

 
 No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM180100017601 Page: 1 of 37

### TEST REPORT

| Application No.:         | SZEM1801000176CR (SHEM1712008629CR)                                   |
|--------------------------|-----------------------------------------------------------------------|
| FCC ID:                  | 2AC8UA1619                                                            |
| Applicant:               | Anhui Huami Information Technology Co.,Ltd.                           |
| Address of Applicant:    | Building A4, 12th Floor, No.800 Wangjiang Road, Hefei, China (230088) |
| Manufacturer:            | Anhui Huami Information Technology Co.,Ltd.                           |
| Address of Manufacturer: | Building A4, 12th Floor, No.800 Wangjiang Road, Hefei, China (230088) |
| Factory:                 | Anhui Huami Information Technology Co.,Ltd.                           |
| Address of Factory:      | Building A4, 12th Floor, No.800 Wangjiang Road, Hefei, China (230088) |
| Equipment Under Test (EU | Г):                                                                   |
| EUT Name:                | Amazfit Stratos                                                       |
| Model No.:               | A1619                                                                 |
| Standard(s) :            | 47 CFR Part 15, Subpart C 15.247                                      |
| Date of Receipt:         | 2017-12-15                                                            |
| Date of Test:            | 2017-12-26 to 2018-01-23                                              |
| Date of Issue:           | 2018-01-26                                                            |
| Test Result:             | Pass*                                                                 |

\* In the configuration tested, the EUT complied with the standards specified above.



#### Keny Xu EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cancent dese not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.



Report No.: SZEM180100017601 Page: 2 of 37

|                             | Revision Record |            |   |          |  |  |  |  |  |
|-----------------------------|-----------------|------------|---|----------|--|--|--|--|--|
| VersionChapterDateModifierF |                 |            |   |          |  |  |  |  |  |
| 01                          | /               | 2018-01-26 | / | Original |  |  |  |  |  |
|                             |                 |            |   |          |  |  |  |  |  |
|                             |                 |            |   |          |  |  |  |  |  |

| Authorized for issue by: |                              |  |
|--------------------------|------------------------------|--|
|                          | Forychon                     |  |
|                          | Foray Chen /Project Engineer |  |
|                          | Eric Fu                      |  |
|                          | Eric Fu /Reviewer            |  |



Report No.: SZEM180100017601 Page: 3 of 37

### 2 Test Summary

| Radio Spectrum Technical Requirement                                                     |                                     |        |                                                      |        |  |  |  |  |
|------------------------------------------------------------------------------------------|-------------------------------------|--------|------------------------------------------------------|--------|--|--|--|--|
| Item                                                                                     | Standard                            | Method | Requirement                                          | Result |  |  |  |  |
| Antenna Requirement                                                                      | 47 CFR Part 15,<br>Subpart C 15.247 | N/A    | 47 CFR Part 15,<br>Subpart C 15.203 &<br>15.247(c)   | Pass   |  |  |  |  |
| Other requirements<br>Frequency Hopping<br>Spread Spectrum<br>System Hopping<br>Sequence | 47 CFR Part 15,<br>Subpart C 15.247 | N/A    | 47 CFR Part 15,<br>Subpart C<br>15.247(a)(1),(g),(h) | Pass   |  |  |  |  |

| Radio Spectrum Matter Part                                  |                                     |                                      |                                                 |        |  |  |  |  |
|-------------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------------|--------|--|--|--|--|
| Item                                                        | Standard                            | Method                               | Requirement                                     | Result |  |  |  |  |
| Conducted Peak<br>Output Power                              | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.5  | 47 CFR Part 15,<br>Subpart C<br>15.247(b)(1)    | Pass   |  |  |  |  |
| 20dB Bandwidth                                              | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 6.9    | 47 CFR Part 15,<br>Subpart C<br>15.247(a)(1)    | Pass   |  |  |  |  |
| Carrier Frequencies<br>Separation                           | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.2  | 47 CFR Part 15,<br>Subpart C<br>15.247a(1)      | Pass   |  |  |  |  |
| Hopping Channel<br>Number                                   | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.3  | 47 CFR Part 15,<br>Subpart C<br>15.247a(1)(iii) | Pass   |  |  |  |  |
| Dwell Time                                                  | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.4  | 47 CFR Part 15,<br>Subpart C<br>15.247a(1)(iii) | Pass   |  |  |  |  |
| Conducted Band<br>Edges Measurement                         | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.6  | 47 CFR Part 15,<br>Subpart C<br>15.247(d)       | Pass   |  |  |  |  |
| Conducted Spurious<br>Emissions                             | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 7.8.8  | SI C63.10 (2013) 47 CFR Part 15,<br>Subpart C   |        |  |  |  |  |
| Radiated Emissions<br>which fall in the<br>restricted bands | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 6.10.5 | 47 CFR Part 15,<br>Subpart C 15.205<br>& 15.209 | Pass   |  |  |  |  |
| Radiated Spurious<br>Emissions                              | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10 (2013)<br>Section 6.10.4 | 47 CFR Part 15,<br>Subpart C 15.205<br>& 15.209 | Pass   |  |  |  |  |



Report No.: SZEM180100017601 Page: 4 of 37

### 3 Contents

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Page                                                                                                                                                     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | COVER PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| 2 | TEST SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                        |
| 3 | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                        |
| 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                        |
| 4 | GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                        |
|   | 4.1 DETAILS OF E.U.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                        |
|   | 4.2 DESCRIPTION OF SUPPORT UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
|   | 4.3 Test Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
|   | 4.4 MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                        |
|   | 4.5 TEST LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                        |
|   | 4.6 TEST FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |
|   | 4.7 DEVIATION FROM STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
|   | 4.8 ABNORMALITIES FROM STANDARD CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                        |
| 5 | EQUIPMENT LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| 6 | RADIO SPECTRUM TECHNICAL REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                       |
|   | 6.1 ANTENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                       |
|   | 6.1.1 Test Requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                       |
|   | 6.1.2 Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
|   | 6.2 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |
|   | 6.2.1 Test Requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |
|   | 6.2.2 Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| 7 | RADIO SPECTRUM MATTER TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                       |
| 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| 7 | 7.1 CONDUCTED PEAK OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                       |
| 7 | 7.1 CONDUCTED PEAK OUTPUT POWER<br>7.1.1 E.U.T. Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12<br>13                                                                                                                                                 |
| 7 | 7.1 CONDUCTED PEAK OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12<br>13<br>13                                                                                                                                           |
| 7 | 7.1 CONDUCTED PEAK OUTPUT POWER<br>7.1.1 E.U.T. Operation<br>7.1.2 Test Setup Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12<br>13<br>13<br>13                                                                                                                                     |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li> <li>7.1.1 E.U.T. Operation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>13<br>14                                                                                                                               |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>13<br>14<br>14<br>14                                                                                                                   |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>14                                                                                                             |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>15                                                                                                 |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15                                                                                                 |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15                                                                                                 |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15                                                                                           |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>16                                                                                     |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>16<br>16                                                                               |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>16<br>16<br>16                                                                               |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>16<br>16<br>16                                                             |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>17                                                       |
| 7 | <ul> <li>7.1 CONDUCTED PEAK OUTPUT POWER.</li> <li>7.1.1 E.U.T. Operation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>17<br>17                         |
| 7 | 7.1       CONDUCTED PEAK OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>17<br>17<br>17                   |
| 7 | 7.1       CONDUCTED PEAK OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>17<br>17<br>17                                           |
| 7 | 7.1       CONDUCTED PEAK OUTPUT POWER.         7.1.1       E.U.T. Operation         7.1.2       Test Setup Diagram         7.1.3       Measurement Procedure and Data.         7.2       20DB BANDWIDTH         7.2.1       E.U.T. Operation         7.2.2       Test Setup Diagram         7.2.3       Measurement Procedure and Data.         7.3       CARRIER FREQUENCIES SEPARATION.         7.3.1       E.U.T. Operation         7.3.2       Test Setup Diagram         7.3.3       Measurement Procedure and Data.         7.4       HOPPING CHANNEL NUMBER.         7.4.1       E.U.T. Operation         7.4.2       Test Setup Diagram         7.4.3       Measurement Procedure and Data.         7.4.3       Measurement Procedure and Data.         7.5       DWELL TIME         7.5.1       E.U.T. Operation         7.5.2       Test Setup Diagram         7.5.3       Measurement Procedure and Data.                                                                                                                                                                                                                                         | 12<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>17<br>17<br>17<br>17<br>18 |
| 7 | 7.1       CONDUCTED PEAK OUTPUT POWER         7.1.1       E.U.T. Operation         7.1.2       Test Setup Diagram         7.1.3       Measurement Procedure and Data         7.2       20DB BANDWIDTH         7.2.1       E.U.T. Operation         7.2.2       Test Setup Diagram         7.2.3       Measurement Procedure and Data         7.2.4       Test Setup Diagram         7.2.5       Measurement Procedure and Data         7.3       CARRIER FREQUENCIES SEPARATION         7.3.1       E.U.T. Operation         7.3.2       Test Setup Diagram         7.3.3       Measurement Procedure and Data         7.3       Measurement Procedure and Data         7.4       HOPPING CHANNEL NUMBER         7.4.1       E.U.T. Operation         7.4.2       Test Setup Diagram         7.4.3       Measurement Procedure and Data         7.5       DWELL TIME         7.5.1       E.U.T. Operation         7.5.2       Test Setup Diagram         7.5.3       Measurement Procedure and Data         7.5.3       Measurement Procedure and Data         7.5.3       Measurement Procedure and Data         7.5.3       Measurement Procedure and Data | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>17<br>17<br>17<br>17<br>17<br>18<br>19             |
| 7 | 7.1       CONDUCTED PEAK OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>17<br>17<br>17<br>17<br>17<br>17<br>19<br>19<br>19       |



