

Global United Technology Services Co., Ltd.

Report No.: GTS201806000246F02

FCC Report (Bluetooth)

Applicant: FORM ELECTRONICS CO.,Ltd

Address of Applicant: 4F Bldg E, Junfeng Science&Technology Park, Lezhujiao,

Xixiang, Bao'an Dist, Shenzhen, China

Manufacturer/Factory: FORM ELECTRONICS CO., Ltd

Address of 4F Bldg E, Junfeng Science&Technology Park, Lezhujiao,

Manufacturer/Factory: Xixiang, Bao'an Dist, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Bluetooth Speaker

Model No.: FM0184, FM0164

FCC ID: 2AAL7-FM0184

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: June 20, 2018

Date of Test: June 21-26, 2018

Date of report issued: June 27, 2018

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 27, 2018	Original

Prepared By:	Bill. Yvan	Date:	June 27, 2018
Check By:	Project Engineer Andy w	Date:	June 27, 2018
	Reviewer		

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
_			
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	7
	5.5	TEST LOCATION	7
	5.6	ADDITIONAL INSTRUCTIONS	8
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2		
8	TES	T SETUP PHOTO	36
a	FIIT	CONSTRUCTIONAL DETAILS	37

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB					
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth Speaker
Model No.:	FM0184, FM0164
Test Model No:	FM0184
	identical in the same PCB layout, interior structure and electrical circuits. model name for commercial purpose.
Serial No.:	FM0184-2018060026
Test sample(s) ID:	GTS201806000246-1
Sample(s) Status	Engineer sample
Hardware version:	FM0184-V0.3 2018-04-29
Software version:	US6988A_(J-023)(LACOSTE SPEAKER)_DIDI_20180518_v1.1
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(declare by applicant)
Power Supply:	Battery: 3.7V, 2000mAh

Operation Frequency each of channel								
Channel Frequency Channel Frequency Ch						Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
•			. !	•	• !	• !	• !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Fixed Frequency Settings:

Power level setup						
Support Units	Description	Manufacturer	Model			
	Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500			
Mode	Channel	Channel Frequency (MHz)				
GFSK	CH01	2402	TX level :			
	CH20	2440	Maximum			
	CH40	2480	Iviaxiiiiuiii			

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018		
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018		
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018		
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018		
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018		
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018		
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	June 28 2017	June 27 2018		

Conduc	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018		

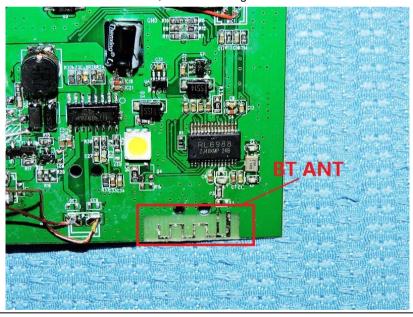
Gen	General used equipment:							
Ite m	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

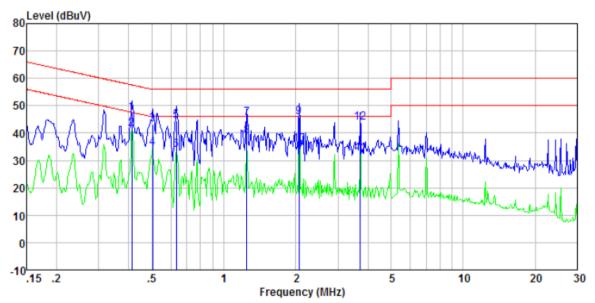
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

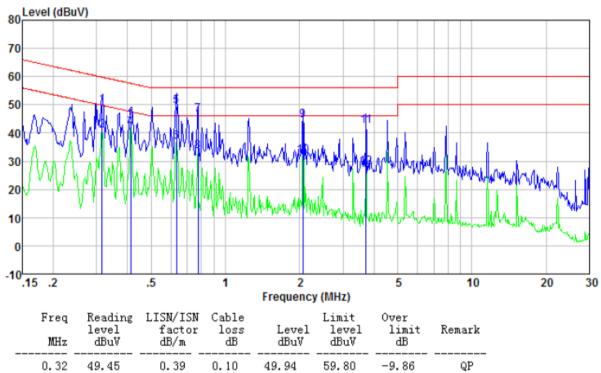
The antenna is PCB antenna, the best case gain of the antenna is 0dBi

