FCC SAR TEST REPORT

APPLICANT: Zebra Technologies Corporation

EQUIPMENT: Enterprise Mobile

BRAND NAME : Zebra

MODEL NAME : EM45A2

FCC ID : UZ7EM45A2

STANDARD : FCC 47 CFR Part 2 (2.1093)

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Si Zhang

Approved by: Si Zhang

lac-MRA

Report No.: FA460505A

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TEL: +86-512-57900158 FCC ID: UZ7EM45A2 Page : 1 of 24 Issued Date : Sep. 06, 2024

Form version: 200414

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
5. RF Exposure Limits	
5.1 Uncontrolled Environment	
5.2 Controlled Environment	7
6. Specific Absorption Rate (SAR)	8
6.1 Introduction	• • • • • • • • • • • • • • • • • • • •
6.2 SAR Definition	
7. System Description and Setup	
7.1 E-Field Probe	10
7.2 Data Acquisition Electronics (DAE)	
7.3 Phantom	
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	13
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	
10.1 Tissue Simulating Liquids	
10.2 Tissue Verification	
10.3 System Performance Check Results	
11. RF Exposure Positions	
11.1 Extremity SAR Exposure	
12. Antenna Location	
13. SAR Test Results	
13.1 Extremity SAR	
14. Uncertainty Assessment	
15. References	24
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	

TEL: +86-512-57900158 FCC ID: UZ7EM45A2

Page : 2 of 24 Issued Date : Sep. 06, 2024 Form version: 200414

Report No.: FA460505A

History of this test report

Report No.: FA460505A

Page : 3 of 24

Report No.	Version	Description	Issued Date
FA460505A	Rev. 01	Initial issue of report	Sep. 06, 2024

Issued Date : Sep. 06, 2024 FCC ID: UZ7EM45A2 Form version : 200414

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Zebra Technologies Corporation**, **Enterprise Mobile**, **EM45A2**, are as follows.

Report No.: FA460505A

Highest Standalone 10g SAR Summary				
Equipment Class	Frequency Band		Extremity (Separation 0mm) 10g SAR (W/kg)	Highest Simultaneous Transmission 10g SAR (W/kg)
DXX	NFC 13.56MHz		<0.10	3.99
Date of	Testing:	2024/7/18		
Remark: The NFC Sim-Tx analysis result refers to Sporton SAR report no.: FA460505.				

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

 Sporton International Inc. (Kunshan)
 Page: 4 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

2. Administration Data

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FA460505A

Testing Laboratory			
Test Firm	Sporton International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL: +86-512-57900158		
Tant Cita Na	Sporton Site No. FCC Designation No. FCC Test Firm Registration No.		
Test Site No.	SAR07-KS	CN1257	314309

Applicant		
Company Name	Zebra Technologies Corporation	
Address	3 Overlook Point, Lincolnshire, IL 60069 USA	

Manufacturer		
Company Name	Zebra Technologies Corporation	
Address	3 Overlook Point, Lincolnshire, IL 60069 USA	

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- · ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- · IEC/IEEE 62209-1528:2020
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03

 Sporton International Inc. (Kunshan)
 Page: 5 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification		
Equipment Name	Enterprise Mobile	
Brand Name	Zebra	
Model Name	EM45A2	
FCC ID	UZ7EM45A2	
IMEI Code	IMEI1: 352991990044426 IMEI2: 352991990052486	
Wireless Technology and Frequency Range	NFC: 13.56 MHz	
Mode	NFC: ASK	
HW Version	EV2.5	
SW Version	13-32-08.00-TG-U06-STD-ATH-04	
MFD	08AUG24	
EUT Stage	Identical Prototype	
Remark:		

Report No.: FA460505A

1. This device has one EM45 Protective Case that does not contain metal components and any electronic circuitry, it has no effect on RF exposure and does not require evaluation for SAR.

Specification of Accessory				
AC Adapter 1	Brand Name	Zebra	Model	SAWA-102-22520A
(Type C Wall Charger 1)	Dianu Name	Zebia	Part Number	PWR-WUA5V45W1US
AC Adapter 2	Brand Name	Zebra	Model	SAWA-65-20005A
(Type A Wall Charger 2)	Brand Name	Zebia	Part Number	PWR-WUA5V12W0US
Battery 1	Brand Name	Zebra	Model	BT-000501
Ballery 1	Bianu Name	Zebia	Part Number	BT-000501-2000
Earphone 1 (Wired headset USB-C)	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01
Earphone 2 (Rugged Bluetooth Headset)	Brand Name	Zebra	Part Number	HS3100-OTH
Earphone 3 (3.5mm PTT Headset)	Brand Name	Zebra	Part Number	HDST-35MM-PTT1-02
Earphone 4 (Rugged Headset)	Brand Name	Zebra	Part Number	HS2100-OTH
3.5mm to 3.5mm audio connector	Brand Name	Zebra	Part Number	CBL-HS2100-3MS1-01
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01
USB Cable 1 (USB-C to C Cable)	Brand Name	Zebra	Part Number	CBL-EC5X-USBC3A-01
USB Cable 2 (USB-A to C Cable)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01
EM45 Protective Case	Brand Name	Zebra	Part Number	SG-EM45EXO1-01

