

Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei Building, keji'nan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China. Phone:86-755-26715499 E-mail: cs@szhtw.com.cn Website:http://www.szhtw.com.cn

TE	ST REPORT		
Report No:	CHTEW22020026	Report verificaiton:	
Project No:	SHT2111066102EW		
FCC ID:	OA8-CD18P		
Applicant's name:	Quanzhou Chierda Electroni	c Telecom Co.,Ltd.	
Address	No.8,Zian Road,Jiangnan High Zone,Quanzhou,Fujian,China	n-tech Industrial	
Test item description:	TWO WAY RADIO		
Trade Mark	Chierda		
Model/Type reference	CD18P		
Listed Model(s)	CD18,JV18,JV18P		
	FCC 47 CFR Part2.1093		
Standard:	IEEE Std C95.1, 1999 Editio	n	
	IEEE 1528: 2013		
Date of receipt of test sample	Jan.05, 2022		
Date of testing:	Jan.06, 2022- Feb.16, 2022		
Date of issue:	Feb.17, 2022		
Result:	PASS		
Compiled by		Jang hui Zhu	
(position+printed name+signature):	File administrators: Fanghui Zh	nu fait fine & me	
Supervised by		Dutrack Radi	
(position+printed name+signature):	Test Engineer: Patrick Qiu	Patrick . Rin Hu Hamsty	
Approved by			
(position+printed name+signature):	Manager: Hans I	Hu Maria	
Cesting Laboratory Name Shenzhen Huatongwei International Inspection Co., Ltd			
Address 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
Shenzhen Huatongwei International	Inspection Co., Ltd. All rights	reserved.	
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.			
The test report merely correspond to the test sample.			

Contents

2. Test Standards and Report version 2.1. Test Standards 2.2. Report version 3. Summary 3.1. Client Information 3.2. Product Description 3.3. Radio Specification Description 3.4. Test frequency list 3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurement Set-up 6.1. SAR Measurement Set-up 6.2. DASYS E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3.	3
2.2. Report version 3. Summary 3.1. Client Information 3.2. Product Description 3.3. Radio Specification Description 3.4. Test frequency list 3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurement System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up <	4
3. Summary 3.1. Client Information 3.2. Product Description 3.3. Radio Specification Description 3.4. Test frequency list 3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurements System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	4
3.1. Client Information 3.2. Product Description 3.3. Radio Specification Description 3.4. Test frequency list 3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurement System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	4
3.2. Product Description 3.3. Radio Specification Description 3.4. Test frequency list 3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurement System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. Scanning Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	5
3.3. Radio Specification Description 3.4. Test frequency list 3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurement System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	5
3.4. Test frequency list 3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurement System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	5
3.5. Testing Laboratory Information 3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurements System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	5
3.6. Environmental conditions 4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurements System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	6
4. Equipments Used during the Test 5. Measurement Uncertainty 6. SAR Measurements System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	7
5. Measurement Uncertainty 6. SAR Measurements System Configuration 6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	7
6.SAR Measurements System Configuration6.1.SAR Measurement Set-up6.2.DASY5 E-field Probe System6.3.Phantoms6.4.Device Holder7.SAR Test Procedure7.1.Scanning Procedure7.2.Data Storage and Evaluation8.Position of the wireless device in relation to the phantom8.1.Front-of-face8.2.Body Position9.Dielectric Property Measurements & System Check9.1.Tissue Dielectric Parameters9.2.SAR System Validation9.3.System Check10.SAR Exposure Limits11.Radiated Power Measurement Results and Tune-up	8
6.1. SAR Measurement Set-up 6.2. DASY5 E-field Probe System 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	9
6.2.DASY5 E-field Probe System6.3.Phantoms6.4.Device Holder7.SAR Test Procedure7.1.Scanning Procedure7.2.Data Storage and Evaluation8.Position of the wireless device in relation to the phantom8.1.Front-of-face8.2.Body Position9.Dielectric Property Measurements & System Check9.1.Tissue Dielectric Parameters9.2.SAR System Validation9.3.System Check10.SAR Exposure Limits11.Radiated Power Measurement Results and Tune-up	10
 6.3. Phantoms 6.4. Device Holder 7. SAR Test Procedure 7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up 	10
6.4.Device Holder7.SAR Test Procedure7.1.Scanning Procedure7.2.Data Storage and Evaluation8.Position of the wireless device in relation to the phantom8.1.Front-of-face8.2.Body Position9.Dielectric Property Measurements & System Check9.1.Tissue Dielectric Parameters9.2.SAR System Validation9.3.System Check10.SAR Exposure Limits11.Radiated Power Measurement Results and Tune-up	11
7.SAR Test Procedure7.1.Scanning Procedure7.2.Data Storage and Evaluation8.Position of the wireless device in relation to the phantom8.1.Front-of-face8.2.Body Position9.Dielectric Property Measurements & System Check9.1.Tissue Dielectric Parameters9.2.SAR System Validation9.3.System Check10.SAR Exposure Limits11.Radiated Power Measurement Results and Tune-up	12
7.1. Scanning Procedure 7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	12
7.2. Data Storage and Evaluation 8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	13
8. Position of the wireless device in relation to the phantom 8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	13
8.1. Front-of-face 8.2. Body Position 9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	15
8.2.Body Position9.Dielectric Property Measurements & System Check9.1.Tissue Dielectric Parameters9.2.SAR System Validation9.3.System Check10.SAR Exposure Limits11.Radiated Power Measurement Results and Tune-up	17
9. Dielectric Property Measurements & System Check 9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	17
9.1. Tissue Dielectric Parameters 9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	17
9.2. SAR System Validation 9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	18
9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	18
9.3. System Check 10. SAR Exposure Limits 11. Radiated Power Measurement Results and Tune-up	19
11. Radiated Power Measurement Results and Tune-up	20
	24
	24
12. SAR Measurement Results	24
13. Test Setup Photos	25
14. External and Internal Photos of the EUT	25

1. Statement of Compliance

Maximum Reported SAR (W/kg @1g)		
RF Exposure Conditions FRF		
Head(Dist.= 25mm)	0.202	
Body-worn(Dist.= 0mm)	0.416	

Note:

1. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg@1g) specified in FCC 47 CFR part 2 (2.1093) and IEEE Std C95.1,

2. This device had been tested in accordance with the measurement methods and procedures specified in IEEE 1528 and FCC KDB publications.

