988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         10 dBm           -10 dBm         10 -24,075           -30 dBm         M2           -40 dBm         10           -50 dBm         M2           -70 dBm         10 -24,075           -70 dBm         M2           -70 dBm         M2	n Offset 2 B SWT 2	52 dB • R 265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep M1[1] M2[1] M		3.2	-4.19 dBm 102070 GHz 37.48 dBm 201988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           10 dBm         10           -10 dBm         10           -20 dBm         01 -24.075           -30 dBm         M2           -40 dBm         10           -50 dBm         M2           -70 dBm         10           -70 dBm         10           Att         10           Att         10           Att         10           Att         10           Att         10           -20 dBm         10           -20 dBm         10           -30 dBm         10           -50 dBm         10           -70 dBm         10           Att         10           Att         10	n Offset 2 B SWT 2	252 dB  References	BW 100 kHz BW 300 kHz	Mode Sweep M1[1] M2[1] M		3.2	-4.19 dBm 02070 GHz 37.48 dBm 01988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           0 dBm         10 dBm           -10 dBm         10           -20 dBm         10           -20 dBm         10           -20 dBm         10           -20 dBm         10           -30 dBm         M2           -40 dBm         10           -56 dBm         10           -70 dBm         10           -70 dBm         10	n Offset 2 B SWT 2 D D D D D D D D D D D D D D D D D D D	265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep  M1[1]  M2[1]  M2[1		3.2	-4.19 dBm 02070 GHz 37.48 dBm 01988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10 dBm           10 dBm         0           -20 dBm         01 -24.079           -30 dBm         M2           -40 dBm         91 -24.079           -30 dBm         M2           -40 dBm         -50 dBm           -50 dBm         M2           -70 dBm         -70 dBm           -70 dBm         M2           -70 dBm         M2           -70 dBm         M2           -70 dBm         M2	n Offset 2 B SWT 2	265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep  M1[1]  M2[1]  M2[1		3.2	-4.19 dBm 02070 GHz 37.48 dBm 01988 GHz
Ref Level         20.00 dBr           Att         30 d           SGL Count         10/10           1Pk Max         10           10 dBm         0           -20 dBm         D1 -24.079           -30 dBm         M2           -40 dBm         M2           -50 dBm         M2           -70 dBm         M2           -70 dBm         M2           -70 dBm         M2           -70 dBm         M1           Type         Ref           Type         Ref           Type         Ref	n Offset 2 B SWT 2 D D D D D D D D D D D D D D D D D D D	265 ms • V	BW 100 kHz BW 300 kHz	Mode Sweep  M1[1]  M2[1]  M2[1		3.2	-4.19 dBm 02070 GHz 37.48 dBm 01988 GHz





### **END OF REPORT**