Report No.: SZEM180100017601 Page: 5 of 37

| 9   | EUT C | CONSTRUCTIONAL DETAILS                                |    |
|-----|-------|-------------------------------------------------------|----|
| 8   | TEST  | SETUP PHOTOGRAPHS                                     | 37 |
|     |       | Measurement Procedure and Data                        |    |
|     | 7.9.2 | Test Setup Diagram                                    | 32 |
|     | 7.9.1 | E.U.T. Operation                                      | 32 |
| 7.9 | 9 F   | RADIATED SPURIOUS EMISSIONS                           |    |
|     |       | Measurement Procedure and Data                        |    |
|     | 7.8.2 | Test Setup Diagram                                    |    |
|     | 7.8.1 | E.U.T. Operation                                      | 23 |
| 7.8 | 3 F   | RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | 22 |
|     | 7.7.3 | Measurement Procedure and Data                        | 21 |
|     | 7.7.2 | Test Setup Diagram                                    | 21 |
|     | 7.7.1 | E.U.T. Operation                                      | 21 |
| 7.7 | 7 (   | CONDUCTED SPURIOUS EMISSIONS                          | 20 |



Report No.: SZEM180100017601 Page: 6 of 37

### 4 General Information

### 4.1 Details of E.U.T.

| Power supply:<br>Channel Spacing | DC 3.8V by Built-in lithium-ion polymer battery (290mAH) 1MHz |
|----------------------------------|---------------------------------------------------------------|
| Modulation Type                  | GFSK, π/4DQPSK, 8DPSK                                         |
| Number of Channels               | 79                                                            |
| Operation Frequency              | 2402MHz to 2480MHz                                            |
| Spectrum Spread<br>Technology    | Frequency Hopping Spread Spectrum(FHSS)                       |
| Antenna Type                     | Integral antenna (It is shared by WiFi & BT)                  |
| Antenna Gain:                    | -0.5 dBi                                                      |

### 4.2 Description of Support Units

| Description | Manufacturer | Model No. |
|-------------|--------------|-----------|
| Laptop      | LENOVO       | R400      |

### 4.3 Test Environment

| Environment Parameter | Selected Values During Tests |  |  |  |
|-----------------------|------------------------------|--|--|--|
| Relative Humidity     | Ambient                      |  |  |  |
| Value                 | Temperature(°C) Voltage(V)   |  |  |  |
| TNVN                  | 21 DC 3.8                    |  |  |  |
|                       |                              |  |  |  |

Note:

VN:Normal Voltage TN:Normal Temperature VL:Low Extreme Test Voltage TL:Low Extreme Test Temperature VH:High Extreme Test Voltage TH:High Extreme Test Temperature

| Operation | Operation Frequency each of channel |         |           |         |           |         |           |  |
|-----------|-------------------------------------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel   | Frequency                           | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 1         | 2402MHz                             | 21      | 2422MHz   | 41      | 2442MHz   | 61      | 2462MHz   |  |
| 2         | 2403MHz                             | 22      | 2423MHz   | 42      | 2443MHz   | 62      | 2463MHz   |  |
| 3         | 2404MHz                             | 23      | 2424MHz   | 43      | 2444MHz   | 63      | 2464MHz   |  |
| 4         | 2405MHz                             | 24      | 2425MHz   | 44      | 2445MHz   | 64      | 2465MHz   |  |
| 5         | 2406MHz                             | 25      | 2426MHz   | 45      | 2446MHz   | 65      | 2466MHz   |  |
| 6         | 2407MHz                             | 26      | 2427MHz   | 46      | 2447MHz   | 66      | 2467MHz   |  |
| 7         | 2408MHz                             | 27      | 2428MHz   | 47      | 2448MHz   | 67      | 2468MHz   |  |
| 8         | 2409MHz                             | 28      | 2429MHz   | 48      | 2449MHz   | 68      | 2469MHz   |  |
| 9         | 2410MHz                             | 29      | 2430MHz   | 49      | 2450MHz   | 69      | 2470MHz   |  |
| 10        | 2411MHz                             | 30      | 2431MHz   | 50      | 2451MHz   | 70      | 2471MHz   |  |
| 11        | 2412 MHz                            | 31      | 2432 MHz  | 51      | 2452 MHz  | 71      | 2472 MHz  |  |
| 12        | 2413 MHz                            | 32      | 2433 MHz  | 52      | 2453 MHz  | 72      | 2473 MHz  |  |
| 13        | 2414 MHz                            | 33      | 2434 MHz  | 53      | 2454 MHz  | 73      | 2474 MHz  |  |
| 14        | 2415 MHz                            | 34      | 2435 MHz  | 54      | 2455 MHz  | 74      | 2475 MHz  |  |
| 15        | 2416 MHz                            | 35      | 2436 MHz  | 55      | 2456 MHz  | 75      | 2476 MHz  |  |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-eDocument.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-end-Conditions/Terms-eDocument.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-end-Conditions/Terms-eDocument.aspx">http://www.sgs.com/en/Terms-eDocument.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior witten approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM180100017601 Page: 7 of 37

| 16 | 2417 MHz | 36 | 2437 MHz | 56 | 2457 MHz | 76 | 2477 MHz |
|----|----------|----|----------|----|----------|----|----------|
| 17 | 2418 MHz | 37 | 2438 MHz | 57 | 2458 MHz | 77 | 2478 MHz |
| 18 | 2419 MHz | 38 | 2439 MHz | 58 | 2459 MHz | 78 | 2479 MHz |
| 19 | 2420 MHz | 39 | 2440 MHz | 59 | 2460 MHz | 79 | 2480 MHz |
| 20 | 2421 MHz | 40 | 2441 MHz | 60 | 2461 MHz |    |          |

Using test software was control EUT work in continuous transmitting mode. And select test channel as below: For GFSK,  $\pi$ /4DQPSK, 8DPSK modulation

| Channel                    | Frequency |
|----------------------------|-----------|
| The lowest channel (CH1)   | 2402MHz   |
| The middle channel (CH40)  | 2441MHz   |
| The highest channel (CH79) | 2480MHz   |

#### 4.4 Measurement Uncertainty

| No. | Parameter                     | Measurement Uncertainty                      |
|-----|-------------------------------|----------------------------------------------|
| 1   | Radio Frequency               | < ±1 x 10 <sup>-5</sup>                      |
| 2   | Total RF power, conducted     | < ±1.5 dB                                    |
| 3   | RF power density, conducted   | < ±3 dB                                      |
| 4   | Spurious emissions, conducted | < ±3 dB                                      |
| 5   | All emissions, radiated       | < ±6 dB (Below 1GHz)<br>< ±6 dB (Above 1GHz) |
| 6   | Temperature                   | < ±1°C                                       |
| 7   | Humidity                      | < ±5 %                                       |
| 8   | DC and low frequency voltages | < ±3 %                                       |