2. Test Standards and Report version

2.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency Radiation Exposure Evaluation: Portable Devices

<u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

TCB workshop: April, 2019; Page 19, Tissue Simulating Liquids (TSL)

2.2. Report version

Revision No.	Date of issue	Description
N/A	2022-02-17	Original

3. <u>Summary</u>

3.1. Client Information

Applicant:	Quanzhou Chierda Electronic Telecom Co.,Ltd.	
Address:	No.8,Zian Road,Jiangnan High-tech Industrial Zone,Quanzhou,Fujian,China	
Manufacturer:	Quanzhou Chierda Electronic Telecom Co.,Ltd.	
Address:	No.8,Zian Road,Jiangnan High-tech Industrial Zone,Quanzhou,Fujian,China	

3.2. Product Description

Main unit	
Name of EUT:	TWO WAY RADIO
Trade Mark:	Chierda
Model No.:	CD18P
Listed Model(s):	CD18,JV18,JV18P
Power supply:	DC 3.7V
Hardware version:	V1.1
Software version:	V1.1
Device Dimension:	Length x Width x Thickness (mm): 105X50X30 Antenna Length: 40mm
Device Category:	Portable
Product stage:	Production unit
RF Exposure Environment:	General Population/Uncontrolled
HTW test sample No.:	YPHT211100661005

Note:

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.

3.3. Radio Specification Description

	CH01~CH07: 462.5625MHz~ 462.7125MHz	
Operation Frequency Range:	CH08~CH14: 467.5625MHz~ 467.7125MHz	
	CH15~CH22: 462.5500MHz~ 462.7250MHz	
Modulation Type:	FM	
Channel Bandwidth:	12.5kHz	
Antenna Type: integral antenna		
Remark:		
1. The maximum duty cycle supported by the device is 50%.		

3.4. Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Number of frequencies	Location in frequency range of operation
1	Middle
2	1 near top and 1 near bottom
3	1 near top, 1 near middle, and 1 near bottom

Test Channel	Channel No.	Frequency (MHz)	Frequency band (MHz)
CH _{M1}	CH4	462.6375	462.5625~462.7125
CH _{M2}	CH11	467.6375	467.5625~467.7125
CH _{M3}	CH19	462.6500	462.5500~462.7250

The Product channel frequency table:

Test Channel	Channel No.	Frequency (MHz)	Frequency band (MHz)
01	462.5625	12	467.6625
02	462.5875	13	467.6875
03	462.6125	14	467.7125
04	462.6375	15	462.5500
05	462.6625	16	462.5750
06	462.6875	17	462.6000
07	462.7125	18	462.6250
08	467.5625	19	462.6500
09	467.5875	20	462.6750
10	467.6125	21	462.7000
11	467.6375	22	462.7250

3.5. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

3.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature	18 °C to 25 °C
Ambient humidity	30%RH to 70%RH
Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics	SPEAG	DAE4	1549	2021/03/23	2022/03/22
•	DAEx E-field Probe	SPEAG	EX3DV4	EX3DV4 3842		2022/01/24
0	Universal Radio Communication Tester	R&S	CMW500	137681	2021/05/27	2022/05/26
• T	issue-equivalent liquids Va	lidation	I		<u> </u>	
•	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
0	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
•	Network analyzer	Keysight	E5071C	MY46733048	2021/09/17	2022/09/16
• S	ystem Validation		L		I	
0	System Validation Antenna	SPEAG	CLA-150	4024	2021/01/25	2024/01/24
●	System Validation Dipole	SPEAG	D450V3	1102	2021/01/20	2024/01/19
0	System Validation Dipole	SPEAG	D750V3	1180	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D835V2	4d238	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D1750V2	1164	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D1900V2	5d226	2021/01/22	2024/01/21
0	System Validation Dipole	SPEAG	D2450V2	1009	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D2600V2	1150	2021/01/25	2024/01/24
0	System Validation Dipole	SPEAG	D5GHzV2	1273	2021/01/25	2024/01/24
●	Signal Generator	R&S	SMB100A	114360	2021/08/05	2022/08/04
●	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
●	Power sensor	R&S	NRP18A	101010	2021/08/05	2022/08/04
•	Power sensor	R&S	NRP18A	101386	2021/05/27	2022/05/26
•	Power Amplifier	BONN	BLWA 0160-2M	1811887	2021/11/11	2022/11/10
•	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2021/11/11	2022/11/10
●	Attenuator	Mini-Circuits	VAT-3W2+	1819	2021/11/11	2022/11/10
•	Attenuator	Mini-Circuits	VAT-10W2+	1741	2021/11/11	2022/11/10

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix E and F.

2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

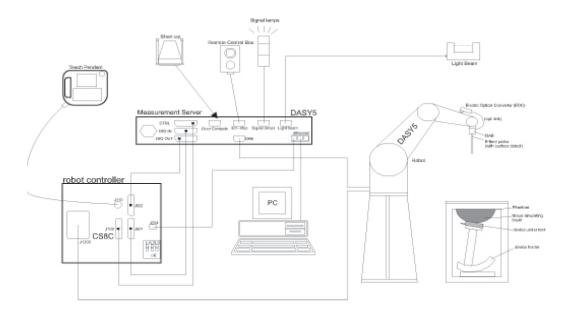
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

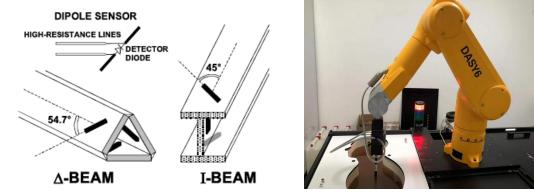
System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

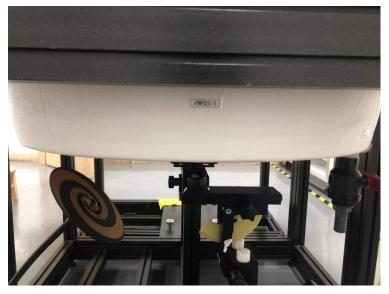
• Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)


CalibrationISO/IEC 17025 calibration service available.