 Sporton International Inc. (Kunshan)
 Page : 6 of 24

 TEL: +86-512-57900158
 Issued Date : Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version : 200414

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA460505A

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Whole-Body Partial-Body Hands, Wrists, Feet	
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

 Sporton International Inc. (Kunshan)
 Page: 7 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA460505A

6.2 SAR Definition

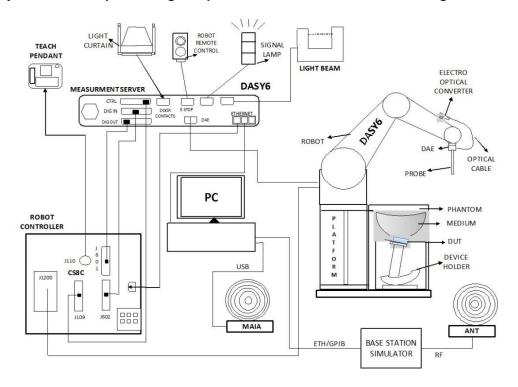
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


 Sporton International Inc. (Kunshan)
 Page: 8 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA460505A

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Windows 10 and the DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

 Sporton International Inc. (Kunshan)
 Page: 9 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	4 MHz – 10 GHz Linearity: ±0.2 dB (30 MHz – 10 GHz)	
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Report No.: FA460505A

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

Sporton International Inc. (Kunshan) TEL: +86-512-57900158

FCC ID: UZ7EM45A2

 $\begin{array}{c} \text{Issued Date} \; \underline{:} \; \; \text{Sep. 06, 2024} \\ \text{Form version} \; \underline{:} \; \; 200414 \end{array}$

Page : 10 of 24

7.3 Phantom

<SAM Twin Phantom>

NOAM TWITT HUITOIN		
Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 %
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA460505A

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices or for evaluating transmitters operating at low frequencies. ELI is fully compatible with standard and all known tissue simulating liquids.

 Sporton International Inc. (Kunshan)
 Page: 11 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA460505A

Mounting Device Adaptor for Wide-Phones

< Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

 Sporton International Inc. (Kunshan)
 Page: 12 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

8. Measurement Procedures

The measurement procedures are as follows:

<SAR measurement>

(a) Use engineering software to configure EUT NFC continuously transmission, at maximum RF power, in the highest power channel.

Report No.: FA460505A

- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

 Sporton International Inc. (Kunshan)
 Page: 13 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA460505A

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

 Sporton International Inc. (Kunshan)
 Page: 14 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA460505A

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

				> 3 GHz
Maximum zoom scan s	Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
uniform grid: $\Delta z_{Zoom}(n)$		grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

 Sporton International Inc. (Kunshan)
 Page: 15 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration		
Manuracturer	Name of Equipment	i ype/wodei	Serial Number	Last Cal.	Due Date	
SPEAG	13MHz System Validation Kit	CLA13	1023	2024/1/22	2025/1/21	
SPEAG	Data Acquisition Electronics	DAE4	1303	2023/11/20	2024/11/19	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7706	2024/1/24	2025/1/23	
SPEAG	ELI Phantom	ELI V8.0	TP-2135	NCR	NCR	
Testo	Thermo-Hygrometer	HTC-1	55011	2024/1/4	2025/1/3	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
Rohde & Schwarz	Vector Signal Generator	SMBV100A	258305	2024/1/2	2025/1/1	
Agilent	ENA Series Network Analyzer	E5071C	MY46112129	2024/7/4	2025/7/3	
SPEAG	Dielectric Probe Kit	DAK-12	1173	2023/9/20	2024/9/19	
Rohde & Schwarz	Power Meter	NRVD	102081	2024/7/4	2025/7/3	
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2024/7/4	2025/7/3	
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2024/7/4	2025/7/3	
Rohde & Schwarz	Spectrum Analyzer	FSV7	101631	2023/10/11	2024/10/10	
TES	DIGITAC THERMOMETER	TYPE-K	220305411	2024/1/4	2025/1/3	
ARRA	Power Divider	A3200-2	N/A	No	te 1	
MCL	Attenuation1	BW-S10W5+	N/A	No	te 1	
MCL	Attenuation2	BW-S10W5+	N/A	No	te 1	
MCL	Attenuation3	BW-S10W5+	N/A	No	te 1	

Report No.: FA460505A

Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The justification data of dipole can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

 Sporton International Inc. (Kunshan)
 Page: 16 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 11.1.

Fig 11.1 Photo of Liquid Height for Body SAR

TEL: +86-512-57900158 FCC ID: UZ7EM45A2 Page: 17 of 24
Issued Date: Sep. 06, 2024
Form version: 200414

Report No.: FA460505A

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)		Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
13	Head	22.6	0.726	54.3	0.75	55.00	-3.20	-1.27	±5	2024/7/18

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2024/7/18	13	Head	250	1023	7706	1303	0.084	0.335	0.336	-1.18

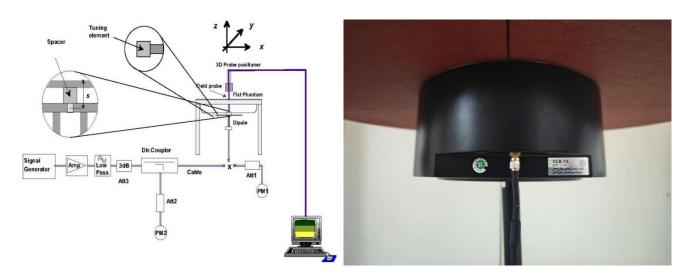


Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

Report No.: FA460505A

 Sporton International Inc. (Kunshan)
 Page: 18 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

11. RF Exposure Positions

11.1 Extremity SAR Exposure

(a) To position the device parallel to the phantom surface with all surfaces of the device.

