FCC TEST REPORT				
	FCC ID: 2AKGT-6615X			
Report No.	SSP24110264-1E			
Applicant :	LEDVANCE LLC			
Product Name :	LED Under Cabinet Light			
Model Name :	UNDCAB3A1250ST8SC324INWH			
Test Standard :	FCC Part 15.247			
Date of Issue :	2024-12-23			
	CCUT			
	zhen CCUT Quality Technology Co., Ltd.			
	nology Industrial Park, Yutang Street, Guangming District, Shenzhen, (Tel.:+86-755-23406590 website: www.ccuttest.com)			
•	ove client company and the product model only. It may not be duplicated mitted by Shenzhen CCUT Quality Technology Co., Ltd.			

Test Report Basic Information

Applicant	LEDVANCE LLC				
Address of Applicant	181 Ballardvale Street Suite 203, Wilmington, MA, United States, 01887				
Manufacturer	FOSHAN ECCO LIGHTING CO., LTD				
	No. 70, East development zone, Donglian Shichen village, Danzao town,				
Address of Manufacturer:	Nanhai district, Foshan City, Guangdong Province, 528222				
Product Name	LED Under Cabinet Light				
Brand Name	SYLVANIA				
Main Model	UNDCAB3A1250ST8SC324INWH				
Series Models	UNDCAB3A700ST8SC318INWH				
	FCC Part 15 Subpart C				
	KDB 558074 D01 15.247 Meas Guidance v05r02				
	ANSI C63.4-2014				
Test Standard	ANSI C63.10-2013				
Date of Test	2024-11-20 to 2024-12-23				
Test Result	PASS				
Tested By:	Coke Huang (Coke Huang)				
Reviewed By	Lieber Ouyang (Lieber Ouyang)				
	Sohn Pener				
Authorized Signatory	Lahm Peng (Lahm Peng)				
Note : This test report is limited	to the above client company and the product model only. It may not be				
duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in					
this test report is only applicable to presented test sample.					

CONTENTS

1. General Information	
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	7
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	11
3.1 Standard and Limit	11
3.2 Test Result	
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	
4.3 Test Data and Results	13
5. Radiated Emissions	18
5.1 Standard and Limit	18
5.2 Test Procedure	18
5.3 Test Data and Results	20
6. Band-edge Emissions(Radiated)	26
6.1 Standard and Limit	26
6.2 Test Procedure	26
6.3 Test Data and Results	26
7. Maximum Peak Conducted Output Power	28
7.1 Standard and Limit	28
7.2 Test Procedure	28
7.3 Test Data and Results	28
8. Occupied Bandwidth	30
8.1 Standard and Limit	30
8.2 Test Procedure	30
8.3 Test Data and Results	
9. Maximum Power Spectral Density	32
9.1 Standard and Limit	32
9.2 Test Procedure	32
9.3 Test Data and Results	32
10. Band-edge Emission(Conducted)	34
10.1 Standard and Limit	34
10.2 Test Procedure	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	36
11.1 Standard and Limit	36
11.2 Test Procedure	
11.3 Test Data and Results	36

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-12-23	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	LED Under Cabinet Light			
Trade Name:	SYLVANIA			
Main Model:	UNDCAB3A1250ST8SC324INWH			
Series Models:	UNDCAB3A700ST8SC318INWH			
Rated Voltage:	AC 120V/60Hz			
Power Adapter:	-			
Battery:	-			
Test Sample No:	SSP24110264-1			
Hardware Version:	V1.0			
Software Version:	V1.0			
Note 1: The test data is gathered from a production sample, provided by the manufacturer.				
Note 2: The appearance length and LED strip length and model name of the listed series models are different				
from the main model, but the circuit and electronic structure are the same and are declared by the				
manufacturer.				