Report No.: SZEM180100017601 Page: 8 of 37

### 4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

#### 4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### • A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

#### • VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

#### • FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

#### • Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

#### 4.7 Deviation from Standards

None

#### 4.8 Abnormalities from Standard Conditions

None



Report No.: SZEM180100017601 Page: 9 of 37

### 5 Equipment List

| Equipment                 | Manufacturer | Model No           | Inventory No | Cal Date   | Cal Due Date |
|---------------------------|--------------|--------------------|--------------|------------|--------------|
| Conducted Emission at AC  | Power Line   |                    | -            | I          |              |
| EMI test receiver         | R&S          | ESR7               | SHEM162-1    | 2017-12-20 | 2018-12-19   |
| LISN                      | Schwarzbeck  | NSLK8127           | SHEM061-1    | 2017-12-20 | 2018-12-19   |
| LISN                      | EMCO         | 3816/2             | SHEM019-1    | 2017-12-20 | 2018-12-19   |
| Pulse limiter             | R&S          | ESH3-Z2            | SHEM029-1    | 2017-12-20 | 2018-12-19   |
| CE test Cable             | /            | CE01               | /            | 2017-12-26 | 2018-12-25   |
| Conducted Test            |              |                    | ı            |            | 1            |
| Spectrum Analyzer         | R&S          | FSP-30             | SHEM002-1    | 2017-12-20 | 2018-12-19   |
| Spectrum Analyzer         | Agilent      | N9020A             | SHEM181-1    | 2017-09-26 | 2018-09-25   |
| Power meter               | R&S          | NRP                | SHEM057-1    | 2017-12-26 | 2018-12-25   |
| Power Sensor              | R&S          | NRP-Z22            | SHEM136-1    | 2017-07-22 | 2018-07-21   |
| Power Sensor              | R&S          | NRP-Z91            | SHEM057-2    | 2017-12-26 | 2018-12-25   |
| Signal Generator          | R&S          | SMR40              | SHEM058-1    | 2017-07-03 | 2018-07-02   |
| Signal Generator          | Agilent      | N5182A             | SHEM182-1    | 2017-09-26 | 2018-09-25   |
| Communication Tester      | R&S          | CMW270             | SHEM183-1    | 2017-10-22 | 2018-10-21   |
| Switcher                  | Tonscend     | JS0806             | SHEM184-1    | 2017-09-26 | 2018-09-25   |
| Splitter                  | Anritsu      | MA1612A            | SHEM185-1    | /          | /            |
| Coupler                   | e-meca       | 803-S-1            | SHEM186-1    | /          | /            |
| High-low Temp Cabinet     | Suzhou Zhihe | TL-40              | SHEM087-1    | 2017-09-26 | 2018-09-25   |
| AC Power Stabilizer       | WOCEN        | 6100               | SHEM045-1    | 2017-12-26 | 2018-12-25   |
| DC Power Supply           | QJE          | QJ30003SII         | SHEM046-1    | 2017-12-26 | 2018-12-25   |
| Conducted test Cable      | /            | RF01, RF 02        | /            | 2017-12-26 | 2018-12-25   |
| Radiated Test             |              |                    | •            |            |              |
| EMI test receiver         | R&S          | ESU40              | SHEM051-1    | 2017-12-20 | 2018-12-19   |
| Spectrum Analyzer         | R&S          | FSP-30             | SHEM002-1    | 2017-12-20 | 2018-12-19   |
| Loop Antenna (9kHz-30MHz) | Schwarzbeck  | FMZB1519           | SHEM135-1    | 2017-04-10 | 2020-04-09   |
| Antenna (25MHz-2GHz)      | Schwarzbeck  | VULB9168           | SHEM048-1    | 2017-02-28 | 2020-02-27   |
| Antenna (25MHz-3GHz)      | Schwarzbeck  | HL562              | SHEM010-1    | 2017-02-28 | 2020-02-27   |
| Horn Antenna (1-8GHz)     | Schwarzbeck  | HF906              | SHEM009-1    | 2017-10-24 | 2020-10-23   |
| Horn Antenna (1-18GHz)    | Schwarzbeck  | BBHA9120D          | SHEM050-1    | 2017-01-14 | 2020-01-13   |
| Horn Antenna (14-40GHz)   | Schwarzbeck  | BBHA 9170          | SHEM049-1    | 2017-12-03 | 2020-12-02   |
| Pre-amplifier (9KHz-2GHz) | CLAVIIO      | BDLNA-0001-412010  | SHEM164-1    | 2017-08-22 | 2018-08-21   |
| Pre-amplifier (1-18GHz)   | CLAVIIO      | BDLNA-0118-352810  | SHEM050-2    | 2017-08-22 | 2018-08-21   |
| High-amplifier (14-40GHz) | Schwarzbeck  | 10001              | SHEM049-2    | 2017-12-20 | 2018-12-19   |
| Band filter               | LORCH        | 9BRX-875/X150-SR   | SHEM156-1    | /          | /            |
| Band filter               | LORCH        | 13BRX-1950/X500-SR | SHEM083-2    | /          | /            |
| Band filter               | LORCH        | 5BRX-2400/X200-SR  | SHEM155-1    | /          | /            |
| Band filter               | LORCH        | 5BRX-5500/X1000-SR | SHEM157-2    | /          | /            |
| High pass Filter          | Wainwright   | WHK3.0/18G-100SS   | SHEM157-1    | /          | /            |
| High pass Filter          | Wainwright   | WHKS1700-3SS       | SHEM157-3    | /          | /            |
| Semi/Fully Anechoic       | ST           | 11*6*6M            | SHEM078-2    | 2017-07-22 | 2020-07-21   |
| RE test Cable             | /            | RE01, RE02, RE06   | /            | 2017-12-26 | 2018-12-25   |



Report No.: SZEM180100017601 Page: 10 of 37

### 6 Radio Spectrum Technical Requirement

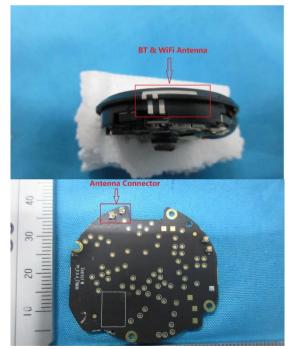
### 6.1 Antenna Requirement

#### 6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

#### 6.1.2 Conclusion

#### Standard Requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is –0.5dBi.





Report No.: SZEM180100017601 Page: 11 of 37

### 6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

#### 6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

#### 6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

#### Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- > Number of shift register stages: 9
- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band s



Report No.: SZEM180100017601 Page: 12 of 37

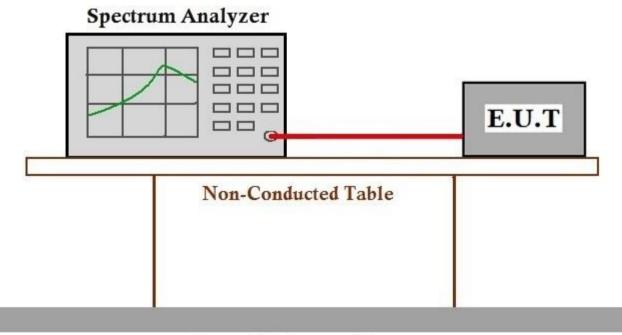
### 7 Radio Spectrum Matter Test Results

### 7.1 Conducted Peak Output Power

| Test Requirement | 47 CFR Part 15, Subpart C 15.247(b)(1) |
|------------------|----------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 7.8.5       |
| Limit:           |                                        |

| Frequency range(MHz) | Output power of the intentional radiator(watt)         |  |  |  |
|----------------------|--------------------------------------------------------|--|--|--|
|                      | 1 for ≥50 hopping channels                             |  |  |  |
| 902-928              | 0.25 for 25≤ hopping channels <50                      |  |  |  |
|                      | 1 for digital modulation                               |  |  |  |
|                      | 1 for ≥75 non-overlapping hopping channels             |  |  |  |
| 2400-2483.5          | 0.125 for all other frequency hopping systems          |  |  |  |
|                      | 1 for digital modulation                               |  |  |  |
| 5725-5850            | 1 for frequency hopping systems and digital modulation |  |  |  |




Report No.: SZEM180100017601 Page: 13 of 37

#### 7.1.1 E.U.T. Operation

Operating Environment:

| Temperature: | 21 °C           | Humidity:       | 45    | % RH       | Atmospheric Pressure: 1010 mbar                                         | ٢ |
|--------------|-----------------|-----------------|-------|------------|-------------------------------------------------------------------------|---|
| Test mode    |                 |                 |       |            | tinuously transmitting mode with GFSK K modulation. All modes have been |   |
|              | tested and only | y the data of v | worst | case is re | corded in the report.                                                   |   |