Report No.: FA460505A

- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 0mm.

Page : 19 of 24 Sporton International Inc. (Kunshan) Issued Date : Sep. 06, 2024 TEL: +86-512-57900158 Form version: 200414

FCC ID: UZ7EM45A2

12. Antenna Location

The detailed antenna location information can refer to SAR Test Setup Photos.

Page : 20 of 24 Sporton International Inc. (Kunshan) Issued Date : Sep. 06, 2024 TEL: +86-512-57900158 FCC ID: UZ7EM45A2 Form version: 200414

Report No.: FA460505A

13. SAR Test Results

General Note:

1. Per KDB 447498 D01, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:

Report No.: FA460505A

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 2. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 3. NFC mainly operate in hand-held extremity exposure conditions, therefore Standalone 10-g extremity SAR testing for NFC will be performed with active mode and max power mode by test software with 100% duty cycle at 0mm separation distance.
- 4. SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.
- 5. SAR test tissue-simulating liquid parameter: refer to IEC/IEEE 62209-1528:2020.

13.1 Extremity SAR

<NFC SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Freq. (MHz)	Power Drift (dB)	Measured 10g SAR (W/kg)
	NFC	ASK	Front	0mm	13.56	0.1	0.001
01	NFC	ASK	Back	0mm	13.56	-0.01	0.073
	NFC	ASK	Left Side	0mm	13.56	0.12	0.001
	NFC	ASK	Right Side	0mm	13.56	0.08	0.001
	NFC	ASK	Top Side	0mm	13.56	-0.17	0.001
	NFC	ASK	Bottom Side	0mm	13.56	-0.03	0.001

Test Engineer: Martin Li, Light Wang

 Sporton International Inc. (Kunshan)
 Page : 21 of 24

 TEL: +86-512-57900158
 Issued Date : Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version : 200414

14. Uncertainty Assessment

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Report No.: FA460505A

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

 Sporton International Inc. (Kunshan)
 Page: 22 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

output of DUT

SAR scaling

Validation antenna uncertainty

(validation measurement only)
Uncertainty in accepted power

(validation measurement only)
Correction to the SAR results

Phantom deviation from target (ε', σ)

Uncertainty Budget According to IEC/IEEE 62209-1528 (Frequency band: 4 MHz - 10 GHz range) Standard Standard Uncert. Prob. (Ci) (Ci) **Error Description** Value Div. **Uncertainty Uncertainty** 10g Dist. 1g (±%) (10g) (±%) (1g) (±%) **Measurement System errors** Probe calibration 18.6 Ν 2 9.3 9.3 Probe calibration drift 1.7 R 1.732 1 1 1.0 1.0 Probe linearity and detection Limit 4.7 R 1.732 1 1 2.7 2.7 Broadband signal R 1.732 1 2.8 1 1.6 1.6 1 Probe isotropy 7.6 R 1.732 1 4.4 4.4 Other probe and data 2.4 Ν 1 1 2.4 2.4 1 acquisition errors RF ambient and noise 1.8 Ν 1 1 1 1.8 1.8 0.006 Ν 1 0.5 0.5 Probe positioning errors 0.0 0.0 Data processing errors 4.0 Ν 1 1 1 4.0 4.0 **Phantom and Device Errors** Measurement of phantom 1 0.78 0.71 2.5 Ν 2.0 1.8 conductivity (σ) R 0.78 2.2 Temperature effects (medium) 5.4 1.732 0.71 2.4 Shell permittivity 14.0 R 1.732 0.5 0.5 4.0 4.0 Distance between the radiating element of the DUT and the 2.0 Ν 1 2 2 4.0 4.0 phantom medium Repeatability of positioning the DUT or source against the 1.0 Ν 1 1 1 1.0 1.0 phantom Device holder effects 3.6 Ν 1 1 1 3.6 3.6 Effect of operating mode on 2.4 R 1.732 1 1 1.4 1.4 probe sensitivity R 1 1 Time-average SAR 1.7 1.732 1.0 1.0 Variation in SAR due to drift in

Ν

Ν

Ν

Ν

R

2.5

0.0

0.0

1.9

0.0

Combined Std. Uncertainty

Coverage Factor for 95 %

Expanded STD Uncertainty

1

1

1

1

1

1

1

1

0.84

1

2.5

0.0

0.0

1.9

0.0

14.5%

K=2

29.0%

2.5

0.0

0.0

1.6

0.0

14.4%

K=2

28.8%

1

1

1

1

1.732

Report No.: FA460505A

 Sporton International Inc. (Kunshan)
 Page: 23 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

15. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA460505A

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] IEC/IEEE 62209-1528:2020, "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)"
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [7] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [8] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [9] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.