Wireless Specification	
Wireless Standard:	Bluetooth BLE
Operating Frequency:	2402MHz ~ 2480MHz
RF Output Power:	0.93dBm
Number of Channel:	40
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	0dBi
Type of Antenna:	PCB Antenna
Type of Device:	Portable Device Mobile Device Modular Device

1.2 Test Setup Information

List of Test Mo	odes								
Test Mode	Description			Remark					
TM1	BL	E_1Mbps		2402/2440/2480MHz					
TM2									
TM3									
TM4									
List and Detai	ls of Auxiliary	/ Cable							
Descrij	iption Length (cm)			Shielded/Unshielded	With/Without Ferrite				
-		-		-	-				
-			-						
List and Detai	ls of Auxiliary	/ Equipment							
Descrij	ption Manufacturer			cription Manufacturer Model		Serial Number			
-		-		-		-		-	-
-		-		-	-				
<u> </u>									

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

1.3 Compliance Standards

Compliance Standards			
ECC Dout 15 Subport C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	methodology		
ECC Dept 15 Sector part C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION		
KDB 558074 D01 15.247 Meas	SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM		
Guidance v05r02	DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI 003.10-2013	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
		Radiated Emission	IS				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06		
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06		
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02		
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		
Conducted RF Testing							
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06		
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A		
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A		

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dediated Emissions	30MHz ~ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the es	sential requirements in the standard	
Failed: The EUT does not comply with	the essential requirements in the standard	
N/A: Not applicable		

3. Antenna Requirement

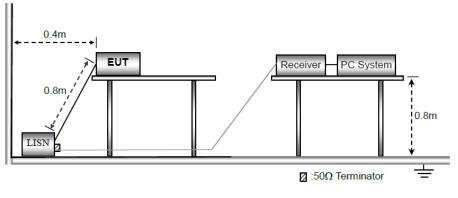
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emis	ssions (dBuV)							
(MHz)	Quasi-peak	Average							
0.15-0.5	66 to 56	56 to 46							
0.5-5	56	46							
5-30	60	50							
Note 1: Decreases with the log	Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz								
Note 2: The lower limit applies	Note 2: The lower limit applies at the band edges								

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

All of the modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test F	Plots and Data	of Conduc	ted Emissi	ions						
Teste	d Model:	UND	CAB3A12	50ST8SC3	24INWH					
Teste	d Mode:	TM1	_							
Test V	oltage:	AC 1	20V/60Hz	Z						
Test F	ower Line:	Neu	tral							
Rema	rk:									
90.0	dBu¥									
80										
70										
60									FCC Part15 CE-Class B_	QP
50	W- Mo-	matrix	7	9					FCC Part15 CE-Class B_/	AVe
40	han 1	TE VE SAME	V MM							
30		want were the			1 PPYNNIA 1	www.minihu	Man		n Marilla per juliaka Marikan	hund have the
20					- 4	Annual		n. La	And a share had an a start a	AVG
10 0							*************	**********	and a second and a second and a second	T T AT
-10										
I	150	0.5	500		(MHz)		5.0	00		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.1545	50.72	9.24	59.96	65.75	-5.79	QP	Р		
2	0.1545	27.30	9.24	36.54	55.75	-19.21	AVG	Р		
3	0.2400	44.36	9.28	53.64	62.10	-8.46	QP	Р		
4	0.2400	24.41	9.28	33.69	52.10	-18.41	AVG	Ρ		
5	0.4830	38.29	9.39	47.68	56.29	-8.61	QP	Р		
6	0.4830	18.25	9.39	27.64	46.29	-18.65	AVG	Ρ		
7 *	0.8700	41.03	9.39	50.42	56.00	-5.58	QP	Р		
8	0.8700	22.99	9.39	32.38	46.00	-13.62	AVG	Р		
9	1.0275	38.83	9.43	48.26	56.00	-7.74	QP	Р		
10	1.0275	21.92	9.43	31.35	46.00	-14.65	AVG	Р		
11	2.0400	26.62	9.47	36.09	56.00	-19.91	QP	Р		
12	2.0400	6.92	9.47	16.39	46.00	-29.61	AVG	Р		