Frequency	10 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 10 GHz)
Directivity	\pm 0.1 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 10 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe


The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of thecomplete setup, including all predefined phantom positions and measurementgrids, by teaching three points. The phantom is compatible with all SPEAGdosimetric probes and dipoles.

ELI4 Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Resolutions per FCC KDB Publication 865664 D01v04

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \hat{o} \cdot \ln(2) \operatorname{mm} \pm 0.5 \operatorname{mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$		
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 5 \; \mathrm{mm}^* \\ 4-6 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm}^* \end{array}$				
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$				
	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	$3-4 \text{ GHz:} \leq 3 \text{ mm}$ $4-5 \text{ GHz:} \leq 2.5 \text{ mm}$ $5-6 \text{ GHz:} \leq 2 \text{ mm}$				
	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Z \infty}$	om(n-1) mm				
Minimum zoom scan volume	X V Z		\geq 30 mm	$\begin{array}{l} 3-4 \ GHz :\geq 28 \ mm \\ 4-5 \ GHz :\geq 25 \ mm \\ 5-6 \ GHz :\geq 22 \ mm \end{array}$				
37 . 21								

Note: \hat{o} is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity: Conversion factor:	Normi, ai0, ai1, ai2 ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H – fieldprobes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

	J
Vi:	compensated signal of channel (i = x, y, z)
Normi:	sensor sensitivity of channel (i = x, y, z),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\delta}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in mW/g

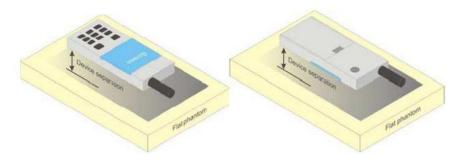
Etot: total field strength in V/m

σ: conductivity in [mho/m] or [Siemens/m]

ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. Position of the wireless device in relation to the phantom


8.1. Front-of-face

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

8.2. Body Position

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C

and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant (ε_r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε_r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Tissue dielectric parameters for Head and Body							
Target Frequency	Target Frequency Head Body						
(MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)			
450	43.5	56.7	0.94				

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Measurement Results:

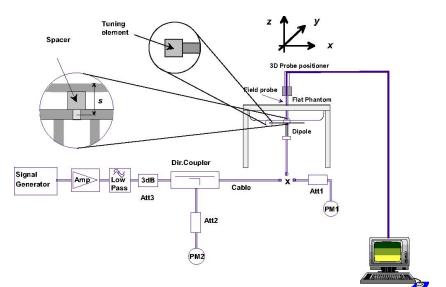
Dielectric performance of Head tissue simulating liquid									
Frequency	Frequency ε _r			σ(S/m)		Delta	Limit	Temp	Date
(MHz)	Target	Measured	Target	Measured	(ε _r)	(σ)	LIIIII	(°C)	Dale
450	43.50	42.23	0.870	0.873	-2.92%	0.34%	±5%	22.0	2022/1/11

9.2. SAR System Validation

Per FCC KDB 865664 D02,SAR system validadion status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

9.3. System Check


SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz

and ≥10.0 cm for measurements > 3 GHz.

- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.

System Performance Check Setup

Photo of Dipole Setup

Measurement Results:

Head											
Frequency	1g SAR		10g SAR		Delta	Delta		Temp	Dete		
(MHz)	Target 1W	Normalize to 1W	Measured 250mW	Target 1W	Normalize to 1W	Measured 250mW	(1g) (10g)	(10g)) Limit	(°C)	Date
450	4.60	4.68	1.17	3.09	3.16	0.790	1.74%	2.27%	±10%	22.4	2022/1/11

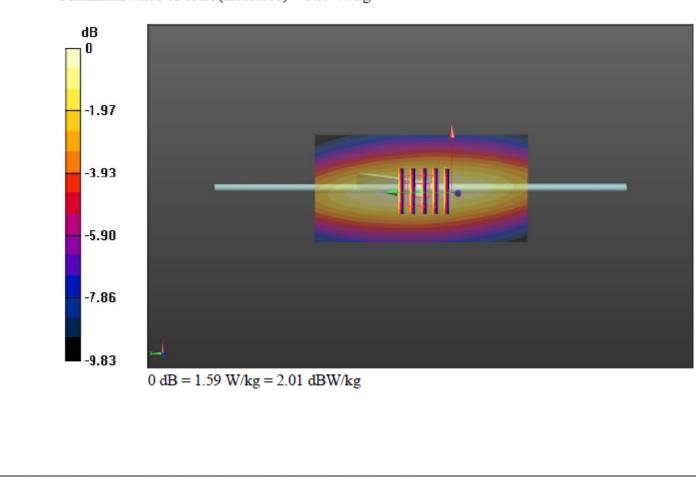
Note:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target.