----THE END-----

 Sporton International Inc. (Kunshan)
 Page: 24 of 24

 TEL: +86-512-57900158
 Issued Date: Sep. 06, 2024

 FCC ID: UZ7EM45A2
 Form version: 200414

Appendix A. Plots of System Performance Check

The plots are shown as follows.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: UZ7EM45A2 Page: B1 of B1 Issued Date: Sep. 06, 2024 Form version: 200414

Report No.: FA460505A

Report No.: FA460505A

Date: 2024-07-18

System Check_Head_13MHz

DUT: CLA-13 - SN1023

Communication System: CW; Frequency: 13.000 MHz; Duty Cycle: 1:1

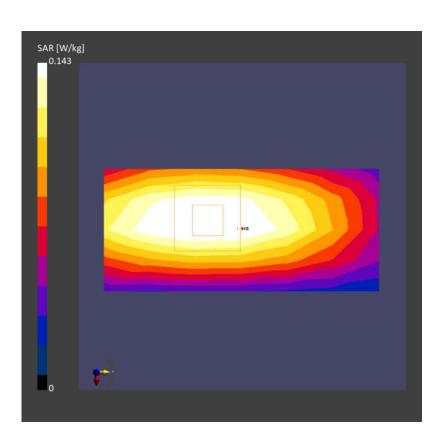
Medium: HSL Medium parameters used: f= 13.000 MHz; σ = 0.726 S/m; ϵ_r =54.3

Ambient Temperature: 23.1°C; Liquid Temperature: 22.6°C

DASY6 Configuration:

- Probe: EX3DV4 - SN7706; ConvF(16.1, 16.1, 16.1); Calibrated: 2024-01-24

- Sensor-Surface: 1.4 mm


- Electronics: DAE4 Sn1303; Calibrated: 2023-11-20

- Phantom: ELI V8.0 (20deg probe tilt); Serial: 2135; Section: Flat

- Measurement Software: 16.4.0.5005

Area Scan (40.0 mm x 90.0 mm): Measurement Grid: 10.0 mm x 15.0 mm SAR (1g) = 0.135 W/kg; SAR (10g) = 0.111 W/kg;

Zoom Scan (30.0 mm x 30.0 mm x 30.0 mm): Measurement Grid: 6.0 mm x 6.0 mmx 1.5 mm Power Drift = -0.03 dB SAR (1g) = 0.143 W/kg; SAR (10g) = 0.084 W/kg Smallest distance from peaks to all points 3 dB below = 15.7 mm Ratio of SAR at M2 to SAR at M1 = 73.9 %

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: UZ7EM45A2 Page: C1 of C1 Issued Date: Sep. 06, 2024 Form version: 200414

Report No.: FA460505A

Report No.: FA460505A

Date: 2024-07-18

01_NFC_ASK_Back_0mm

Communication System: CW; Frequency: 13.600 MHz; Duty Cycle: 1:1

Medium: HSL Medium parameters used: f= 13.600 MHz; σ = 0.748 S/m; ϵ_r =53.7

Ambient Temperature: 23.1°C; Liquid Temperature: 22.6°C

DASY6 Configuration:

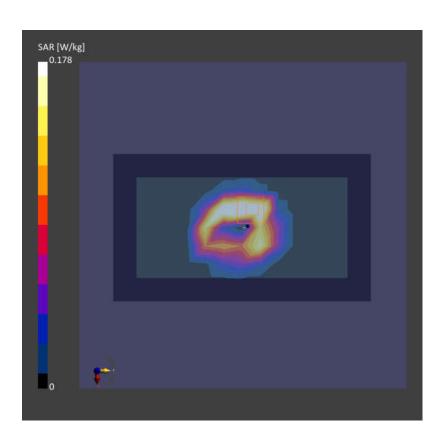
- Probe: EX3DV4 - SN7706; ConvF(16.1, 16.1, 16.1); Calibrated: 2024-01-24

- Sensor-Surface: 1.4 mm

- Electronics: DAE4 Sn1303; Calibrated: 2023-11-20

- Phantom: ELI V8.0 (20deg probe tilt); Serial: 2135; Section: Flat

- Measurement Software: 16.4.0.5005


Area Scan (120.0 mm x 210.0 mm): Measurement Grid: 15.0 mm x 15.0 mm SAR (1g) = 0.194 W/kg; SAR (10g) = 0.131 W/kg;

Zoom Scan (30.0 mm x 30.0 mm x 30.0 mm): Measurement Grid: 6.0 mm x 6.0 mm x 1.5 mm Power Drift = -0.01 dB

SAR(1g) = 0.178 W/kg; SAR(10g) = 0.073 W/kg

Smallest distance from peaks to all points 3 dB below = 6.0 mm

Ratio of SAR at M2 to SAR at M1 = 63.2 %

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: UZ7EM45A2 Page: C1 of C1 Issued Date: Sep. 06, 2024 Form version: 200414

Report No.: FA460505A

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

> Sporton Shenzhen City

Client

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No. CLA13-1023_Jan24

CALIBRATION CERTIFICATE

CLA13 - SN: 1023 Object

QA CAL-15.v10 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources below 700 MHz