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Fragues average (MILE)	Frequency range (MHz) Limit (dBuV)				
		Average				
	0.15-0.5	56 to 46*				
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test setup:	Reference Plane					
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	rer			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details	,				
Test results:	Pass					

Measurement data

Report No.: GTS201806000246F02


Mode:TX modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHProbe:Line

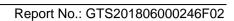
Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.41	47.08	0.35	0.11	47.54	57.59	-10.05	QP
0.41	41.02	0.35	0.11	41.48	47.59	-6.11	Average
0.50	42.80	0.31	0.11	43.22	56.00	-12.78	QP
0.50	33.94	0.31	0.11	34.36	46.00	-11.64	Average
0.63	44.04	0.28	0.12	44.44	56.00	-11.56	QP
0.63	33.37	0.28	0.12	33.77	46.00	-12.23	Average
1.25	45.08	0.20	0.16	45.44	56.00	-10.56	QP
1.25	38.33	0.20	0.16	38.69	46.00	-7.31	Average
2.07	45.34	0.20	0.18	45.72	56.00	-10.28	QP
2.07	35.36	0.20	0.18	35.74	46.00	-10.26	Average
3.72	32.19	0.20	0.18	32.57	56.00	-23.43	QP
3, 72	43.29	0.20	0.18	43.67	46.00	-2.33	Äverage

Mode:TX modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHProbe:Neutral

MHz	level dBuV	factor dB/m	loss dB	Level dBuV	level dBuV	limit dB	Remark
0. 32 0. 41 0. 41 0. 63 0. 63 0. 78 0. 78 2. 07 2. 07 3. 72	49. 45 40. 27 43. 80 41. 35 48. 94 36. 54 46. 21 33. 04 44. 17 31. 31 42. 09 27. 36	0. 39 0. 39 0. 35 0. 35 0. 28 0. 28 0. 24 0. 24 0. 20 0. 20 0. 20	0. 10 0. 10 0. 11 0. 11 0. 12 0. 12 0. 14 0. 14 0. 18 0. 18 0. 18	49.94 40.76 44.26 41.81 49.34 36.94 46.59 33.42 44.55 31.69 42.47 27.74	59.80 49.80 57.59 47.59 56.00 46.00 56.00 46.00 56.00 46.00	-9.86 -9.04 -13.33 -5.78 -6.66 -9.06 -9.41 -12.58 -11.45 -14.31 -13.53 -18.26	QP Average
J. 12	21.30	0.20	0.10	21.14	40.00	10.20	TAGE

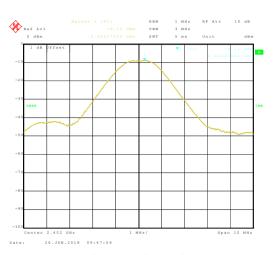
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

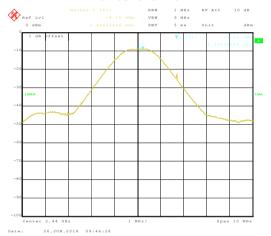


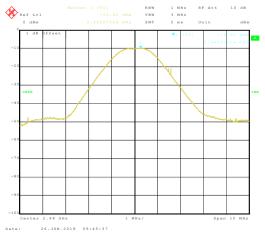
7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-9.12		
Middle	-9.10	30.00	Pass
Highest	-10.02		

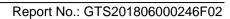



Test plot as follows:

Lowest channel

Middle channel

Highest channel

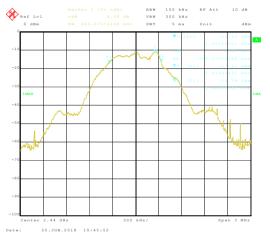


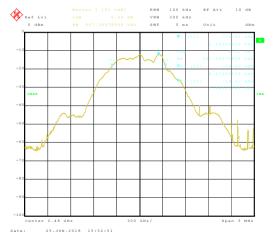
7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.685			
Middle	0.685	>500	Pass	
Highest	0.697			

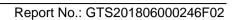



Test plot as follows:

Lowest channel

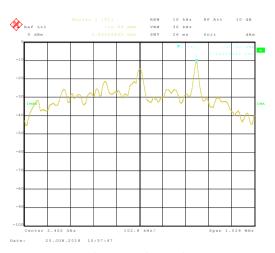
Middle channel

Highest channel

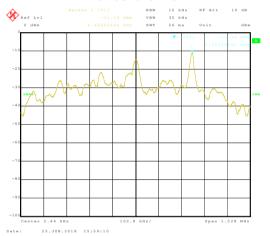


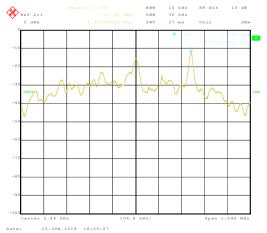
7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Measurement Data

Test channel	PK Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-10.90		
Middle	-11.14	8.00	Pass
Highest	-12.36		

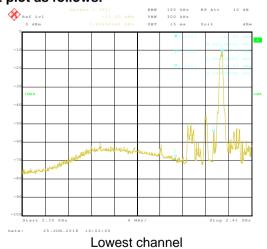


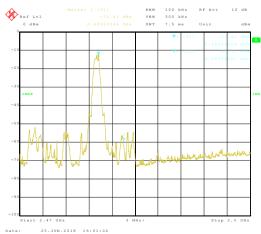

Test plot as follows:

Lowest channel

Middle channel

Highest channel




7.6 Band edges

7.6.1 Conducted Emission Method

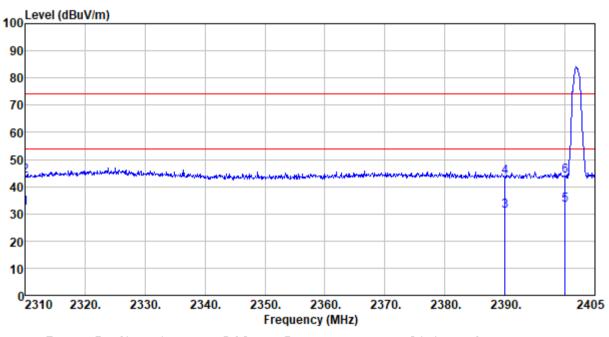
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	·				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

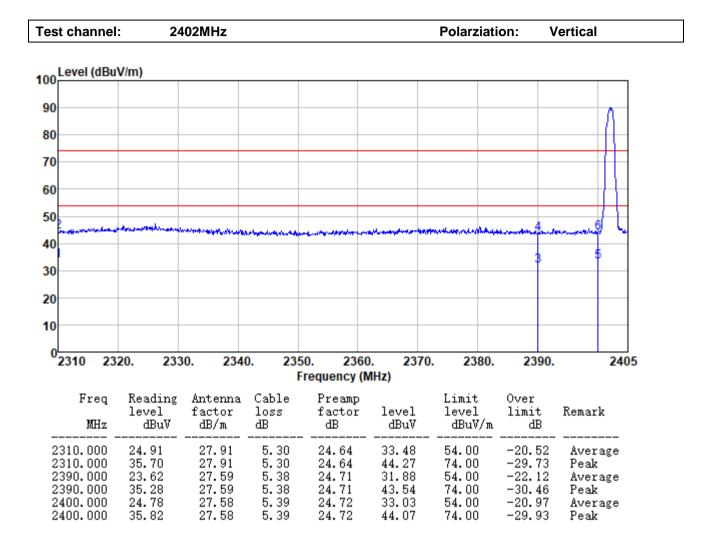
Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:		ANSI C63.10:2013					
Test Frequency Range:	All of the restrict 2500MHz) data			the worst ba	and's (2310MHz to		
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
•		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque		Limit (dBuV	/m @3m)	Value		
	Above 1	GHz	54.0 74.0		Average Peak		
Test setup:	Tum Table	EUT+		Antenna-	224-1		
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emissic limit specified the EUT wou 10dB margin average met 7. The radiation And found th	t a 3 meter case position of the position of the set 3 meters chewas mount height is varietermine the modern was table was turn reading. Silver system would be reported would be reported would be reported to as specification and specification of the colours of	amber. The tall he highest races away from the ted on the toped from one neaximum value arizations of the tion, the EUT tuned to heighed from 0 decays set to Pea Maximum Hole EUT in peak a could be stoped. Otherwise the tested one by lied and then rest are perform	ole was rotated diation. The interference of a variable meter to four the of the field see antenna at the arranged has from 1 magrees to 360 at Detect Furd Mode. The mode was 10 ped and the he emissions one using period in X, Y, at is worse care in X, Y, and X, Y, and X, Y, A, I worse care in X, Y, A, I w	ed 360 degrees to ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and OdB lower than the peak values of s that did not have eak, quasi-peak or		
Test Instruments:	Refer to section						
Test mode:	Refer to section						
Test mode. Test results:	Pass	J.Z TOT UCIAII	<u> </u>				
า ธอเ าธอนแอ.	1 000						