Test Pl	ots and Data	of Conduc	ted Emissi	ons						
Tested	Model:	UND	CAB3A12	50ST8SC3	24INWH					
Tested	Mode:	TM1								
Test Vo	oltage:	AC 1	20V/60Hz	Z						
Test Po	ower Line:	Live								
Remar	k:									
90.0	dBu¥	·								
80 -										
70										
60 🗼	3								FCC Part15 CE-Cla	ass B_QP
50	V	wow w	<u>.</u>						FCC Part15 CE-Cla	ass B_AVe
40		יקאי	White provident		MANUA 9					
30	mage More	www.www.www	Marken and a second	8	1. 1.010.000	white	MMMhuly	Maril	materia	
20			· · · · · · · · · · · · · · · · · · ·	A A A A A A A A A A A A A A A A A A A	10 m	and the second		• ¶ .	a a substant	12/W/W AVG
0								-		
-10										
0.19	50	0.5	00		(MHz)		5.0	00		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1 *	0.1500	50.96	9.42	60.38	66.00	-5.62	QP	Р		
2	0.1500	27.44	9.42	36.86	56.00	-19.14	AVG	Р		
3	0.2130	46.13	9.42	55.55	63.09	-7.54	QP	Р		
4	0.2130	26.13	9.42	35.55	53.09	-17.54	AVG	Р		
5	0.5235	37.63	9.58	47.21	56.00	-8.79	QP	Р		
6	0.5235	17.69	9.58	27.27	46.00	-18.73	AVG	P		
7	0.9555	32.47	9.59	42.06	56.00	-13.94	QP	P		
8	0.9555	13.54	9.59	23.13	46.00	-22.87	AVG	Р		
9	2.2830	24.88	9.67	34.55	56.00	-21.45	QP	Р		
10	2.2830	5.51	9.67	15.18	46.00	-30.82	AVG	Р		
11	15.8865	21.83	9.78	31.61	60.00	-28.39	QP	Р		
12	15.8865	-0.26	9.78	9.52	50.00	-40.48	AVG	Р		

Test Pl	ots and Data	of Conduc	ted Emissi	ons								
Tested	Model:	UNE	CAB3A70	0ST8SC31	8INWH							
Tested	Mode:	TM1	-									
Test Vo	oltage:	AC 1	20V/60Hz	Z								
Test Po	wer Line:	Neu	tral									
Remar	k:											
90.0	dBuV											
80 -										_		
70												
~ -												
60 🔨	mm	WIN L							FLL	Par	t15 CE-Class B_ t15 CE-Class B_	<u>_up</u>
50	y 12	8 7 10	m my my my	A WA AU NA AU.	l l Al of to us is rem	Mun			FCC	Par	t15 CE-Class B_	AVe
	3 6	8 14		, MAN TANKAN TANA AN	IOIMIN AN AN	MANA	William	manu	N/Kaw	where	(in the second second	
40 ~			1	Mangling margare			111111111111	8999° 111		<u>rr 11</u>	1 the states were	
30 -					and a second and a s	and the second second second				_		
20							man and a second		******	+		
20												
10 -										-		
0												
-10												
0.15	50	0.5	i00		(MHz)		5.0	00				30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Re	ema	ark	
1	0.4380	30.78	9.38	40.16	47.10	-6.94	AVG	Р				
2	0.3435	32.11	9.39	41.50	49.12	-7.62	AVG	Р				
3	0.1815	31.18	9.23	40.41	54.42	-14.01	AVG	P				
4 *	0.4830	31.26	9.39	40.65	46.29	-5.64	AVG	P				
5 6	0.6585 0.2580	29.55 32.51	9.37 9.32	38.92 41.83	46.00 51.50	-7.08 -9.67	AVG AVG	P P				
7	0.2580	32.51	9.32	41.63	57.01	-9.07	QP	P				
8	0.3371	39.57	9.39	48.96	59.27	-10.31	QP	P				
9	0.1827	41.09	9.23	50.32	64.36	-14.04	QP	P				
10	0.4839	37.76	9.39	47.15	56.27	-9.12	QP	Р				
11	0.6534	35.70	9.37	45.07	56.00	-10.93	QP	Р				
12	0.2574	41.04	9.31	50.35	61.51	-11.16	QP	P				