Plots of System Performance Check

SystemPerformanceCheck-Head 450MHz

Communication System: UID 0, A-CW (0); Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; $\sigma = 0.873$ S/m; $\varepsilon_r = 42.231$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

DASY Configuration:

- Probe: EX3DV4 SN3842; ConvF(10.09, 10.09, 10.09) @ 450 MHz; Calibrated: 1/25/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- · Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=15mm, Pin=250mW, dist=1.4mm (EX-Probe)/Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.58 W/kg

Head/d=15mm, Pin=250mW, dist=1.4mm (EX-Probe)/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.28 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.790 W/kg Maximum value of SAR (measured) = 1.59 W/kg

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (W/kg)					
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment				
Spatial Average SAR (whole body)	0.08	0.4				
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0				
Spatial Peak SAR (10g for limb)	4.0	20.0				

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

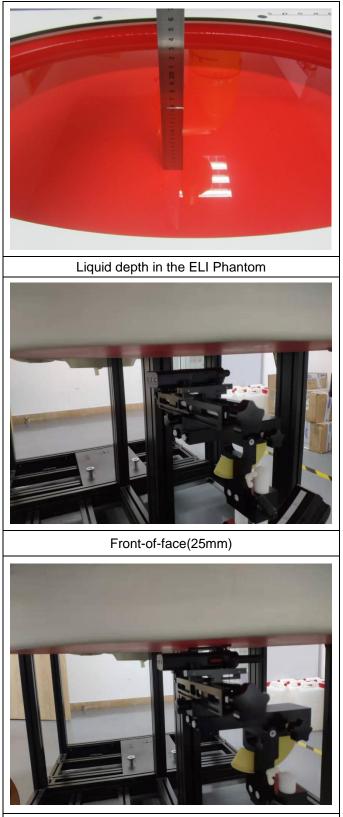
Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Radiated Power Measurement Results and Tune-up

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01

Please refer to appendix A

12. SAR Measurement Results


Please refer to appendix B

SAR Test Data Plots to the Appendix D.

Note:

- 1. The distance of the front-of-face test is 25mm, the distance of the Body-worn test is 0mm.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. The Body-worn SAR evaluation was performed with the Leather Case body-worn accessory attached to the DUT and touching the outer surface of the planar phantom.

13. Test Setup Photos

Body-worn(0mm)

14. External and Internal Photos of the EUT

Please refer to the test report No.: CHTEW22030035

-----End of Report-----

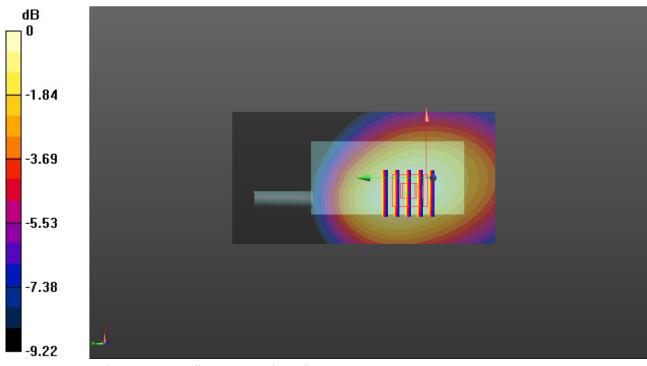
Appendix A:ERP Measurement Results

Power									
Maria	Channel	Frequ	uency		Tune up limit				
Mode	Separation	Channel	MHz	ERP (dBm)	(dBm)				
Analog	10 EVU-	CH4	462.6375	30.62	31.00				
Analog	12.5kHz	CH11	467.6375	26.95	27.00				

					Front-o	of-face					
Mode Channel Separation	Frequency		ERP	Tune up limit	Tune up scaling	Power	Measured SAR(1g)	Report SAR(1g)	50% Duty SAR(1g)	Plot No.	
	Separation	СН	MHz	(dBm)	(dBm)	factor	Drift(dB)	(W/kg)	(W/kg)	(W/kg)	
Analog	Analog 12.5kHz	CH4	462.6375	30.62	31.00	1.091	-0.07	0.370	0.404	0.202	1
Analog	12.5KHZ	CH11	467.6375	26.95	27.00	1.012	-0.10	0.165	0.167	0.083	2

					Body-	worn					
Mode	Frequency		ERP Tune up	Tune up limit	Tune up scaling	Power	Measured SAR(1g)	Report SAR(1g)	50% Duty SAR(1g)	Plot No.	
	Separation	СН	MHz	(dBm)	(dBm)	factor	Drift(dB)	(W/kg)	(W/kg)	(W/kg)	
Analog	Analog 12.5kHz	0	462.6375	30.62	31.00	1.091	-0.13	0.762	0.832	0.416	3
Analog	12.56112	0	467.6375	26.95	27.00	1.012	-0.04	0.257	0.260	0.130	4

Analog-12.5k-CH4-Head


Communication System: UID 0, Analog (0); Frequency: 462.637 MHz;Duty Cycle: 1:1 Medium parameters used: f = 463 MHz; $\sigma = 0.876$ S/m; $\varepsilon_r = 41.527$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.7°C;Liquid Temperature:22.3°C;

DASY Configuration:

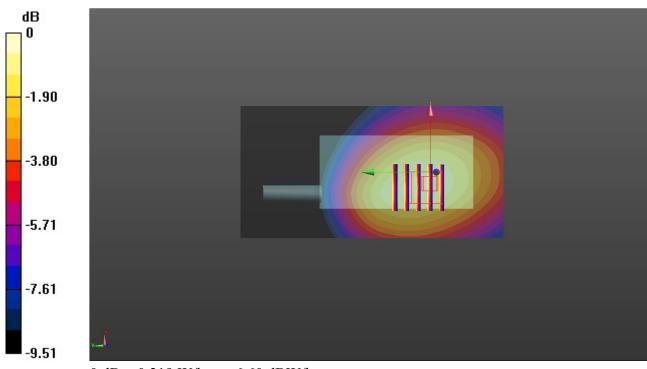
- Probe: EX3DV4 SN3842; ConvF(10.09, 10.09, 10.09) @ 462.637 MHz; Calibrated: 1/25/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 4/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.513 W/kg

Front/CH 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.73 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.587 W/kg SAR(1 g) = 0.370 W/kg; SAR(10 g) = 0.267 W/kg Maximum value of SAR (measured) = 0.493 W/kg

0 dB = 0.493 W/kg = -3.07 dBW/kg

Analog-12.5k-CH11-Head


Communication System: UID 0, Analog (0); Frequency: 467.637 MHz;Duty Cycle: 1:1 Medium parameters used: f = 468 MHz; $\sigma = 0.881$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.6°C;Liquid Temperature:22.3°C;