January 22, 2024 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	· Mar-24
SN: 3877	10-Jan-24 (No. EX3-3877_Jan24)	Jan-25
SN: 654	15-Jan-24 (No. DAE4-654_Jan24)	Jan-25
ID#	Check Date (in house)	Scheduled Check
SN: 107193	08-Nov-21 (in house check Dec-22)	In house check: Dec-24
SN: 100922	15-Dec-09 (in house check Dec-22)	In house check: Dec-24
SN: 100418	01-Jan-04 (in house check Dec-22)	In house check: Dec-24
SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
Name	Function	Signature
Krešimir Franjić	Laboratory Technician	The same of the sa
Sven Kühn	Technical Manager	
	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700 SN: US41080477 Name Krešimir Franjić	SN: 104778 30-Mar-23 (No. 217-03804/03805) SN: 103244 30-Mar-23 (No. 217-03804) SN: 103245 30-Mar-23 (No. 217-03805) SN: CC2552 (20x) 30-Mar-23 (No. 217-03809) SN: 310982 / 06327 30-Mar-23 (No. 217-03810) SN: 3877 10-Jan-24 (No. EX3-3877_Jan24) SN: 654 15-Jan-24 (No. DAE4-654_Jan24) ID # Check Date (in house) SN: 107193 08-Nov-21 (in house check Dec-22) SN: 100922 15-Dec-09 (in house check Dec-22) SN: 100418 01-Jan-04 (in house check Dec-22) SN: US3642U01700 04-Aug-99 (in house check Jun-22) SN: US41080477 31-Mar-14 (in house check Oct-22) Name Function Krešimir Franjić Laboratory Technician

Issued: January 23, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	13 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.0	0.75 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	53.0 ± 6 %	0.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	SHAW.	2222

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	0.606 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.621 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	0.327 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.335 W/kg ± 18.0 % (k=2)

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0 Ω + 2.5 j Ω	
Return Loss	- 31.9 dB	

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 22.01.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1023

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: f = 13 MHz; $\sigma = 0.72$ S/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 10.01.2024

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn908; Calibrated: 15.01.2024

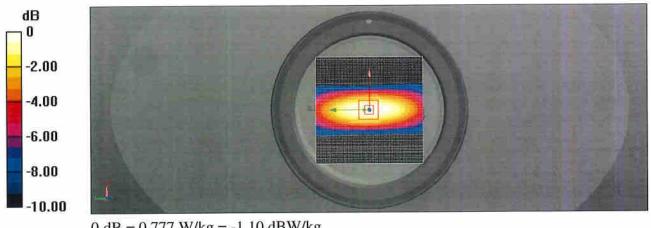
Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan,

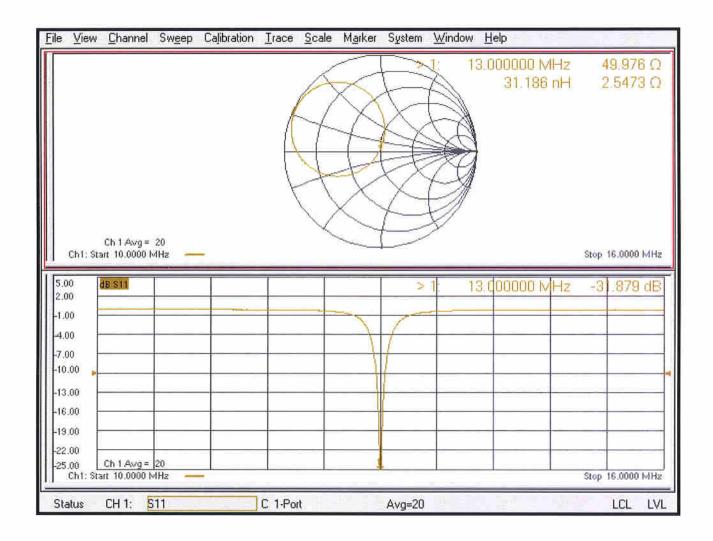
dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 33.35 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.606 W/kg; SAR(10 g) = 0.327 W/kg

Smallest distance from peaks to all points 3 dB below = 21.1 mm


Ratio of SAR at M2 to SAR at M1 = 75.9%

Maximum value of SAR (measured) = 0.777 W/kg

0 dB = 0.777 W/kg = -1.10 dBW/kg

Impedance Measurement Plot for Head TSL

Report No.: FA460505A

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Kunshan City

Certificate No: DAE4-1303 Nov23

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 1303

Calibration procedure(s)

QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

November 20, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	29-Aug-23 (No:37421)	Aug-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	1,107,111		THE PERSON NAMED IN COLUMN TO SECURE OF THE PE
Auto DAE Calibration Unit		Transfer to the control of the contr	In house check: Jan-24

Name

Function

Signature

Calibrated by:

Dominique Steffen

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: November 20, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1303_Nov23

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Page 2 of 5

Page: 8/33

Appendix C Report No. : FA460505A

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Υ	Z
High Range	404.997 ± 0.02% (k=2)	405.027 ± 0.02% (k=2)	404.749 ± 0.02% (k=2)
Low Range	3.94759 ± 1.50% (k=2)	4.01956 ± 1.50% (k=2)	3.99729 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	243.5°±1°
Commoder Angle to be deed in E. is a system	