#### 7.1.2 Test Setup Diagram



### **Ground Reference Plane**

#### 7.1.3 Measurement Procedure and Data

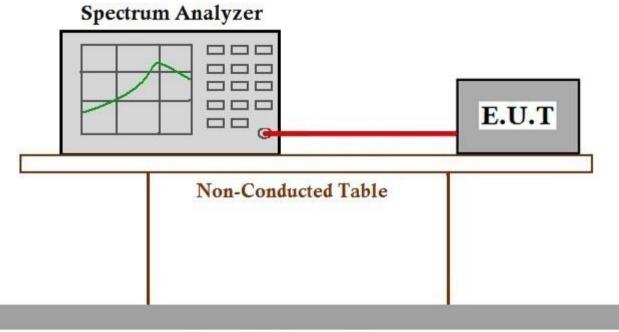
The detailed test data see: Appendix 15.247 SZEM180100017601(BT)



Report No.: SZEM180100017601 Page: 14 of 37

### 7.2 20dB Bandwidth

| Test Requirement | 47 CFR Part 15, Subpart C 15.247(a)(1) |
|------------------|----------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 6.9         |


#### 7.2.1 E.U.T. Operation

**Operating Environment:** 

```
Temperature:
Test mode
```

21 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar b:TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK modulation,  $\pi/4DQPSK$  modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

#### 7.2.2 Test Setup Diagram



### **Ground Reference Plane**

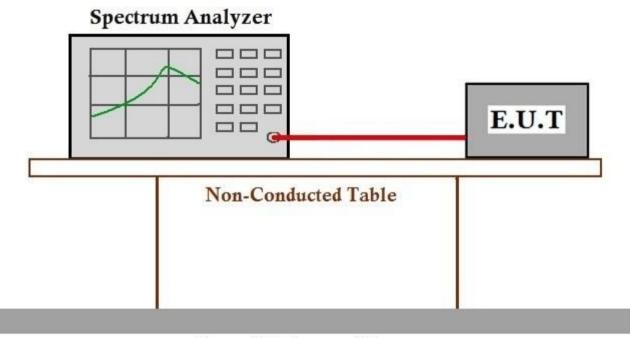
#### 7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247 SZEM180100017601(BT)



Report No.: SZEM180100017601 Page: 15 of 37

### 7.3 Carrier Frequencies Separation


| Test Requirement | 47 CFR Part 15, Subpart C 15.247a(1)                                         |
|------------------|------------------------------------------------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 7.8.2                                             |
| Limit:           | 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W |

#### 7.3.1 E.U.T. Operation

Operating Environment:

Temperature:21 °CHumidity:45 % RHAtmospheric Pressure:1010mbarTest modea:TX\_Hop mode\_Keep the EUT in frequency hopping mode with GFSK<br/>modulation,  $\pi/4DQPSK$  modulation, 8DPSK modulation. All modes have been<br/>tested and only the data of worst case is recorded in the report.

#### 7.3.2 Test Setup Diagram



### **Ground Reference Plane**

#### 7.3.3 Measurement Procedure and Data

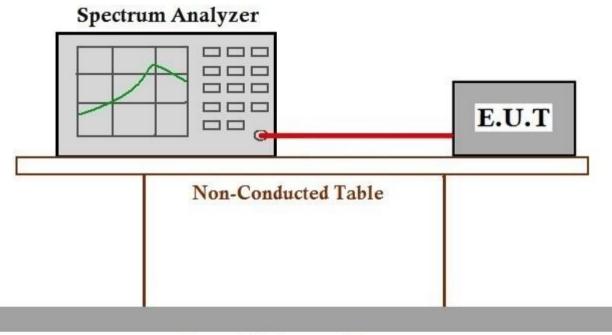
The detailed test data see: Appendix 15.247 SZEM180100017601(BT)



Report No.: SZEM180100017601 Page: 16 of 37

### 7.4 Hopping Channel Number

| Test Requirement | 47 CFR Part 15, Subpart C 15.247a(1)(iii) |
|------------------|-------------------------------------------|
| Test Method:     | ANSI C63.10 (2013) Section 7.8.3          |
| Limit:           |                                           |


| Frequency range(MHz) | Number of hopping channels (minimum) |  |  |
|----------------------|--------------------------------------|--|--|
| 902-928              | 50 for 20dB bandwidth <250kHz        |  |  |
|                      | 25 for 20dB bandwidth ≥250kHz        |  |  |
| 2400-2483.5          | 15                                   |  |  |
| 5725-5850            | 75                                   |  |  |

#### 7.4.1 E.U.T. Operation

Operating Environment:

Temperature:21 °CHumidity:45 % RHAtmospheric Pressure:1010mbarTest modea:TX\_Hop mode\_Keep the EUT in frequency hopping mode with GFSK<br/>modulation,  $\pi/4DQPSK$  modulation, 8DPSK modulation. All modes have been<br/>tested and only the data of worst case is recorded in the report.

#### 7.4.2 Test Setup Diagram



### **Ground Reference Plane**

#### 7.4.3 Measurement Procedure and Data

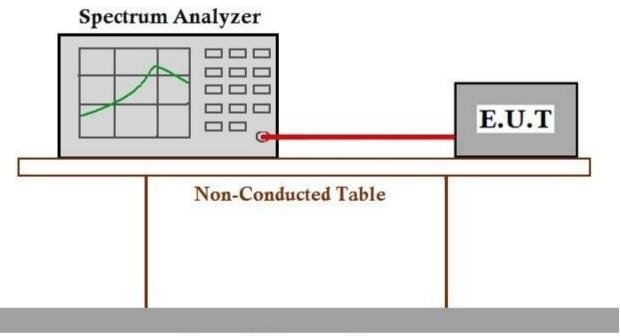
The detailed test data see: Appendix 15.247 SZEM180100017601(BT)



Report No.: SZEM180100017601 Page: 17 of 37

### 7.5 Dwell Time

Test Requirement47 CFR Part 15, Subpart C 15.247a(1)(iii)Test Method:ANSI C63.10 (2013) Section 7.8.4Limit:Ansi C63.10 (2013) Section 7.8.4


| Frequency(MHz) | Limit                                                 |  |  |
|----------------|-------------------------------------------------------|--|--|
| 000.000        | 0.4S within a 20S period(20dB bandwidth<250kHz)       |  |  |
| 902-928        | 0.4S within a 10S period(20dB bandwidth≥250kHz)       |  |  |
| 2400 2402 5    | 0.4S within a period of 0.4S multiplied by the number |  |  |
| 2400-2483.5    | of hopping channels                                   |  |  |
| 5725-5850      | 0.4S within a 30S period                              |  |  |

#### 7.5.1 E.U.T. Operation

Operating Environment:

Temperature:21 °CHumidity:45 % RHAtmospheric Pressure:1010 mbarTest modea:TX\_Hop mode\_Keep the EUT in frequency hopping mode with GFSK<br/>modulation,  $\pi/4DQPSK$  modulation, 8DPSK modulation. All modes have been<br/>tested and only the data of worst case is recorded in the report.

#### 7.5.2 Test Setup Diagram



### **Ground Reference Plane**

#### 7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247 SZEM180100017601(BT)

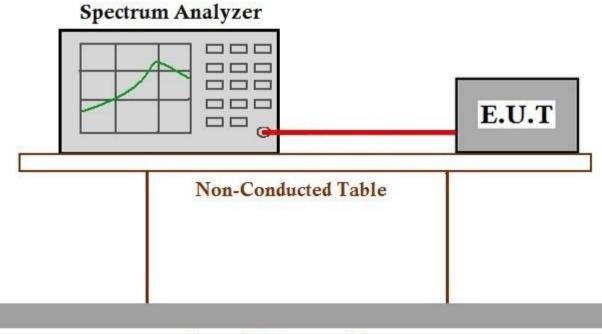


Report No.: SZEM180100017601 Page: 18 of 37

### 7.6 Conducted Band Edges Measurement

Test Requirement47 CFR Part 15, Subpart C 15.247(d)Test Method:ANSI C63.10 (2013) Section 7.8.6Limit:In any 100 kHz bandwidth outside the<br/>spectrum or digitally modulated intenti<br/>frequency power that is produced by t<br/>20 dB below that in the 100 kHz band<br/>bisheat lough of the desired neuron has

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)