DASY Configuration:

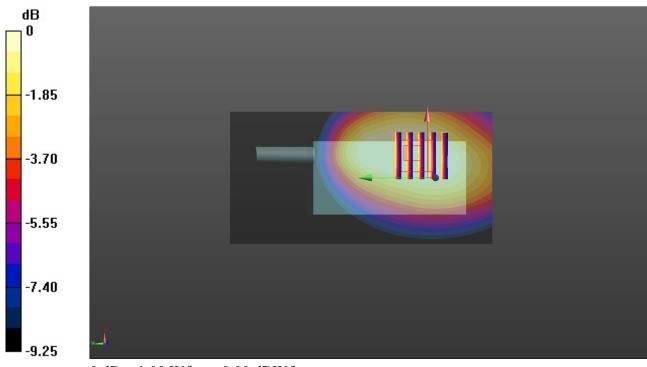
- Probe: EX3DV4 SN3842; ConvF(10.09, 10.09, 10.09) @ 467.637 MHz; Calibrated: 1/25/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front/CH 11/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.197 W/kg

Front/CH 11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.64 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.260 W/kg SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.116 W/kg. Maximum value of SAR (measured) = 0.219 W/kg

0 dB = 0.219 W/kg = -6.60 dBW/kg

Analog-12.5k-CH4-Body worn


Communication System: UID 0, Analog (0); Frequency: 462.637 MHz;Duty Cycle: 1:1 Medium parameters used: f = 463 MHz; $\sigma = 0.876$ S/m; $\epsilon_r = 41.527$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.5°C;Liquid Temperature:22.3°C;

DASY Configuration:

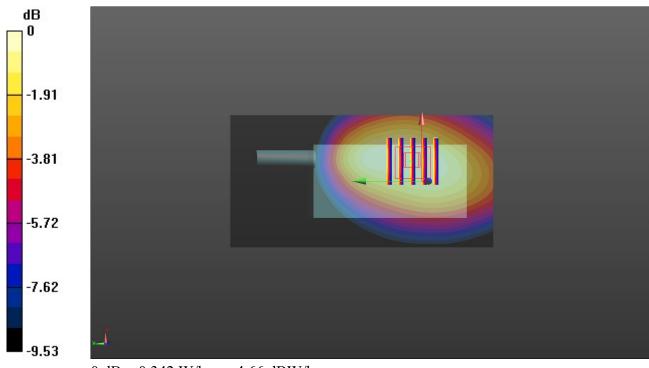
- Probe: EX3DV4 SN3842; ConvF(10.09, 10.09, 10.09) @ 462.637 MHz; Calibrated: 1/25/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 4/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.19 W/kg

Rear/CH 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 34.58 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.762 W/kg; SAR(10 g) = 0.538 W/kg Maximum value of SAR (measured) = 1.00 W/kg

0 dB = 1.00 W/kg = 0.00 dBW/kg

Analog-12.5k-CH11-Body worn


Communication System: UID 0, Analog (0); Frequency: 467.637 MHz;Duty Cycle: 1:1 Medium parameters used: f = 468 MHz; $\sigma = 0.881$ S/m; $\epsilon_r = 41.305$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

DASY Configuration:

- Probe: EX3DV4 SN3842; ConvF(10.09, 10.09, 10.09) @ 467.637 MHz; Calibrated: 1/25/2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/23/2021
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 11/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.358 W/kg

Rear/CH 11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.00 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.402 W/kg SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.181 W/kg Maximum value of SAR (measured) = 0.342 W/kg

0 dB = 0.342 W/kg = -4.66 dBW/kg

1.1. DAE4 Calibration Certificate

E-mail: cttl@ch	and the second se	//www.chinattl.cn	No: Z21-60063
			NO. 221-00003
Object	DAE4	- SN: 1549	
Calibration Procedure(s)	FE-71	1-002-01	
		ation Procedure for the Data Acquis	ition Electronics
Calibration date:	March	23, 2021	
measurements(SI). The r pages and are part of the All calibrations have be	measurements and e certificate.	traceability to national standards, whi d the uncertainties with confidence prob the closed laboratory facility: enviror	ability are given on the following
measurements(SI). The r pages and are part of the	measurements and e certificate. een conducted in sed (M&TE critical	the uncertainties with confidence prob	ability are given on the following
measurements(SI). The r pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	measurements and e certificate. een conducted in sed (M&TE critical	the uncertainties with confidence prob the closed laboratory facility: enviror for calibration)	ability are given on the following
neasurements(SI). The r pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	measurements and e certificate. een conducted in sed (M&TE critical ID # Ca 1971018	the uncertainties with confidence prob the closed laboratory facility: enviror for calibration) al Date(Calibrated by, Certificate No.) 16-Jun-20 (CTTL, No.J20X04342)	ability are given on the following nment_temperature(22±3)℃ and Scheduled Calibration Jun-21
neasurements(SI). The r pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	measurements and e certificate. een conducted in sed (M&TE critical ID # Ca	the uncertainties with confidence prob the closed laboratory facility: enviror for calibration) al Date(Calibrated by, Certificate No.)	ability are given on the following mment temperature(22±3)°C and Scheduled Calibration
measurements(SI). The r pages and are part of the All calibrations have be numidity<70%. Calibration Equipment us	measurements and e certificate. een conducted in sed (M&TE critical ID # Ca 1971018 Name	the uncertainties with confidence prob the closed laboratory facility: enviror for calibration) al Date(Calibrated by, Certificate No.) 16-Jun-20 (CTTL, No.J20X04342) Function	ability are given on the following nment_temperature(22±3)℃ and Scheduled Calibration Jun-21