Certificate No: DAE4-1303_Nov23

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

U. I. D.		Deceline (AV)	Difference (v.)()	Error (%)
High Range		Reading (μV)	Difference (μV)	E1101 (70)
Channel X + In	out	200032.21	-5.32	-0.00
Channel X + Inj	out	20006.02	-0.91	-0.00
Channel X - Inp	ut	-20003.63	1.95	-0.01
Channel Y + Inj	out	200032.29	-5.13	-0.00
Channel Y + In	out	20006.14	-0.71	-0.00
Channel Y - Inp	ut	-20005.73	-0.06	0.00
Channel Z + ln	out	200033.42	-4.08	-0.00
Channel Z + In	out	20006.69	-0.16	-0.00
Channel Z - Inp	out	-20004.77	0.98	-0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2002.07	-0.09	-0.00
Channel X	+ Input	201.95	-0.12	-0.06
Channel X	- Input	-197.81	0.06	-0.03
Channel Y	+ Input	2002.26	0.20	0.01
Channel Y	+ Input	200.84	-1.03	-0.51
Channel Y	- Input	-199.12	-1.04	0.53
Channel Z	+ Input	2002.26	0.12	0.01
Channel Z	+ input	201.32	-0.62	-0.31
Channel Z	- Input	-199.09	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-21.25	-22.23
	- 200	23.33	21.70
Channel Y	200	-6.05	-6.51
	- 200	4.39	4.29
Channel Z	200	8.92	9.14
	- 200	-10.26	-10.58

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

:	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	0.01	-3.72
Channel Y	200	6.84	-	2.70
Channel Z	200	9.01	5.02	•

Certificate No: DAE4-1303_Nov23

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15891	15473
Channel Y	15980	16700
Channel Z	15844	15203

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

mput rowsz	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.89	-1.26	2.18	0.50
Channel Y	-0.72	-1.45	0.99	0.39
Channel Z	-0.59	-1.87	0.60	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1303_Nov23 Page 5 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Kunshan City

Certificate No.

EX-7706 Jan24

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7706

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

January 24, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249 Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016 Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660 Mar23)	Mar-24
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349 Nov23)	Nov-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Name

Function

Signature

Calibrated by

Joanna Lleshaj

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: January 24, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7706_Jan24

Page 1 of 22

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to t

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization

 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z
 are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800 MHz) and inside waveguide using analytical field distributions based on power measurements for f>800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7706_Jan24 Page 2 of 22

January 24, 2024

Parameters of Probe: EX3DV4 - SN:7706

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)$ A	0.72	0.66	0.68	±10.1%
DCP (mV) B	103.2	105.9	104.4	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$dB\sqrt{\mu V}$	С	D dB	VR mV	Max dev.	Max Unc ^E <i>k</i> = 2
0	CW	X	0.00	0.00	1.00	0.00	127.5	±2.1%	±4.7%
2	- Karanyan	Y	0.00	0.00	1.00		139.5		
		Z	0.00	0.00	1.00		121.5		
10352	Pulse Waveform (200Hz, 10%)	X	1.49	60.50	6.33	10.00	60.0	±2.5%	±9.6%
	Sub-transferred totals and facilities and the modern strong and the strong and th	Y	1.58	60.93	6.58		60.0		
		Z	1.63	61.10	6.54		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.83	60.00	4.98	6.99	80.0	±2.3%	±9.6%
	D1 1999 200 10 200 200 200 10 10 10 10 10 10 10 10 10 10 10 10 1	Y	0.83	60.00	5.06		80.0		
		Z	20.00	74.00	9.00		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	24.00	72.00	7.00	3.98	95.0	±2.5%	±9.6%
100000000000000000000000000000000000000	10. T ± 10. T	Y	0.45	60.00	3.96		95.0		
		Z	0.00	121.60	0.73		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	11.69	153.21	11.36	2.22	120.0	±1.5%	±9.6%
0.555.550	800 (1980) 180 (1980) 180 (1980) 180 (1980) 180 (1980) 180 (1980) 180 (1980) 180 (1980) 180 (1980) 180 (1980)	Y	10.57	157.13	4.61		120.0		
		Z	0.00	155.21	22.99		120.0		
10387	QPSK Waveform, 1 MHz	X	0.78	64.36	12.37	1.00	150.0	±4.1%	±9.6%
		Y	0.68	65.00	13.10		150.0		West with
		Z	0.55	61.86	10.99		150.0		
10388	QPSK Waveform, 10 MHz	X	1.46	65.14	13.78	0.00	150.0	±1.4%	±9.6%
		Y	1.45	66.24	14.30	30000	150.0		
		Z	1.27	64.00	12.96		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.72	64.37	15.57	3.01	150.0	±1.2%	±9.6%
		Y	1.76	65.01	16.04		150.0		
		Z	1.55	62.88	15.13	150.			
10399	64-QAM Waveform, 40 MHz	X	2.94	65.94	14.87	0.00	150.0	±1.8%	±9.6%
	SSAT A SERVICIAN TO RECOGNIZATION OF A PERSONAL PROPERTY OF	Y	2.91	66.40	15.16		150.0	35 Jane	The same
		Z	2.77	65.35	14.54		150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.03	65.51	15.09	0.00	150.0	±3.4%	±9.6%
	THE PROPERTY OF THE PROPERTY O	Y	3.92	65.95	15.29		150.0		
		Z	3.98	65.92	15.23		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