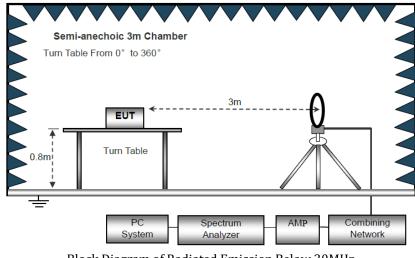
Test P	Plots and Data o	of Conduct	ed Emissi	ons						
Testee	d Model:	UND	CAB3A70	OST8SC31	8INWH					
Testee	d Mode:	TM1								
Test V	Voltage:	AC 1	20V/60Hz							
Test P	ower Line:	Live								
Rema	rk:									
90.0	dBuV									
[
80								_		
70										
									FCC Part15 CE-Class	B OP
60	minun	the f								
50		9 10	~~mdutrahayyuppy	dia di Antonio di Anton	WWWWWW	C. Martine		_	FCC Part15 CE-Class	B_AVe
40		mun	**************************************		ul a dilla ti	<u> </u>	Mapping	TUMM	A Million March	
40			Winds De Windson and Aller	With the strength of the stren				վեր	and the second and the second	peak
30					and a second second	wowene.		_		
20							new mideral	- man	-	
10										
0								_		
-10										
0.1	150	0.5	00		(MHz)		5.0	00		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.2265	32.60	9.44	42.04	52.58	-10.54	AVG	Р		
2	0.2805	31.69	9.55	41.24	50.80	-9.56	AVG	Р		
3	0.3615	31.48	9.58	41.06	48.69	-7.63	AVG	P		
4 5 *	0.4155	30.28 29.26	9.57 9.56	39.85 38.82	47.54 46.00	-7.69 -7.18	AVG AVG	P P		
6	1.0590	29.20	9.56	35.24	46.00	-10.76	AVG	P		
7	0.2267	41.75	9.44	51.19	62.57	-11.38	QP	P		
8	0.2872	40.65	9.56	50.21	60.60	-10.39	QP	Р		
9	0.3584	39.39	9.58	48.97	58.77	-9.80	QP	Р		
10	0.4112	38.93	9.57	48.50	57.62	-9.12	QP	P		
11	0.6209	36.50	9.57	46.07	56.00	-9.93	QP	P		
12	1.0772	32.78	9.62	42.40	56.00	-13.60	QP	P		

5. Radiated Emissions

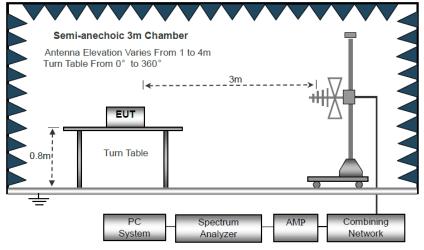
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

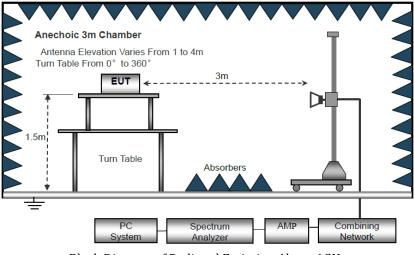
Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	


According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case BLE_1Mbps 2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Radia	ted Emission	Test Data (30MHz to	1GHz)							
Testeo	d Model:		UNDCAB	3A1250ST	78SC324IN	IWH					
Testeo	d Mode:		TM1								
Test V	oltage:		AC 120V	/60Hz							
Test A	ntenna Polari	zation:	Horizont	al							
Rema	rk:										
80.0	dBuV/m										
[
70											
60							FCC	C Part15 RI	E-Class B_	30-100	JOMHz
50							Mar	rgin -6 dB			
										5	
40	1 X							3		Ň	
30	6				2			× I			
	AN L	nahartanahtanan kak			Mar Typing	l la l			A. MAN	MUN	Martin and an
20	W harden	where the particular of the		. MMww	, in 1997, i	Mr W	-MI IVAN		printe:		
10			Marshall	WW							
0.0											
L	.000	60.00			(MHz)		300	0.00			1000.000
		.	_ (1 • • •						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *		43.54	-8.70	34.84	40.00	-5.16	QP	199	360	Р	
2	163.1818	35.39	-8.16	27.23	43.50	-16.27	QP	199	360	P	

3

4 5!