Report No.: SZEM180100017601 Page: 19 of 37

#### 7.6.1 E.U.T. Operation

| Operating Enviror                                | nment:                                                                                      |           |        |            |                                                                                |      |      |
|--------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|--------|------------|--------------------------------------------------------------------------------|------|------|
| Temperature:                                     | 21 °C                                                                                       | Humidity: | 45     | % RH       | Atmospheric Pressure:                                                          | 1010 | mbar |
| Pretest these<br>mode to find the<br>worst case: | mode to find the modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been |           |        |            |                                                                                |      |      |
|                                                  | modulation, $\pi/4$                                                                         | DQPSK mo  | dulati | ion, 8DPSK | nuously transmitting mode<br>modulation. All modes hav<br>orded in the report. |      |      |
| The worst case for final test:                   | modulation, π/4                                                                             | DQPSK mod | dulati | ion, 8DPSK | y hopping mode with GFSk<br>modulation. All modes hav<br>orded in the report.  |      | n    |
|                                                  | modulation, $\pi/4$                                                                         | DQPSK mo  | dulati | ion, 8DPSK | nuously transmitting mode<br>modulation. All modes hav<br>orded in the report. |      |      |

#### 7.6.2 Test Setup Diagram



### **Ground Reference Plane**

#### 7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247 SZEM180100017601(BT)



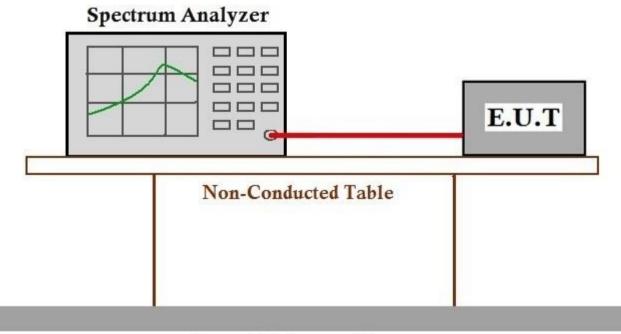
Report No.: SZEM180100017601 Page: 20 of 37

### 7.7 Conducted Spurious Emissions

Test Requirement47 CFR Part 15, Subpart C 15.247(d)Test Method:ANSI C63.10 (2013) Section 7.8.8Limit:In any 100 kHz bandwidth outside the frequency band in which the spread<br/>spectrum or digitally modulated intentional radiator is operating, the radio<br/>frequency power that is produced by the intentional radiator shall be at least<br/>20 dB below that in the 100 kHz bandwidth within the band that contains the<br/>highest level of the desired power, based on either an RF conducted or a<br/>radiated measurement, provided the transmitter demonstrates compliance<br/>with the peak conducted power limits. If the transmitter complies with the

highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)




Report No.: SZEM180100017601 Page: 21 of 37

#### 7.7.1 E.U.T. Operation

Operating Environment:

| Temperature: | 21 °C                                                                                                                                                  | Humidity:         | 45   | % RH         | Atmospheric Pressure: 1010 mbar |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|--------------|---------------------------------|--|--|
| Test mode    | b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, $\pi$ /4DQPSK modulation, 8DPSK modulation. All modes have been |                   |      |              |                                 |  |  |
|              | tested and or                                                                                                                                          | nly the data of v | wors | t case is re | ecorded in the report.          |  |  |

#### 7.7.2 Test Setup Diagram



### **Ground Reference Plane**

#### 7.7.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247 SZEM180100017601(BT)



Report No.: SZEM180100017601 Page: 22 of 37

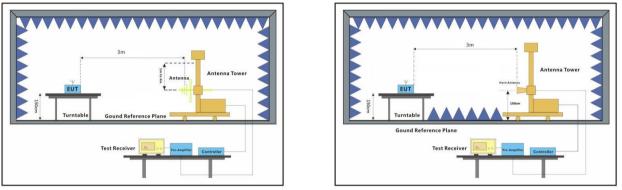
### 7.8 Radiated Emissions which fall in the restricted bands

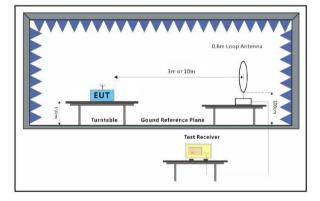
| Test Requirement      | 47 CFR Part 15, Subpart C 15.205 & 15.209 |
|-----------------------|-------------------------------------------|
| Test Method:          | ANSI C63.10 (2013) Section 6.10.5         |
| Measurement Distance: | 3m                                        |
| Limit:                |                                           |

| Frequency(MHz) | Field<br>strength(microvolts/meter) | Measurement<br>distance(meters) |
|----------------|-------------------------------------|---------------------------------|
| 0.009-0.490    | 2400/F(kHz)                         | 300                             |
| 0.490-1.705    | 24000/F(kHz)                        | 30                              |
| 1.705-30.0     | 30                                  | 30                              |
| 30-88          | 100                                 | 3                               |
| 88-216         | 150                                 | 3                               |
| 216-960        | 200                                 | 3                               |
| Above 960      | 500                                 | 3                               |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.




Report No.: SZEM180100017601 Page: 23 of 37


#### 7.8.1 E.U.T. Operation

**Operating Environment:** 

Temperature:21 °CHumidity:45 % RHAtmospheric Pressure:1010 mbarTest modeb:TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK<br/>modulation,  $\pi/4DQPSK$  modulation, 8DPSK modulation. All modes have been<br/>tested and only the data of worst case is recorded in the report.

#### 7.8.2 Test Setup Diagram







Report No.: SZEM180100017601 Page: 24 of 37

#### 7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

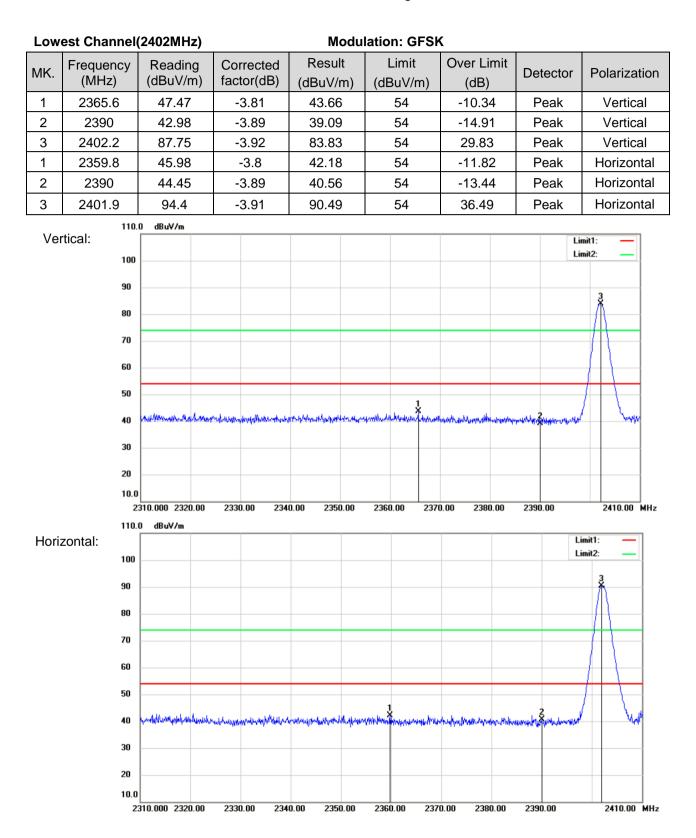
d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

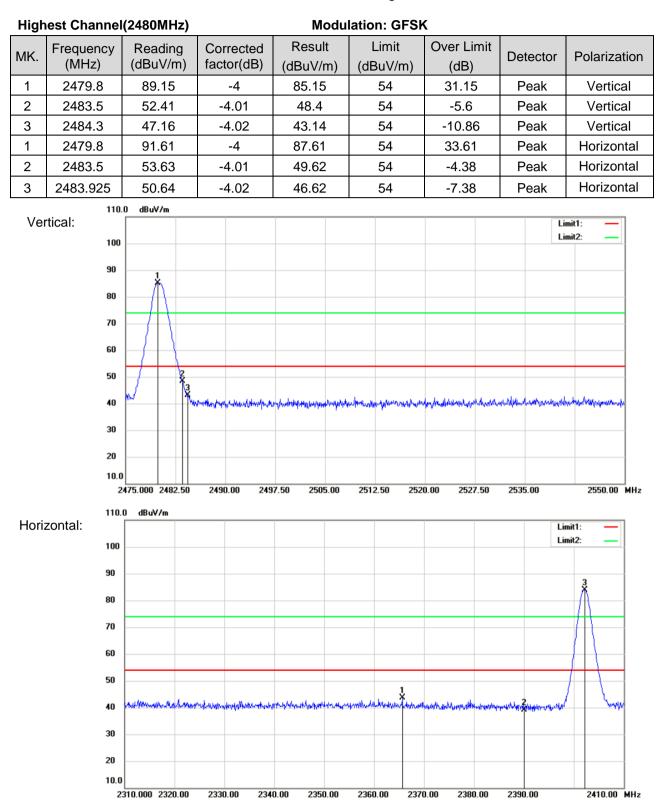
g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.