January 24, 2024

Parameters of Probe: EX3DV4 - SN:7706

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 msV ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	14.1	101.26	32.89	3.73	0.00	4.90	0.59	0.00	1.00
у	11.1	79.03	32.61	4.15	0.00	4.90	0.57	0.00	1.00
z	11.5	83.62	33.90	2.28	0.00	4.90	0.07	0.02	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	30.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

EX3DV4 - SN:7706 January 24, 2024

Parameters of Probe: EX3DV4 - SN:7706

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	16.10	16.10	16.10	0.00	1.25	±13.3%
750	41.9	0.89	9.34	10.73	9.70	0.39	1.27	±12.0%
835	41.5	0.90	9.26	10.67	9.28	0.37	1.27	±12.0%
1640	40.2	1.31	8.05	9.14	8.08	0.47	1.27	±12.0%
1750	40.1	1.37	7.87	9.06	8.09	0.28	1.27	±12.0%
1900	40.0	1.40	7.77	8.97	7.88	0.29	1.27	±12.0%
2000	40.0	1.40	7.70	8.88	7.81	0.30	1.27	±12.0%
2300	39.5	1.67	7.57	8.73	7.66	0.31	1.27	±12.0%
2450	39.2	1.80	7.47	8.61	7.55	0.31	1.27	±12.0%
2600	39.0	1.96	7.30	8.44	7.37	0.30	1.27	±12.0%
3300	38.2	2.71	7.02	8.16	7.10	0.37	1.27	±14.0%
3500	37.9	2.91	6.99	8.16	7.09	0.37	1.27	±14.0%
3700	37.7	3.12	6.89	8.06	7.01	0.36	1.27	±14.0%
3900	37.5	3.32	6.83	7.98	6.94	0.37	1.27	±14.0%
4100	37.2	3.53	6.76	7.88	6.87	0.37	1.27	±14.0%
4200	37.1	3.63	6.73	7.85	6.83	0.37	1.27	±14.0%
4400	36.9	3.84	6.67	7.79	6.78	0.38	1.27	±14.0%
4600	36.7	4.04	6.53	7.63	6.62	0.38	1.27	±14.0%
4800	36.4	4.25	6.39	7.48	6.50	0.38	1.27	±14.0%
4950	36.3	4.40	5.98	7.02	6.06	0.44	1.36	±14.0%
5250	35.9	4.71	5.84	6.82	5.88	0.36	1.64	±14.0%
5600	35.5	5.07	4.83	5.71	4.90	0.44	1.67	±14.0%
5750	35.4	5.22	5.03	5.88	5.16	0.43	1.75	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Figure 10 MHz is 9–19 MHz, and ConvF assessment at 10 MHz, and ConvF assessed at 10 MHz. The probes are calibrated using tiesus simulation limited (FDL) that does not convE assessment at 10 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4 - SN:7706

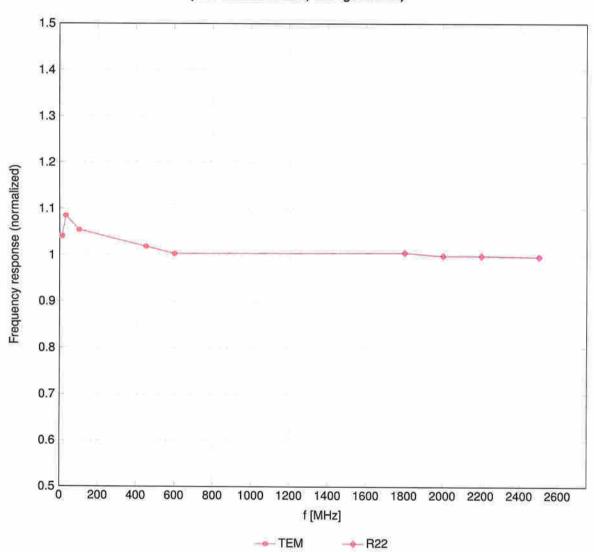
January 24, 2024

Parameters of Probe: EX3DV4 - SN:7706

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.27	6.32	5.24	0.20	2.00	±18.6%

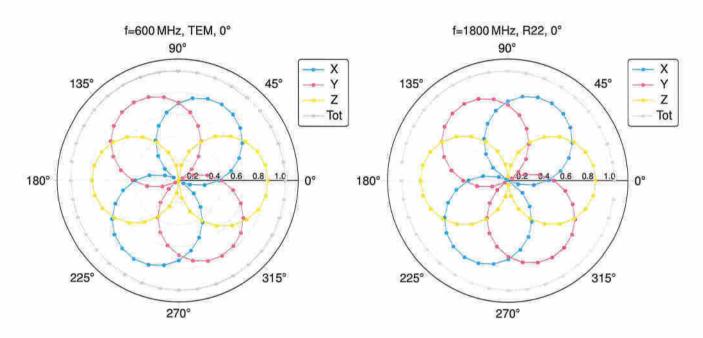
^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