Certificate No: Z21-60063

Page 1 of 3

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z21-60063

Page 2 of 3

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

A/D	-	C	or	verter	Resolution	nominal				
	02						-	C 21 1	1.0	

 High Range:
 1LSB =
 6.1μV
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV
 full range =
 -1.....+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	$406.327 \pm 0.15\% \text{ (k=2)}$	$406.003 \pm 0.15\% \text{ (k=2)}$	406.159 ± 0.15% (k=2)
Low Range	3.98410 ± 0.7% (k=2)	3.99112 ± 0.7% (k=2)	3.99200 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	19° ± 1 °

Certificate No: Z21-60063

Page 3 of 3

1.2. Probe Calibration Certificate

Engineering AG eughausstrasse 43, 8004 Zur	ory of rich, Switzerland	Nac-MRA	Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredite he Swiss Accreditation Servi fulfilateral Agreement for the	ice is one of the signatories	to the EA	reditation No.: SCS 0108
lient CIQ (Auden)	recognition of calibration c		EX3-3842_Jan21
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:384	2	
Calibration procedure(s)		A CAL-12.v9, QA CAL-23.v5, QA lure for dosimetric E-field probes	CAL-25.v7
Calibration date:	January 25, 2021		
		bability are given on the following pages and i facility: environment temperature $(22\pm3)^\circ C$ a	
All calibrations have been cond Calibration Equipment used (M	fucted in the closed laboratory &TE critical for calibration)	facility: environment temperature (22 ± 3)°C a	and humidity < 70%.
All calibrations have been cond Calibration Equipment used (M Primary Standards	fucted in the closed laboratory &TE critical for calibration)	facility: environment temperature (22 ± 3)°C a	and humidity < 70%.
Il calibrations have been cond calibration Equipment used (M Primary Standards Power meter NRP	Iucted in the closed laboratory &TE critical for calibration) ID SN: 104778	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	and humidity < 70%. Scheduled Calibration Apr-21
Il calibrations have been cond calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-291	Iucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	and humidity < 70%. Scheduled Calibration Apr-21 Apr-21
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	Iucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100)	Apr-21 Apr-21 Apr-21 Apr-21
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	Iucled in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4	tucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 0022552 (20x) SN: 660	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21
Il calibrations have been cond Calibration Equipment used (M. Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4	Iucled in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Il calibrations have been cond calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	tucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 0022552 (20x) SN: 660	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B	tucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 0022552 (20x) SN: 660 SN: 3013	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Dec-21
All calibrations have been cond Calibration Equipment used (M Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	tucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check
All calibrations have been cond Calibration Equipment used (M Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	tucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check In house check; Jun-22
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	Iucled in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660 Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20)	Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	tucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 600 SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 23-Dec-20 (No. 247-03106) 23-Dec-20 (No. ES3-3013_Dec20) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	Iucled in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	In humidity < 70% . Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-24 In house check
All calibrations have been cond Calibration Equipment used (M. Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4419B Power sensor E4419A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	tucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 23-Dec-20 (No. 217-03106) 23-Dec-20 (No. ES3-3013_Dec20) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-20)	And humidity < 70% . Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-24 In house check: Jun-
All calibrations have been cond Calibration Equipment used (M. Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4419B Power sensor E4419A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	ID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 00245 SN: 00245 SN: 00013 ID SN: 000110210 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 03-IMar-14 (in house check Oct-20)	In humidity < 70% . Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-24 In house check
All calibrations have been cond Calibration Equipment used (M. Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	ID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 00245 SN: 00245 SN: 00013 ID SN: 000110210 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 03-IMar-14 (in house check Oct-20)	In humidity < 70% . Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-24 In house check
	ID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 00245 SN: 00245 SN: 00013 ID SN: 000110210 SN: 000110210 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 23-Dec-20 (No. DAE4-660_Dec20) 30-Dec-20 (No. ES3-3013_Dec20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 03-IMar-14 (in house check Oct-20)	In humidity < 70% . Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-21 Dec-21 Dec-21 Scheduled Check In house check: Jun-22 In house check: Jun-24 In house check

Certificate No: EX3-3842_Jan21

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S С S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3842_Jan21

Page 2 of 9

EX3DV4 - SN:3842

January 25, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.35	0.51	0.40	± 10.1 %
DCP (mV) ^B	104.7	100.7	102.2	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	132.1	± 2.2 %	± 4.7 %
		Y	0.0	0.0	1.0		136.3		
		Z	0.0	0.0	1.0		126.4		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncartainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the sector between the field value.

Certificate No: EX3-3842_Jan21

Page 3 of 9

EX3DV4- SN:3842

January 25, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-122.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-3842_Jan21