i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

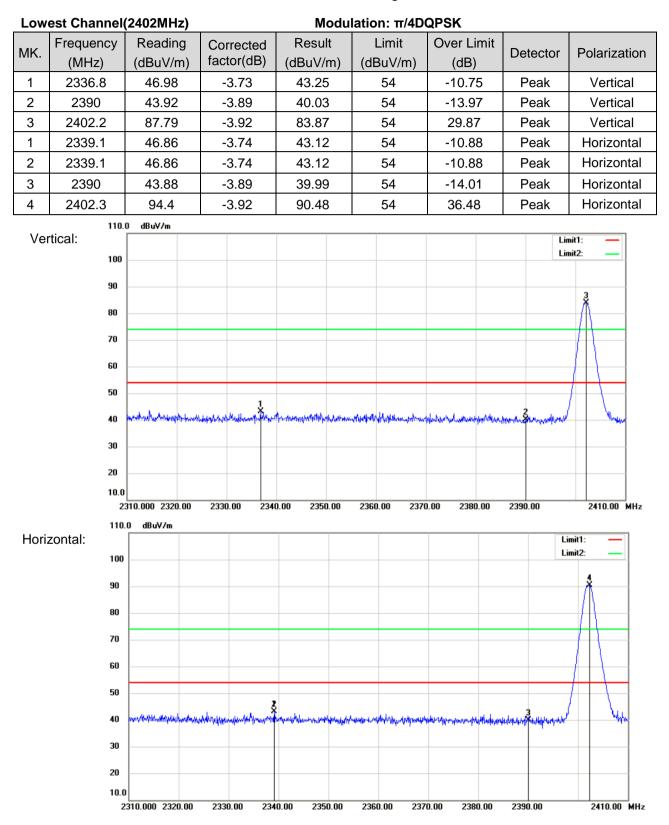
j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor



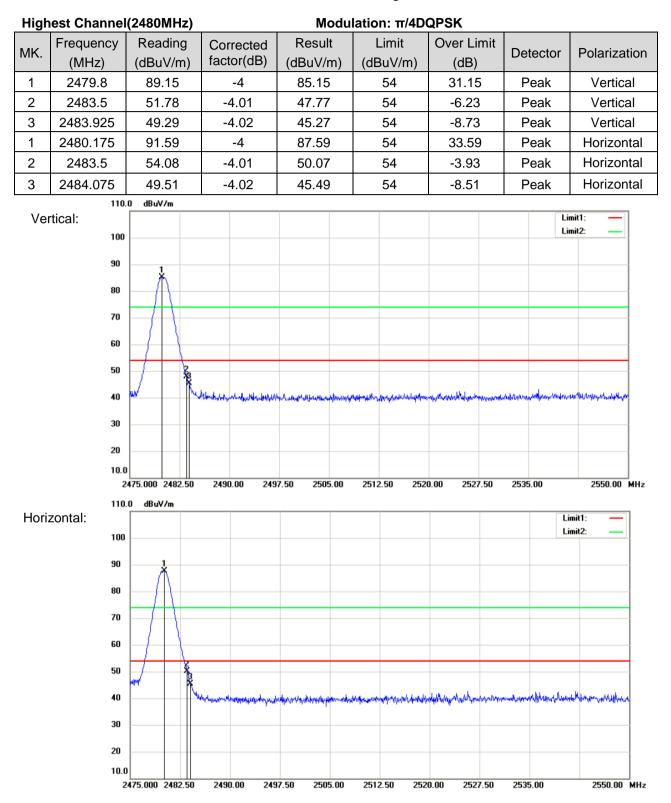

Report No.: SZEM180100017601 Page: 25 of 37





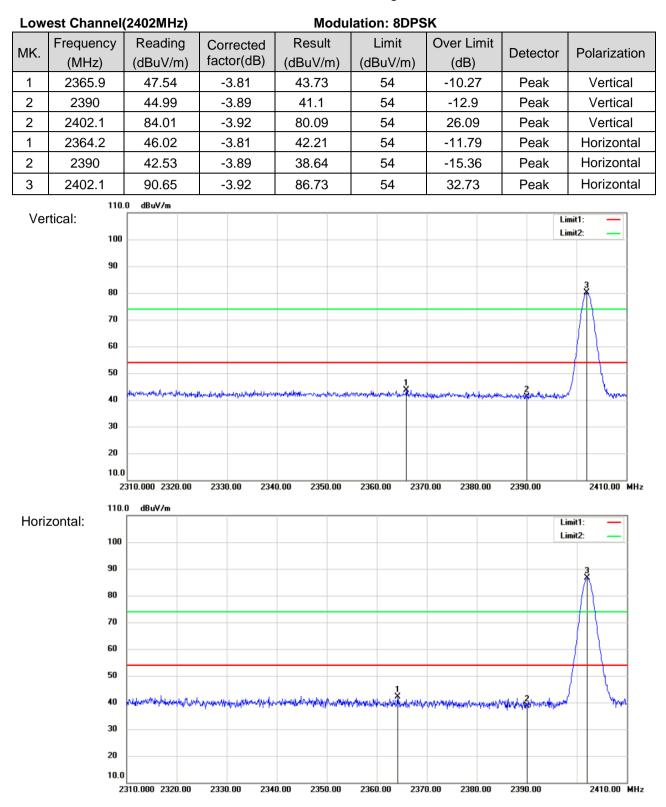

Report No.: SZEM180100017601 Page: 26 of 37





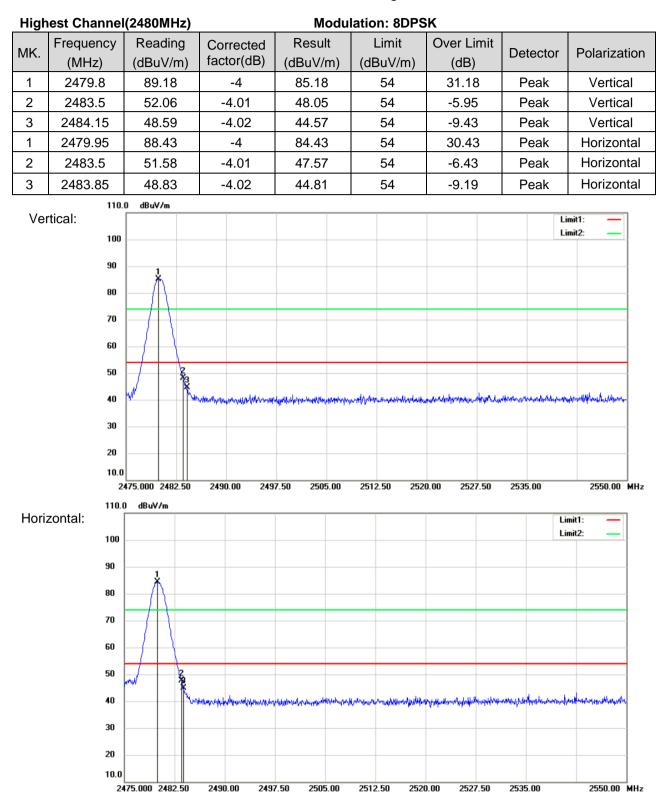

Report No.: SZEM180100017601 Page: 27 of 37






Report No.: SZEM180100017601 Page: 28 of 37






Report No.: SZEM180100017601 Page: 29 of 37





Report No.: SZEM180100017601 Page: 30 of 37





Report No.: SZEM180100017601 Page: 31 of 37

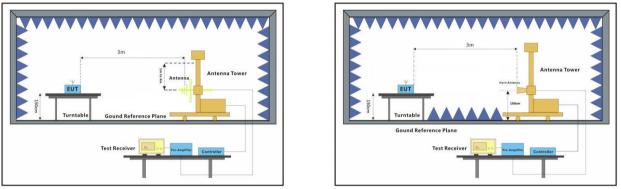
### 7.9 Radiated Spurious Emissions

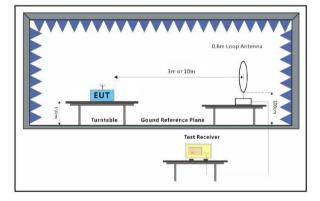
| Test Requirement      | 47 CFR Part 15, Subpart C 15.205 & 15.209 |
|-----------------------|-------------------------------------------|
| Test Method:          | ANSI C63.10 (2013) Section 6.10.4         |
| Measurement Distance: | 3m                                        |
| Limit:                |                                           |

| Frequency(MHz) | Field<br>strength(microvolts/meter) | Measurement<br>distance(meters) |
|----------------|-------------------------------------|---------------------------------|
| 0.009-0.490    | 2400/F(kHz)                         | 300                             |
| 0.490-1.705    | 24000/F(kHz)                        | 30                              |
| 1.705-30.0     | 30                                  | 30                              |
| 30-88          | 100                                 | 3                               |
| 88-216         | 150                                 | 3                               |
| 216-960        | 200                                 | 3                               |
| Above 960      | 500                                 | 3                               |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.