6

336.0352

480.5276

576.6443

962.1623

39.64

42.30

42.52

38.27

-7.23

-3.76

-2.15

3.13

32.41

38.54

40.37

41.40

46.00

46.00

46.00

54.00

-13.59

-7.46

-5.63

-12.60

QP

QP

QP

QP

199

199

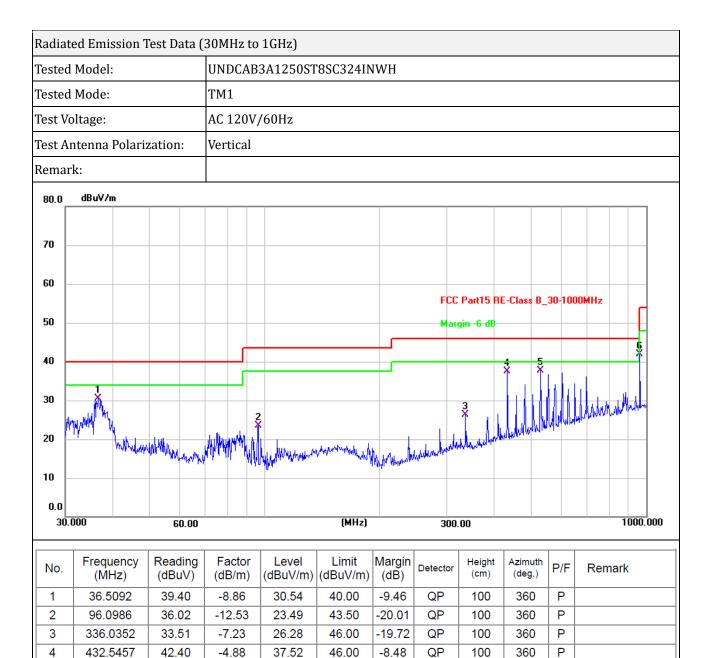
199

199

360

360

360


360

Ρ

Ρ

Ρ

Ρ

37.70

41.83

46.00

54.00

QP

QP

100

100

-8.30

-12.17

Ρ

Ρ

360

360

5 *

6

528.2458

962.1623

40.68

38.70

-2.98

3.13

Radia	ted Emission '	Fest Data (30MHz to	1GHz)							
Fested	d Model:		UNDCAB	3A700ST8	SC318INV	NH					
ſestec	d Mode:		TM1								
Гest V	oltage:		AC 120V	/60Hz							
ſest A	ntenna Polari	zation:	Horizont	al							
Rema	rk:										
80.0	dBu∀/m										
[
70											
60 -											
							FCC	Part15 R	E-Class B_	_30-10	DOMHz
50							Mar	gin -6 dB			
40									3	4 ×	
						+-			5 X		
30	<u> </u>								1111	MA	AL ALLANDALA
	WWWW &				1 Month May	M. A	Muller	Multiple	WWW WAY	11110-4	MAN and a m
20	marks "	and the stand to the stand	. h	while while the		W WI	VI III				
10			Maria and a start								
0.0											
L	.000	60.00			(MHz)		300	.00			1000.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	37.4164	39.20	-8.72	30.48	40.00	-9.52	QP	100	341	Р	
2	45.3753	30.60	-8.27	22.33	40.00	-17.67	QP	200	338	P	
3!	457.5072	45.02	-4.34	40.68	46.00	-5.32	QP	100	207	P	