Page 4 of 9

EX3DV4- SN:3842

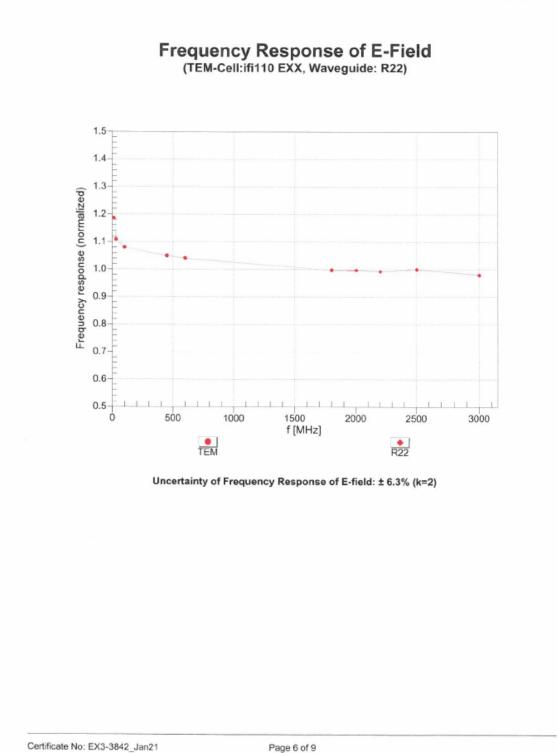
January 25, 2021

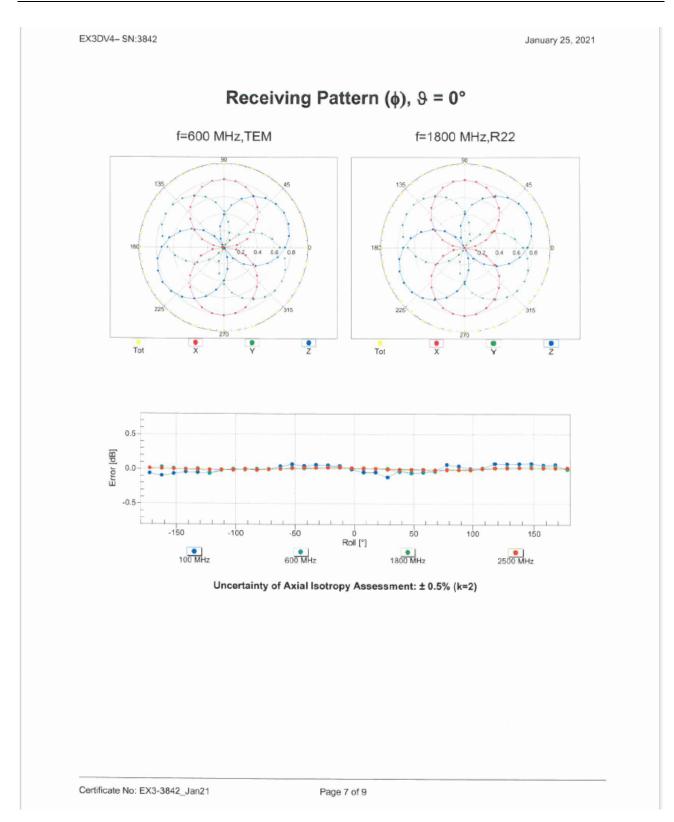
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

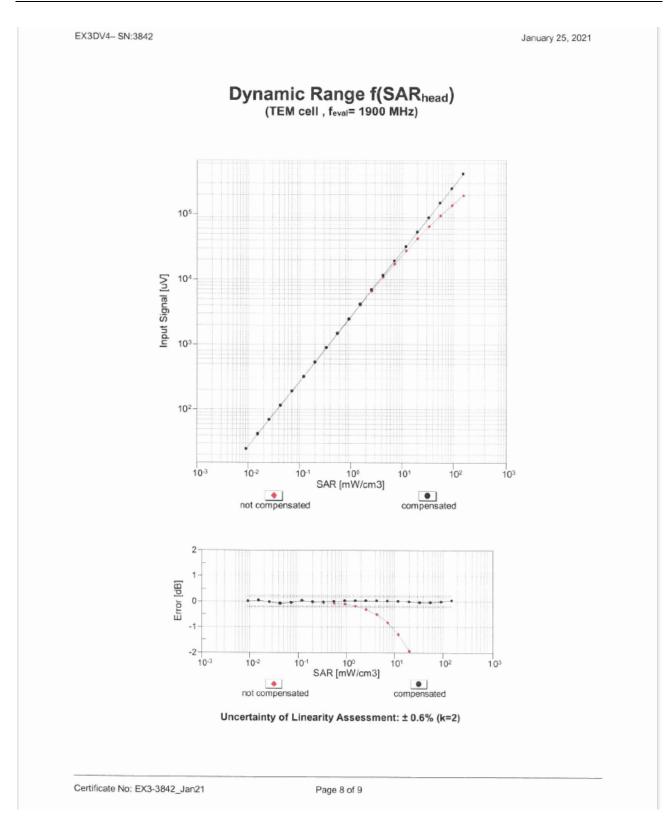
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.56	11.56	11.56	0.00	1.00	± 13.3 %
450	43.5	0.87	10.09	10.09	10.09	0.15	1.25	± 13.3 %

Calibration Parameter Determined in Head Tissue Simulating Media

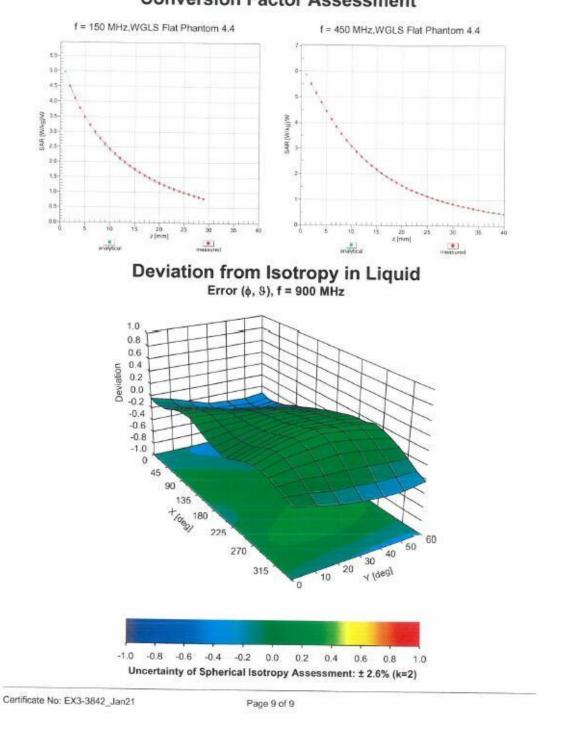
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target frequence.


the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip distance larger than half the probe tip diameter from the boundary.