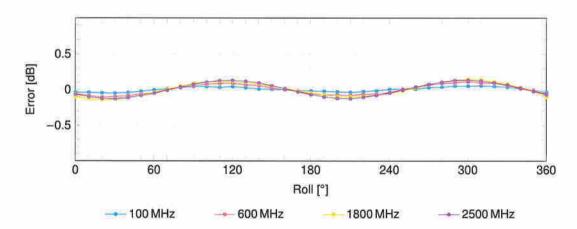

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm10\%$ from the target values (typically better than $\pm6\%$)

and are valid for TSL with deviations of up to ±10%.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

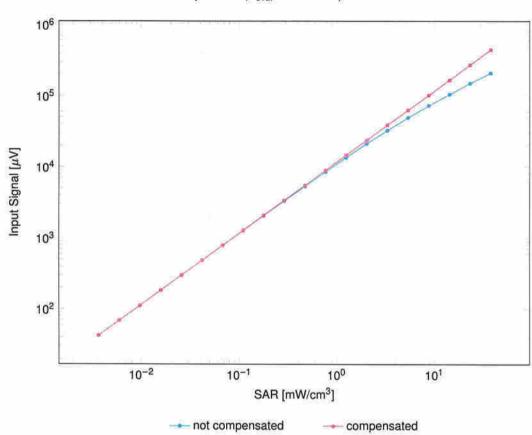

(TEM-Cell:ifi110 EXX, Waveguide:R22)

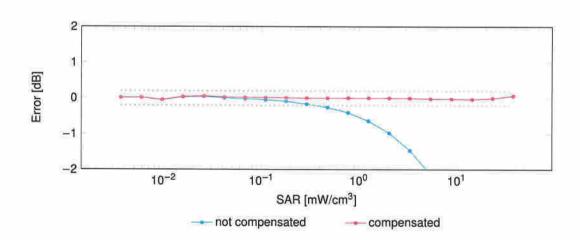


Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

EX3DV4 - SN:7706 January 24, 2024

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

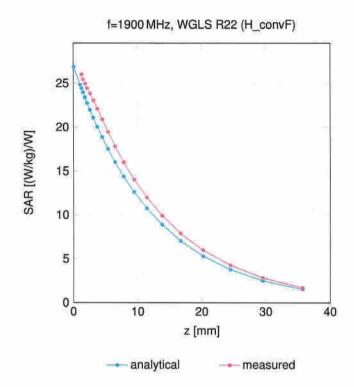



Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

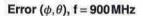
Certificate No: EX-7706_Jan24 Page 8 of 22

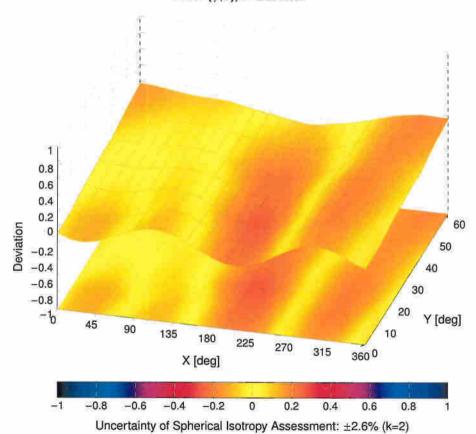
Dynamic Range f(SAR_{head})

(TEM cell, feval = 1900 MHz)



Uncertainty of Linearity Assessment: ±0.6% (k=2)


EX3DV4 - SN:7706


January 24, 2024

Conversion Factor Assessment

Deviation from Isotropy in Liquid

EX3DV4 - SN:7706 January 24, 2024

Appendix: Modulation Calibration Parameters

0		Communication System Name	Group	PAR (dB)	Unc ^E $k=2$
		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
0024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	CAA	EDGE-FDD (TDMA, 8PSK, TN 0-1-2) IEEE 802:15.1 Bluetooth (GFSK, DH1)	GSM Bluetooth	7.78 5.30	±9.6
0030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	1.87	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
0035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
0036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
0037	CAA	IEEE 802:15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
0038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
0000	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.10	±9.6
0042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
0056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
0058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
0059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
0060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
0061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
0062	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
0063	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
0064	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
0066	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
0098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
0100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	6.43 5.75	±9.6 ±9.6
10109	CAH				

EX3DV4 - SN:7706 January 24, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k=2$
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAE	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAE	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAE	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAE	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAE	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAE	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
		LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	6.56	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	5.82	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.43	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	6.58	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	5.46	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.21	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	6.79	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	5.73	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.52	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	6.49	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.21	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6 ±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177		LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAE	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAE	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAE	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAE	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAE	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAE	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223	CAE	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
7,000		IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN		

EX3DV4 - SN:7706

January 24, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	UncE k = 2
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM)	LTE-TDD	9.48	±9.6
	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 1 AB, 15 MHz, QFSK) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.21	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.82	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.86	±9.6
10243	CAE	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TOD	9.46	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, Q4-QAM) LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	10.06	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TOD	9.30	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	9.91	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, Q4-QAM)	LTE-TOD	10.09	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.29	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	9.81	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	10.17	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.24	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	9.90	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	10.14	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.20	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.96	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
40000	AAA	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX	12.03	±9.6
10301		IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6
10302	AAA				
10302 10303	AAA	IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6
10302 10303 10304	AAA AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52 11.86	±9.6 ±9.6
10302 10303	AAA		THE STREET STREET		