4 *

5

6

576.6443

528.2458

962.1621

43.02

37.36

35.27

-2.15

-2.98

3.13

40.87

34.38

38.40

46.00

46.00

54.00

-5.13

-11.62

-15.60

QP

QP

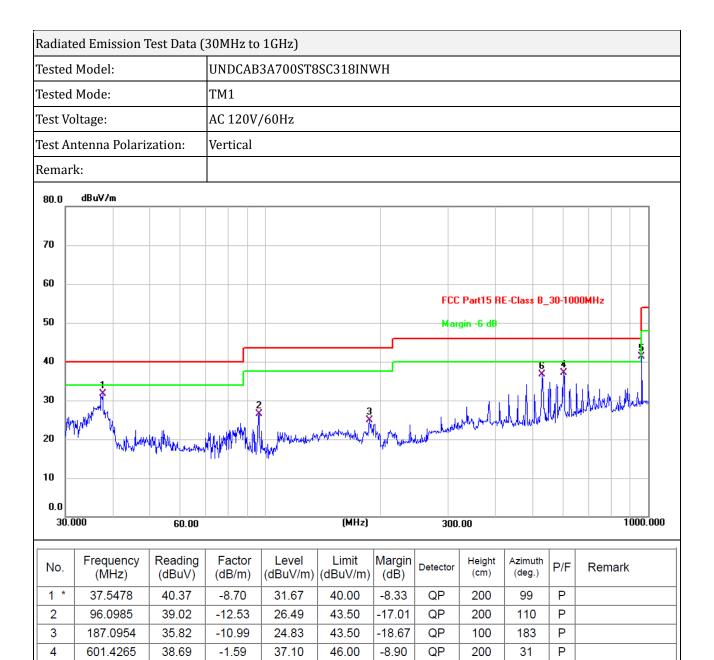
QP

100

200

100

333


268

108

Ρ

Ρ

Ρ

5

6

962.1621

528.2458

38.20

39.68

3.13

-2.98

41.33

36.70

54.00

46.00

-12.67

-9.30

QP

QP

200

100

254

357

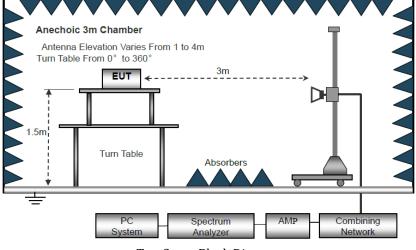
P P

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			Lowest Chann	el (2402MHz)			
4804	77.46	-14.72	62.74	74	-11.26	Н	РК
4804	61.9	-14.72	47.18	54	-6.82	Н	AV
7206	63.27	-8.41	54.86	74	-19.14	Н	РК
7206	48.57	-8.41	40.16	54	-13.84	Н	AV
4804	73.47	-14.72	58.75	74	-15.25	V	РК
4804	58.19	-14.72	43.47	54	-10.53	V	AV
7206	62.11	-8.41	53.7	74	-20.3	V	РК
7206	46.42	-8.41	38.01	54	-15.99	V	AV
			Middle Chann	el (2440MHz)			·
4880	76.06	-14.64	61.42	74	-12.58	Н	РК
4880	61.6	-14.64	46.96	54	-7.04	Н	AV
7320	65.46	-8.28	57.18	74	-16.82	Н	РК
7320	46.58	-8.28	38.3	54	-15.7	Н	AV
4880	73.65	-14.64	59.01	74	-14.99	V	РК
4880	59.16	-14.64	44.52	54	-9.48	V	AV
7320	62.57	-8.28	54.29	74	-19.71	V	РК
7320	45.67	-8.28	37.39	54	-16.61	V	AV
			Highest Chanr	nel (2480MHz)			
4960	79.48	-14.53	64.95	74	-9.05	Н	РК
4960	62.65	-14.53	48.12	54	-5.88	Н	AV
7440	64.37	-8.13	56.24	74	-17.76	Н	РК
7440	45.54	-8.13	37.41	54	-16.59	Н	AV
4960	76.55	-14.53	62.02	74	-11.98	V	РК
4960	59.65	-14.53	45.12	54	-8.88	V	AV
7440	62.61	-8.13	54.48	74	-19.52	V	РК
7440	47.9	-8.13	39.77	54	-14.23	V	AV

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result
iest mode	MHz	dBuV/dBc	Result
Lowest	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Uighost	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Radiated Em	ission Test Dat	ta (Band edge	emissions)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			Lowest Chann	nel (2402MHz)			·
2310	67.05	-21.34	45.71	74	-28.29	Н	РК
2310	52.22	-21.34	30.88	54	-23.12	Н	AV
2390	69.55	-20.96	48.59	74	-25.41	Н	РК
2390	49.08	-20.96	28.12	54	-25.88	Н	AV
2400	71.1	-20.91	50.19	74	-23.81	Н	РК
2400	56.75	-20.91	35.84	54	-18.16	Н	AV
2310	65.21	-21.34	43.87	74	-30.13	V	РК
2310	51.37	-21.34	30.03	54	-23.97	V	AV
2390	67.21	-20.96	46.25	74	-27.75	V	РК
2390	52.65	-20.96	31.69	54	-22.31	V	AV
2400	68.29	-20.91	47.38	74	-26.62	V	РК
2400	55.67	-20.91	34.76	54	-19.24	V	AV
			Highest Chanr	nel (2480MHz)			
2483.50	70.62	-20.51	50.11	74	-23.89	Н	РК
2483.50	54.1	-20.51	33.59	54	-20.41	Н	AV
2500	66.77	-20.43	46.34	74	-27.66	Н	РК
2500	49.83	-20.43	29.4	54	-24.6	Н	AV
2483.50	70.38	-20.51	49.87	74	-24.13	V	РК
2483.50	52.56	-20.51	32.05	54	-21.95	V	AV
2500	69.17	-20.43	48.74	74	-25.26	V	РК
2500	51.14	-20.43	30.71	54	-23.29	V	AV