Certificate No: EX3-3842 Jan21


Page 5 of 9

January 25, 2021



EX3DV4-SN:3842

January 25, 2021

Conversion Factor Assessment

1.1. D450V3 Dipole Calibration Certificate

credited by the Swiss Accreditation			creditation No.: SCS 0108
ne Swiss Accreditation Service is ultilateral Agreement for the reco			
	graner er eanstation i		D450V3-1102_Jan21
lient HTW (Auden)			
CALIBRATION CE	ERTIFICATE		
	D450V3 - SN:110	0	
Dbject	D450V3 - SN.110	2	
Calibration procedure(s)	QA CAL-15.v9	dure for SAR Validation Sources	below 700 MHz
	Calibration Proce	ulle for SAR valuation Sources	
Calibration date:	January 20, 2021		
All calibrations have been conducte	d in the closed laborator	y facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
		y facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&TE		Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&TE Primary Standards Power meter NRP	critical for calibration)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	Scheduled Calibration Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91	critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	Scheduled Calibration Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Scheduled Calibration Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: C2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: C2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID #	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 022552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: C2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 202552 (20x) SN: 310962 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: C2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E4412A Power sensor E4412A RF generator HP 8648C	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02452 SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: C2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US41080477	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02452 SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02452 SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) Function	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by:	critical for calibration) ID # SN: 104778 SN: 103245 SN: 0245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Michael Weber	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. 217-03104) 30-Dec-20 (No. EX3-3877_Dec20) 26-Jun-20 (No. DAE4-654_Jun20) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Jun-20) 31-Mar-14 (in house check Jun-20)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-21 Jun-21 Scheduled Check In house check: Jun-22 In house check: Jun-22

Certificate No: D450V3-1102_Jan21

Page 1 of 6

Engir	d & Partner neering AG strasse 43, 8004 Zurich, Switzerland	Nac-MRA	C. S.	C Servizio svizzero di taratura S Swiss Calibration Service
- 22 		solutions.	\sim	Accreditation No.: SCS 0108
	d by the Swiss Accreditation Service (SAS) s Accreditation Service is one of the signa	stories to the EA		Accreditation No.: SCS 0100
	al Agreement for the recognition of calibra			
Gloss	ary:			
TSL	tissue simulating			
ConvF				
N/A	not applicable or	r not measured		
Calibr	ation is Performed Accordin	a to the Followi	ng Standards:	
a)	IEEE Std 1528-2013, "IEEE R	lecommended Pr	ractice for Deter	mining the Peak Spatial-
<u>,</u>	Averaged Specific Absorption	Rate (SAR) in th	e Human Head	from Wireless
	Communications Devices: Me	asurement Tech	niques", June 20	013
b)	IEC 62209-1, "Measurement p	procedure for the	assessment of	Specific Absorption Hate
	(SAR) from hand-held and bo		ces used next to	o the ear (hequency range o
2	300 MHz to 6 GHz)", July 201 IEC 62209-2, "Procedure to d	o etermine the Soc	cific Absorption	Bate (SAB) for wireless
C)	communication devices used	in close proximity	v to the human l	ody (frequency range of 30
	MHz to 6 GHz)", March 2010	in elece pression,		
d)	KDB 865664, "SAR Measurer	nent Requiremer	nts for 100 MHz	to 6 GHz"
83 				
	onal Documentation:			
e)	DASY4/5 System Handbook			
Metho	ds Applied and Interpretatio	n of Parameters	5:	
•	Measurement Conditions: Fur	ther details are a	vailable from th	e Validation Report at the e
	of the certificate. All figures st	ated in the certifi	cate are valid a	t the frequency indicated.
	Antenna Parameters with TSI	L: The dipole is n	nounted with the	e spacer to position its feed
	point exactly below the center	r marking of the f	lat phantom sec	tion, with the arms oriented
	parallel to the body axis.	<u></u>		1 de la des des sta
•	Feed Point Impedance and R	eturn Loss: Thes	e parameters a	re measured with the dipole
	positioned under the liquid fill measurement at the SMA cor	ed phantom. The	d point The Re	turn Loss ensures low
	reflected power. No uncertain		a point. The ne	Curr Loss ensures low
	Electrical Delay: One-way del	av between the S	SMA connector	and the antenna feed point.
	No uncertainty required.	ay between the		
	SAR measured: SAR measur	ed at the stated	antenna input p	ower.
	SAR normalized: SAR as me	asured, normaliz	ed to an input p	ower of 1 W at the antenna
	connector.			
	SAR for nominal TSL parame	eters: The measu	red TSL parame	eters are used to calculate the
	nominal SAR result.			
The	reported uncertainty of measu	rement is stated	as the standard	uncertainty of measuremen
multi	plied by the coverage factor k=	=2, which for a no	ormal distributio	n corresponds to a coverage
prob	ability of approximately 95%.			
1				

Measurement Conditions DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.7 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.60 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.771 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.09 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1102_Jan21

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.4 Ω - 3.8 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.346 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

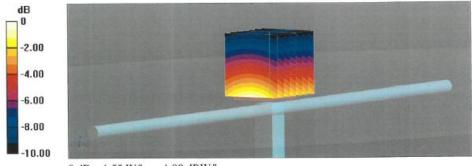
Certificate No: D450V3-1102_Jan21

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 20.01.2021

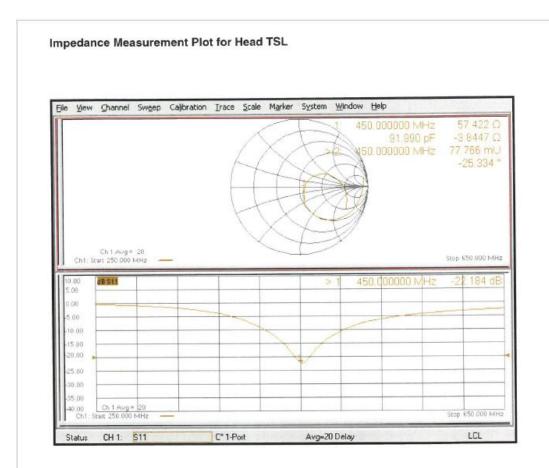
Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1102

Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.87 S/m; ε_r = 43.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 26.06.2020
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.07 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.771 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30mm) Ratio of SAR at M2 to SAR at M1 = 64.6% Maximum value of SAR (measured) = 1.55 W/kg

0 dB = 1.55 W/kg = 1.90 dBW/kg

Certificate No: D450V3-1102_Jan21

Page 5 of 6

Certificate No: D450V3-1102_Jan21

Page 6 of 6