Report No.: SZEM180100017601 Page: 32 of 37


#### 7.9.1 E.U.T. Operation

**Operating Environment:** 

Temperature:21 °CHumidity:45 % RHAtmospheric Pressure:1010 mbarTest modeb:TX\_non-Hop mode\_Keep the EUT in continuously transmitting mode with GFSK<br/>modulation,  $\pi/4DQPSK$  modulation, 8DPSK modulation. All modes have been<br/>tested and only the data of worst case is recorded in the report.

#### 7.9.2 Test Setup Diagram







Report No.: SZEM180100017601 Page: 33 of 37

#### 7.9.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

| P        | 24       | -     | 10 |   |   |
|----------|----------|-------|----|---|---|
| <b>S</b> | 51       | 1.2   | 9  | - |   |
| 10       | 21       | 1     | 1  |   |   |
| 10.00    | <u> </u> | Deell | 1  |   | _ |

| Report No.: | SZEM180100017601 |
|-------------|------------------|
| Page:       | 34 of 37         |

|         | <b>-</b> · · |           |           |           |         |                  |               |      |
|---------|--------------|-----------|-----------|-----------|---------|------------------|---------------|------|
| -       |              |           | -         |           |         |                  | annel:Low     |      |
| Mark    | Frequency    | RX_R      | Factor    | Emission  | Limit   | Margin           | Ant.Pos       |      |
|         |              | dBuV      | dB        |           | dBuV/m  |                  | cm            |      |
|         | 4804         | 38.59     |           |           |         |                  |               | peak |
|         | 7206         | 39.03     |           |           |         | -4.34            |               | peak |
| *       | 9608         | 34.70     | 14.38     | 49.08     | 54      | -4.92            |               | peak |
|         |              |           |           |           |         |                  |               |      |
| Mode:b; | Polariza     | ation:Ver | tical; M  | odulatior | :GFSK;  | ; Chanı          | nel:Low       |      |
| Mark    | Frequency    | RX_R      | Factor    | Emission  | Limit   | Margin           | Ant.Pos       |      |
|         | MHz          | dBuV      | dB        | dBuV/m    | dBuV/m  | dB               | cm            |      |
|         | 4804         | 34.94     | 6.18      | 41.12     | 54      | -12.88           |               | peak |
|         | 7206         | 35.75     |           |           | 54      | -7.62            |               | peak |
| *       | 9608         | 33.32     | 14.38     | 47.70     | 54      | -6.30            |               | peak |
|         |              |           |           |           |         |                  |               |      |
| Mode:b; | Polariza     | ation:Ho  | rizontal; | Modulat   | ion:GFS | K; ; Ch          | annel:middle  |      |
| Mark    | Frequency    | RX_R      | Factor    | Emission  | Limit   | Margin           | Ant.Pos       |      |
|         | MHz          | dBuV      | dB        | dBuV/m    | dBuV/m  | dB               | cm            |      |
|         | 4882         | 34.77     | 7.00      | 41.77     | 54      | -12.23           |               | peak |
|         | 7323         | 37.23     | 11.13     | 48.36     | 54      | -5.64            |               | peak |
| *       | 9764         | 31.62     | 14.36     | 45.98     | 54      | -8.02            |               | peak |
|         |              |           |           |           |         |                  |               |      |
| Mode:b; | Polariza     | ation:Ver | tical; M  | odulatior | :GFSK:  | : Chani          | nel:middle    |      |
| -       | Frequency    |           | -         |           | -       | Margin           | Ant.Pos       |      |
|         |              | dBuV      | dB        |           | dBuV/m  | -                | cm            |      |
|         | 4882         | 37.96     |           |           |         |                  |               | peak |
| *       | 7323         | 32.78     |           |           |         |                  |               | peak |
|         | 9764         | 30.85     |           |           |         |                  |               | peak |
|         |              |           |           |           |         |                  |               | -    |
| Mode:b: | Polariza     | ation:Ho  | rizontal: | Modulat   | ion:GFS | K::Ch            | annel:High    |      |
|         | Frequency    |           | Factor    | Emission  |         | Margin           | Ant.Pos       |      |
| mark    |              | -         | dB        |           | dBuV/m  | -                | cm            |      |
|         | 4960         | 34.60     |           |           |         |                  |               | peak |
|         | 7440         | 35.14     |           |           |         |                  |               | peak |
| *       | 9920         | 33.15     |           |           |         |                  |               | peak |
|         |              | 00110     | 1.1.10    |           |         | 01.0             |               | Pour |
| Mode h  | Polariza     | ation·Ver | tical: M  | odulation | GESK    | · Chan           | nel·Hiah      |      |
|         | Frequency    |           |           | Emission  |         | , Onam<br>Margin | Ant.Pos       |      |
| WIGIK   |              | dBuV      | dB        |           | dBuV/m  | -                | cm            |      |
|         | 4960         | 37.84     |           |           |         |                  | em            | peak |
| *       | 7440         | 34.61     |           |           |         |                  |               | peak |
|         | 9920         | 30.79     |           |           |         |                  |               | peak |
| Mode h  |              |           |           |           |         |                  | ; Channel:Low | Pour |
| Mark    | Frequency    |           |           | Emission  |         | Margin           | Ant.Pos       |      |
| mun     |              | dBuV      | dB        |           | dBuV/m  | 0                | cm            |      |
|         | 4804         | 37.82     |           |           |         |                  |               | peak |
|         | 7206         | 36.71     |           |           |         |                  |               | peak |
| *       | 9608         | 31.98     |           |           |         |                  |               | peak |
|         | 2000         | 51.70     | 11.00     | 10.00     | 54      | 7.04             |               | Pour |

SGS

| Report No.: | SZEM180100017601 |
|-------------|------------------|
| Page:       | 35 of 37         |