Remark: Level = Reading + Factor, Margin = Level - Limit

7. Maximum Peak Conducted Output Power

7.1 Standard and Limit

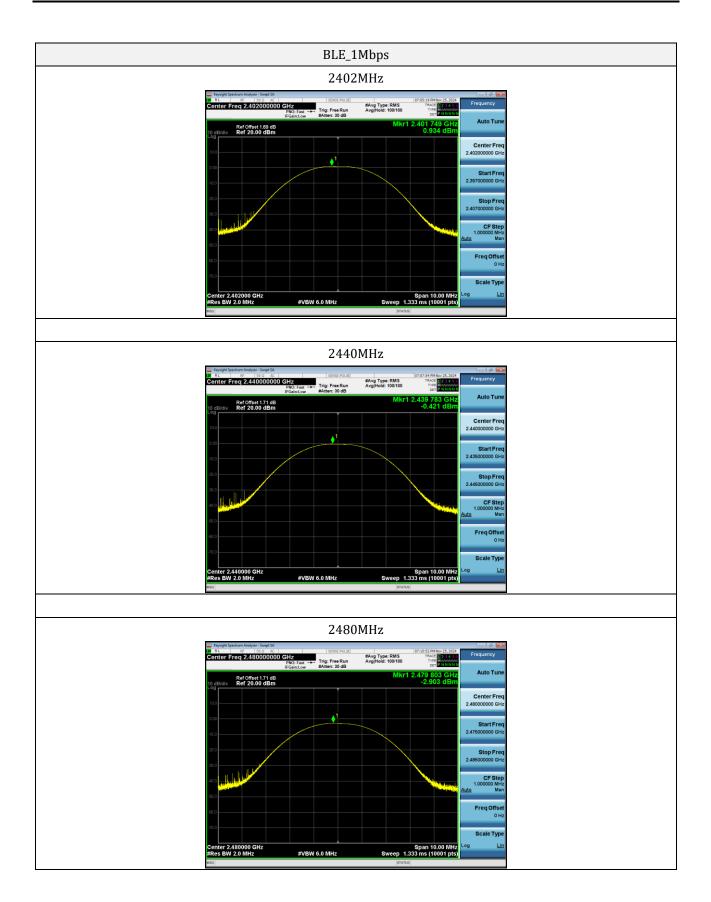
According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

7.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = Peak.


4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
BLE_1Mbps	2402	0.93	30	Pass
	2440	-0.42	30	Pass
	2480	-2.9	30	Pass

8. Occupied Bandwidth

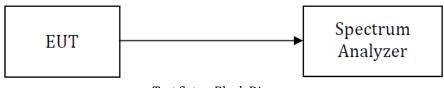
8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

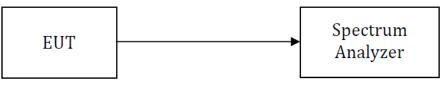
Test Setup Block Diagram

Test Mode	Test Channel	6dB Bandwidth	99% Bandwidth	6 dB Bandwidth Limit	Test Result
	(MHz)	(MHz)	(MHz)	(MHz)	
BLE_1Mbps	2402	0.649	1.039	0.5	Pass
	2440	0.656	1.041	0.5	Pass
	2480	0.662	1.04	0.5	Pass