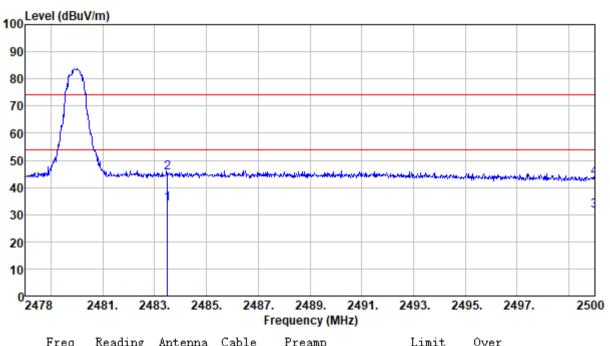
Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test plot as follows:


Test channel: 2402MHz Polarziation: Horizontal

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB 	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
2310.000	23.70	27.91	5.30	24.64	32.27	54.00	-21.73	Average
2310.000	35.16	27.91	5.30	24.64	43.73	74.00	-30.27	Peak
2390.000	22.69	27.59	5.38	24.71	30.95	54.00	-23.05	Average
2390.000	35.40	27.59	5.38	24.71	43.66	74.00	-30.34	Peak
2400.000	24.79	27.58	5.39	24.72	33.04	54.00	-20.96	Average
2400.000	35.82	27.58	5.39	24.72	44.07	74.00	-29.93	Peak


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel: 2480MHz Polarziation: Horizontal

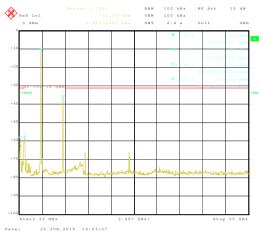
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB 	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
2483.500	25.77	27.53	5.47	24.80	33.97	54.00	-20.03	Average
2483.500	37.02	27.53	5.47	24.80	45.22	74.00	-28.78	Peak
2500.000	23.27	27.55	5.49	24.86	31.45	54.00	-22.55	Average
2500.000	35.30	27.55	5.49	24.86	43.48	74.00	-30.52	Peak

Remark:

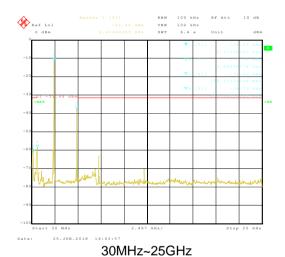
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.7 Spurious Emission

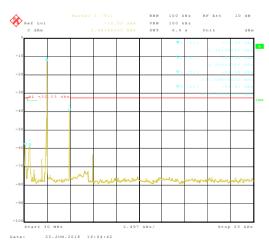
7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:


Lowest channel

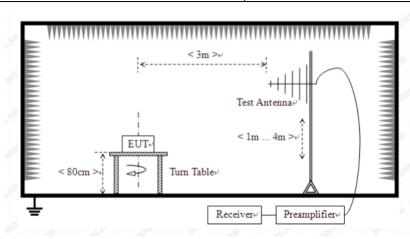
Report No.: GTS201806000246F02

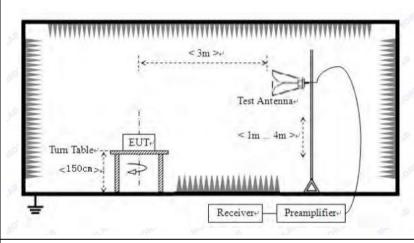


30MHz~25GHz

Middle channel

Highest channel


30MHz~25GHz


7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector RE		W	VBW	Value		
	9KHz-150KHz	F	PK/AV	200	Hz	600Hz	PK/AV		
	150KHz-30MHz	Pk	(/AV/QP	9Kł	Ηz	30KHz	PK/AV/QP		
	30MHz-1GHz	Qι	uasi-peak	120k	Ήz	300KH	z Quasi-peak		
	Above 1GHz		Peak	1MI	Ηz	3MHz	Peak		
	Above Toriz		RMS	1MI	Ηz	3MHz	Average		
Limit:	Frequency		Limit (u\	//m)	V	/alue	Measurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	PI	K/AV	300m		
	0.490MHz-1.705M	lHz	24000/F(KHz)	QP		300m		
	1.705MHz-30MH	lz	30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz		150		QP				
	216MHz-960MH	Z	200			QP	3m		
	960MHz-1GHz		500 500		QP				
	Above 1GHz				Average				
	7.5500		5000		Peak				
Test setup:	Turn Table	EUT		> < 1m > Receiver		Preamplifie			
Below 1GHz									

Above 1GHz

Test Procedure:

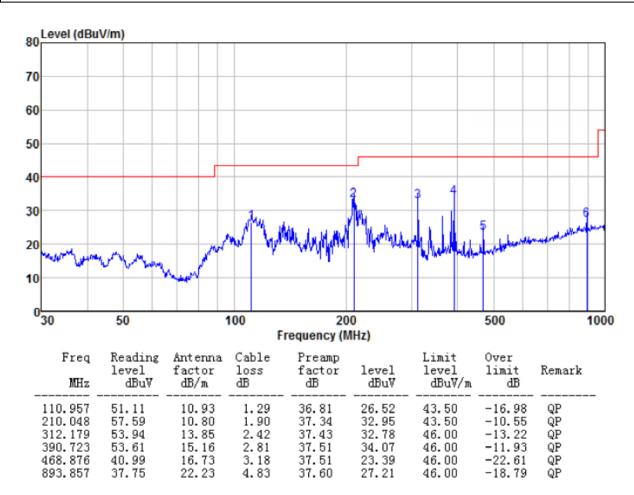
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

	Report No.: GTS201806000246F02
	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

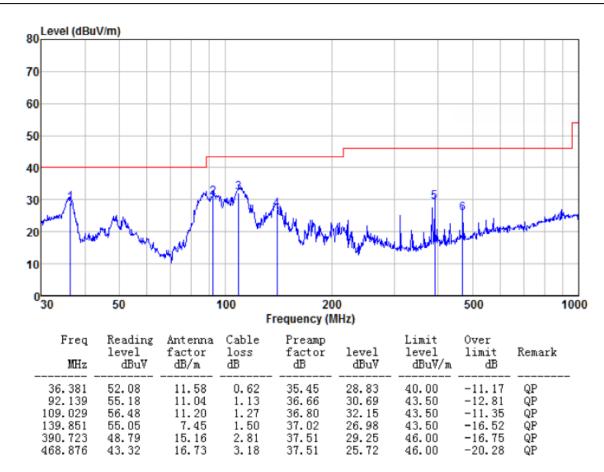
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ Below 1GHz

Mode:TX modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHPolarziation:Horizontal

Mode:TX modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHPolarziation:Vertical

■ Above 1GHz

Report No.: GTS201806000246F02

Test channel: Lowest	
----------------------	--

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.48	31.78	8.60	32.09	44.77	74.00	-29.23	Vertical
7206.00	31.28	36.15	11.65	32.00	47.08	74.00	-26.92	Vertical
9608.00	30.98	37.95	14.14	31.62	51.45	74.00	-22.55	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.60	31.78	8.60	32.09	48.89	74.00	-25.11	Horizontal
7206.00	32.96	36.15	11.65	32.00	48.76	74.00	-25.24	Horizontal
9608.00	30.32	37.95	14.14	31.62	50.79	74.00	-23.21	Horizontal
12010.00	*					74.00	_	Horizontal
14412.00	*					74.00	· ·	Horizontal

Average value:

Average value.										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4804.00	25.45	31.78	8.60	32.09	33.74	54.00	-20.26	Vertical		
7206.00	20.06	36.15	11.65	32.00	35.86	54.00	-18.14	Vertical		
9608.00	19.19	37.95	14.14	31.62	39.66	54.00	-14.34	Vertical		
12010.00	*					54.00		Vertical		
14412.00	*					54.00		Vertical		
4804.00	29.59	31.78	8.60	32.09	37.88	54.00	-16.12	Horizontal		
7206.00	22.18	36.15	11.65	32.00	37.98	54.00	-16.02	Horizontal		
9608.00	18.85	37.95	14.14	31.62	39.32	54.00	-14.68	Horizontal		
12010.00	*					54.00		Horizontal		
14412.00	*					54.00		Horizontal		

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			M	Middle					
Peak value:				•						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	1 404	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4880.00	36.55	31.85	8.67	32.12	44.95	74.00	-29.05	Vertical		
7320.00	31.33	36.37	11.72	31.89	47.53	74.00	-26.47	Vertical		
9760.00	31.02	38.35	14.25	31.62	52.00	74.00	-22.00	Vertical		
12200.00	*					74.00		Vertical		
14640.00	*					74.00		Vertical		
4880.00	40.68	31.85	8.67	32.12	49.08	74.00	-24.92	Horizontal		
7320.00	33.02	36.37	11.72	31.89	49.22	74.00	-24.78	Horizontal		
9760.00	30.37	38.35	14.25	31.62	51.35	74.00	-22.65	Horizontal		
12200.00	*					74.00		Horizontal		
14640.00	*					74.00		Horizontal		
Average val	ue:				•					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4880.00	25.52	31.85	8.67	32.12	33.92	54.00	-20.08	Vertical		
7320.00	20.11	36.37	11.72	31.89	36.31	54.00	-17.69	Vertical		
9760.00	19.23	38.35	14.25	31.62	40.21	54.00	-13.79	Vertical		
12200.00	*					54.00		Vertical		
14640.00	*					54.00		Vertical		
4880.00	29.66	31.85	8.67	32.12	38.06	54.00	-15.94	Horizontal		
7320.00	22.23	36.37	11.72	31.89	38.43	54.00	-15.57	Horizontal		
9760.00	18.90	38.35	14.25	31.62	39.88	54.00	-14.12	Horizontal		

Remark:

12200.00

14640.00

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

Horizontal

54.00

54.00

Test channel: Highest									
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.51	31.93	8.73	32.1	6	45.01	74.00	-28.99	Vertical
7440.00	31.31	36.59	11.79	31.7	'8	47.91	74.00	-26.09	Vertical
9920.00	31.00	38.81	14.38	31.8	8	52.31	74.00	-21.69	Vertical
12400.00	*						74.00		Vertical
14880.00	*						74.00		Vertical
4960.00	40.64	31.93	8.73	32.1	6	49.14	74.00	-24.86	Horizontal
7440.00	32.99	36.59	11.79	31.7	'8	49.59	74.00	-24.41	Horizontal
9920.00	30.35	38.81	14.38	31.8	8	51.66	74.00	-22.34	Horizontal
12400.00	*						74.00		Horizontal
14880.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.54	31.93	8.73	32.1	6	34.04	54.00	-19.96	Vertical
7440.00	20.12	36.59	11.79	31.7	'8	36.72	54.00	-17.28	Vertical
9920.00	19.25	38.81	14.38	31.8	8	40.56	54.00	-13.44	Vertical
12400.00	*						54.00		Vertical
14880.00	*						54.00		Vertical
4960.00	29.69	31.93	8.73	32.1	6	38.19	54.00	-15.81	Horizontal
7440.00	22.25	36.59	11.79	31.7	'8	38.85	54.00	-15.15	Horizontal
9920.00	18.92	38.81	14.38	31.8	88	40.23	54.00	-13.77	Horizontal
12400.00	*						54.00		Horizontal
		1						1	l

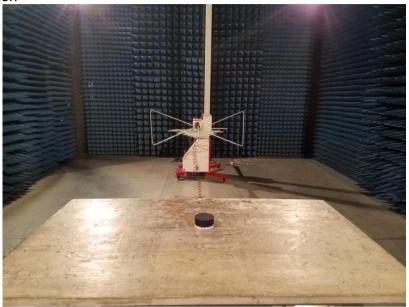
Remark:

14880.00

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

54.00


^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201806000246F01

-----End-----