|         | Delevierational            |                         | <b>1</b> 1 - 1 - 1 - 1 |                         |              | 0              |              |
|---------|----------------------------|-------------------------|------------------------|-------------------------|--------------|----------------|--------------|
|         | Polarization:              |                         | Emission               |                         |              |                |              |
| Mark    | Frequency RX_R<br>MHz dBuV | dB                      |                        | dBuV/m                  | Margin<br>dB | Ant.Pos<br>cm  |              |
|         |                            |                         | 8 42.60                |                         |              |                | peak         |
|         |                            |                         | 3 43.95                |                         | -10.05       |                | peak         |
| *       |                            | .28 14.3                |                        |                         | -5.34        |                | peak         |
|         |                            |                         |                        |                         |              |                | 1            |
| Mode:b; | Polarization:              | lorizontal;             | Modula                 | tion:π/4                | DQPSK;       | ; Channel:midd | le           |
| Mark    | Frequency RX_R             | Factor                  | Emission               | Limit                   | Margin       | Ant.Pos        |              |
|         | MHz dBuV                   | dB                      | dBuV/m                 | dBuV/m                  | dB           | cm             |              |
|         | 4882 39                    | .03 7.0                 |                        | 3 54                    | -7.97        |                | peak         |
|         |                            | .98 11.1                | 3 48.11                | . 54                    | -5.89        |                | peak         |
| *       | 9764 35                    | .16 14.3                | 6 49.52                | 2 54                    | -4.48        |                | peak         |
|         |                            |                         |                        |                         |              |                |              |
|         |                            |                         |                        |                         |              | Channel:middle |              |
| Mark    | Frequency RX_R             |                         | Emission               |                         | Margin       | Ant.Pos        |              |
|         | MHz dBuV                   | dB<br>.61 7.0           |                        | dBuV/m                  |              | cm             |              |
| *       |                            |                         | 0 43.61<br>3 48.39     |                         | -10.39       |                | peak         |
|         |                            | .20 11.1                |                        |                         |              |                | peak         |
|         | 9704 54                    | .23 14.3                | 46.01                  | . 34                    | -5.59        |                | peak         |
| Mode.p. | Polarization               | lorizontal <sup>.</sup> | Modula                 | tion <sup>.</sup> π/4 l |              | ; Channel:High |              |
| Mark    | Frequency RX_R             |                         | Emission               |                         | Margin       | Ant.Pos        |              |
| man     | MHz dBuV                   | dB                      |                        | dBuV/m                  | 6            | cm             |              |
|         |                            | .63 7.4                 |                        |                         |              |                | peak         |
|         |                            | .75 11.6                |                        |                         | -5.60        |                | peak         |
| *       |                            | .90 14.4                |                        |                         |              |                | peak         |
|         |                            |                         |                        |                         |              |                |              |
| Mode:b; | Polarization:              | /ertical; N             | lodulatio              | n:π/4 DC                | PSK;;        | Channel:High   |              |
| Mark    | Frequency RX_R             | Factor                  | Emission               | Limit                   | Margin       | Ant.Pos        |              |
|         | MHz dBuV                   | dB                      | dBuV/m                 | dBuV/m                  | dB           | cm             |              |
|         |                            |                         | 9 42.62                |                         | -11.38       |                | peak         |
| *       |                            |                         | 5 49.81                |                         | -4.19        |                | peak         |
|         | 9920 33                    | .48 14.4                | 0 47.88                | 3 54                    | -6.12        |                | peak         |
| Maded   | Delevienting               | المقتدمية               | Ma-h-J-                |                         |              |                |              |
|         | Polarization:              |                         |                        |                         |              |                |              |
| Mark    | Frequency RX_R             |                         | Emission               |                         | Margin       | Ant.Pos        |              |
|         | MHz dBuV<br>4804 34        | dB<br>.94 6.1           |                        | dBuV/m<br>2.54          | dB<br>-12.88 | cm             | naolz        |
|         |                            | .94 0.1<br>.74 10.6     |                        |                         |              |                | peak<br>peak |
| *       |                            | .74 10.0<br>.35 14.3    |                        |                         |              |                | peak         |
|         | 9008 52                    | .55 14.5                | 6 40.72                | 5 54                    | -1.21        |                | peak         |
| Mode:b: | Polarization:              | /ertical: M             | lodulatio              | n:8DPSK                 | : : Cha      | nnel:Low       |              |
| Mark    | Frequency RX_R             | Factor                  | Emission               |                         | Margin       | Ant.Pos        |              |
|         | MHz dBuV                   | dB                      |                        | dBuV/m                  | _            | cm             |              |
|         |                            | .24 6.1                 |                        |                         |              |                | peak         |
|         |                            | .92 10.6                |                        |                         |              |                | peak         |
| *       |                            | .37 14.3                |                        |                         |              |                | peak         |
|         |                            |                         |                        |                         |              |                |              |
|         |                            |                         |                        |                         |              |                |              |



#### Report No.: SZEM180100017601 Page: 36 of 37

|         | ; Polarizatio                                                             |                                                                                       |                                                                                                    |                                                                                         | ; Channel:middle                                                           |              |
|---------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|
| Mark    | Frequency RX                                                              | _                                                                                     |                                                                                                    |                                                                                         | rgin Ant.Pos                                                               |              |
|         |                                                                           | BuV dB                                                                                | dBuV/m                                                                                             |                                                                                         | cm                                                                         |              |
|         | 4882                                                                      | 38.31                                                                                 | 7.00 45.31                                                                                         | 54                                                                                      | -8.69                                                                      | peak         |
|         | 7323                                                                      | 37.01 1                                                                               | 11.13 48.14                                                                                        | 54                                                                                      | -5.86                                                                      | peak         |
| *       | 9764                                                                      | 37.45 1                                                                               | 14.36 51.81                                                                                        | 54                                                                                      | -2.19                                                                      | peak         |
| Madaib  | Dolorizati                                                                | on:\/ortion                                                                           | Modulation                                                                                         |                                                                                         | Channalimiddla                                                             |              |
| Mark    | Frequency RX                                                              |                                                                                       |                                                                                                    |                                                                                         | Channel:middle                                                             |              |
| Mark    | 1 5                                                                       | A_K Facio<br>BuV dB                                                                   | dBuV/m                                                                                             |                                                                                         | 2                                                                          |              |
|         | 4882                                                                      |                                                                                       |                                                                                                    |                                                                                         | CM                                                                         | maale        |
| *       |                                                                           |                                                                                       |                                                                                                    |                                                                                         | -11.58                                                                     | peak         |
| *       | 7323                                                                      |                                                                                       | 11.13 46.46                                                                                        |                                                                                         | -7.54                                                                      | peak         |
|         | 9764                                                                      | 33.57 1                                                                               | 14.36 47.93                                                                                        | 54                                                                                      | -6.07                                                                      | peak         |
| Mode:b  | , Polarizatio                                                             | on:Horizon                                                                            | ntal; Modulat                                                                                      | tion:8DPSK;                                                                             | ; Channel:High                                                             |              |
| Mark    | E 51                                                                      |                                                                                       |                                                                                                    |                                                                                         |                                                                            |              |
|         | Frequency RX                                                              | X_R Facto                                                                             | or Emission                                                                                        | Limit Ma                                                                                | rgin Ant.Pos                                                               |              |
|         | 1 5                                                                       | X_R Facto<br>BuV dB                                                                   | or Emission<br>dBuV/m                                                                              |                                                                                         | rgin Ant.Pos<br>cm                                                         |              |
|         | 1 5                                                                       | BuV dB                                                                                |                                                                                                    | dBuV/m dB                                                                               | -                                                                          | peak         |
| *       | MHz dE                                                                    | -<br>BuV dB<br>37.14                                                                  | dBuV/m                                                                                             | dBuV/m dB<br>54                                                                         | cm                                                                         | peak<br>peak |
| *       | MHz dE<br>4960                                                            | BuV dB<br>37.14<br>39.03 1                                                            | dBuV/m<br>7.49 44.63                                                                               | dBuV/m dB<br>54<br>54                                                                   | -9.37                                                                      | •            |
|         | MHz dE<br>4960<br>7440<br>9920                                            | BuV dB<br>37.14<br>39.03 1<br>36.30 1                                                 | dBuV/m<br>7.49 44.63<br>11.65 50.68<br>14.40 50.70                                                 | dBuV/m dB<br>54<br>54<br>54                                                             | cm<br>-9.37<br>-3.32                                                       | peak         |
|         | MHz dE<br>4960<br>7440<br>9920                                            | BuV dB<br>37.14<br>39.03 1<br>36.30 1<br>on:Vertical;                                 | dBuV/m<br>7.49 44.63<br>11.65 50.68<br>14.40 50.70<br>; Modulatior                                 | dBuV/m dB<br>54<br>54<br>54<br>54<br>54<br>54                                           | cm<br>-9.37<br>-3.32<br>-3.30<br>Channel:High                              | peak         |
| Mode:b; | MHz dE<br>4960<br>7440<br>9920<br>; <b>Polarizatio</b><br>Frequency R2    | BuV dB<br>37.14<br>39.03 1<br>36.30 1<br>on:Vertical;                                 | dBuV/m<br>7.49 44.63<br>11.65 50.68<br>14.40 50.70<br>; Modulatior                                 | dBuV/m dB<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54 | cm<br>-9.37<br>-3.32<br>-3.30<br>Channel:High                              | peak         |
| Mode:b; | MHz dE<br>4960<br>7440<br>9920<br>; <b>Polarizatio</b><br>Frequency R2    | BuV dB<br>37.14<br>39.03 1<br>36.30 1<br>on:Vertical;<br>X_R Facto<br>BuV dB          | dBuV/m<br>7.49 44.63<br>11.65 50.68<br>14.40 50.70<br>; <b>Modulation</b><br>pr Emission           | dBuV/m dB<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54 | cm<br>-9.37<br>-3.32<br>-3.30<br><b>Channel:High</b><br>rgin Ant.Pos       | peak         |
| Mode:b; | MHz dE<br>4960<br>7440<br>9920<br>; Polarizatio<br>Frequency RX<br>MHz dE | JuV dB<br>37.14<br>39.03 1<br>36.30 1<br>on:Vertical;<br>X_R Facto<br>BuV dB<br>37.70 | dBuV/m<br>7.49 44.63<br>11.65 50.68<br>14.40 50.70<br>; <b>Modulation</b><br>or Emission<br>dBuV/m | dBuV/m dB<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>Limit Maa<br>dBuV/m dB<br>54     | cm<br>-9.37<br>-3.32<br>-3.30<br><b>Channel:High</b><br>rgin Ant.Pos<br>cm | peak<br>peak |



Report No.: SZEM180100017601 Page: 37 of 37

### 8 Test Setup Photographs

Refer to the < Test Setup Photos-FCC >

### 9 EUT Constructional Details

Refer to the < External Photos & < Internal Photos >.

- End of the Report -