9. Maximum Power Spectral Density

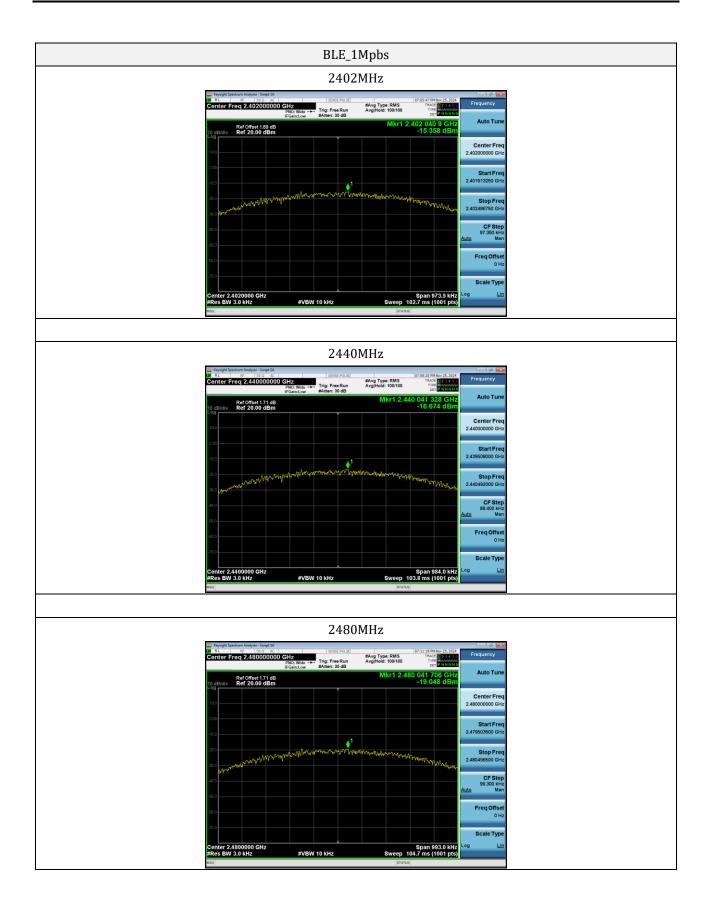
9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


9.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.


3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = Peak.

- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Test Result
BLE_1Mbps	2402	-15.36	8	Pass
	2440	-16.67	8	Pass
	2480	-19.05	8	Pass

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

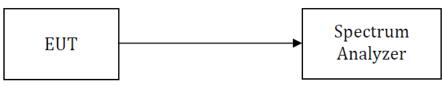
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.


3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.


6) Measure the emission and marking the edge frequency.

7) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
BLE_1Mbps	Lowest	2402	-41.64	-20	Pass
	Highest	2480	-48.45	-20	Pass

11. Conducted RF Spurious Emissions

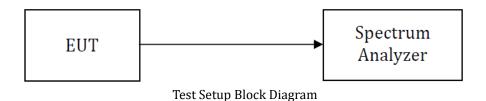
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

11.2 Test Procedure

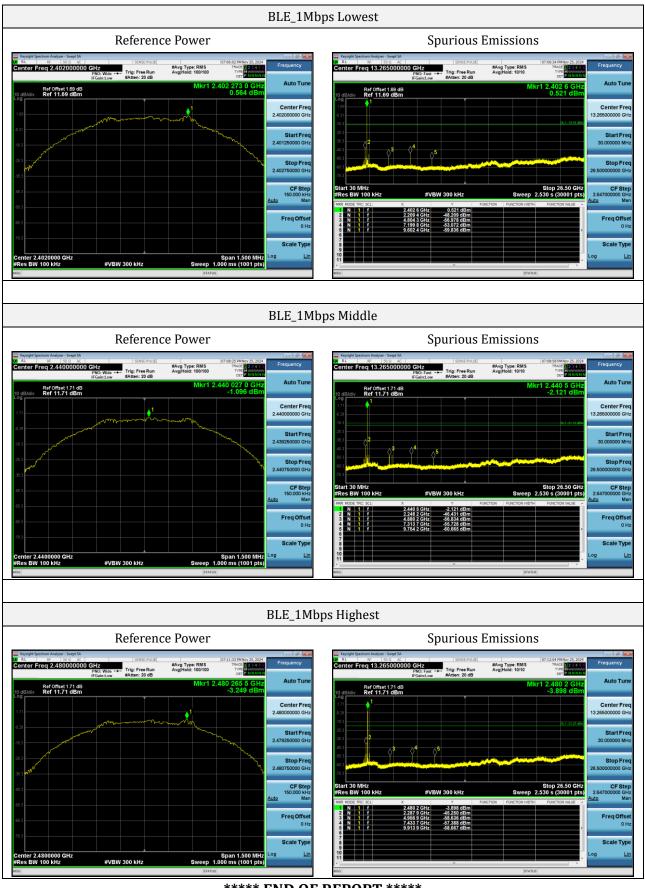
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.

6) Repeat above procedures until all measured frequencies were complete.

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

***** END OF REPORT *****