

SAPPHIRE 9870-L Model No.: 9870

Tested For

Intellect International N.V. Leuvensesteenweg 540, Bus 5 1930 Zaventem BELGIUM

In Accordance With

SAR (Specific Absorption Rate) Requirements using guidelines established in IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

UltraTech's File No.: IAP-011-SAR

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs Date: April 8, 2002	TM AND TO THE REAL PROPERTY OF		
Report Prepared by: JaeWook Choi	Tested by: JaeWook Choi		
Issued Date: April 8, 2002	Test Dates: April 1, 2002		
The results in this Test Report apply only to the sample(s) tested, which has been randomly selected.			

<u>UltraTech</u>

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Telephone (905) 829-1570 Facsimile (905) 829-8050 Website: <u>www.ultratech-labs.com</u> Email: <u>vic@ultratech-labs.com</u>

յԱղԱղԱղԱղԱղԱղԱղԱղԱ

SAPPHIRE 9870-L, Model No.: 9870

TABLE OF CONTENTS

1.1. SCOPE 1.2. REFERENCES EXHIBIT 2. PERFORMANCE ASSESSMENT	
1.2. REFERENCES EXHIBIT 2. PERFORMANCE ASSESSMENT	
EXHIBIT 2. PERFORMANCE ASSESSMENT	4
2.1 CLIENT AND MANUEACTURER INFORMATION	1
2.1. CELENT AND MANUFACTORER INFORMATION	
2.3. LIST OF ACCESSORIES AND BATTERIES OF EUT	5
2.4. SPECIAL CHANGES ON THE EUT'S HARDWARE/SOFTWARE FOR TEST	ING PURPOSES5
2.5. ANCILLARY EQUIPMENT	
2.6. GENERAL TEST CONFIGURATIONS	5
2.6.1. Equipment Configuration	5
2.6.2. Exercising Equipment	
2.7. SPECIFIC OPERATING CONDITIONS	5
2.8. BLOCK DIAGRAM OF TEST SETUP	6
EXHIBIT 3. SUMMARY OF TEST RESULTS	7
3.1. LOCATION OF TESTS	7
3.2. APPLICABILITY & SUMMARY OF SAR RESULTS	7
EXHIBIT 4. MEASUREMENTS, EXAMINATIONS & TEST DATA	8
4.1. TEST SETUP	
4.2. PHOTOGRAPH OF EUT WITH ALL ACCESORIES	9
4.3. PHOTOGRAPH OF EUT CONFIGURATIONS	
4.3.1. Body-worn configurations	
4.4. MAXIMUM FIELD LOCATION	
4.5. THE MAXIMUM PEAK SPATIAL-AVERAGE SAR MEASURED	21
4.6. SAR MEASUREMENT DATA	
4.6.1. Body-worn configuration Results	
4.6.2. Power drift measurement	
EXHIBIT 5. SAR SYSTEM CONFIGURATION & TEST METHODOLOGY	
5.1. MEASUREMENT SYSTEM SPECIFICATIONS	
5.2. Test Procedures	
5.3. РНАМТОМ	
5.4. SIMULATED TISSUE	
5.4.1. Preparation	
5.5. MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE	
5.5.1. Description of the slotted coaxial waveguide	
5.6. SYSTEM CALIBRATION	
5.0.1. Determine E-Field from Amplified Probe Outputs	
5.6.1.2 Measurement	
5.6.2. SAR from Temperature Measurement and Correlation to E-Field Probe	
5.6.2.1. Measurement	
5.6.2.2. Determination of SAR Conversion Factor (CF)	

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA) ٠

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST) •

FCC ID: QHM-9870

File #: IAP-011-SAR April 8, 2002

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870	FCC ID: QHM-9870
5.6.3. Data Acquisition Methodology	
5.6.3.1. E-Field Measurement	
5.6.3.2. SAR Measurement	
5.6.3.3. Data Extrapolation	
5.6.3.4. Data Interpolation and Gram Averaging	
5.6.4. Determining the Heat Capacity of Simulated Tissue	
5.6.4.1. Instruments and Materials	
5.6.4.2. Method	
5.6.4.3. Rationale	
5.6.5. Definition of Amplifier Setting and Other Terms	
5.6.5.1. Related to Sensor Calibration	
5.6.5.2. Note on Units and Various Calibration Factors	
5.7. SAR MEASUREMENT SYSTEM VALIDATION	
5.7.1. Standard Source	
5.7.2. Standard Source Input Power Measurement	
5.7.3. System Validation Procedure	
5.8. Power Measurement	40
5.9. Positioning of EUT	40
5.10. SAR MEASUREMENT UNCERTAINTY	
5.10.1. Measurement Uncertainty	
5.10.1.1. Measurement Uncertainty evaluation for handset SAR test	
5.10.1.2. Measurement Uncertainty for System Performance Check	
EXHIBIT 6. SAR PRESCANS	46
6.1. BODY WORN POSITION	
6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL	47
6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPOSURE	
6.3.1. Body-worn configurations	
EXHIBIT 7. BODY-WORN CONFIGURATION SAR MEASUREMENTS	
7.1. RIHGT OF EUT FACED TOWARD PHANTOM	49
EXHIBIT 8. TISSUE CALIBRATION	
8.1 DIELECTRIC DRODERTIES	50
8.2 SAR SENSITIVITY	51
6.2. SAR SENSITIVITI	
EXHIBIT 9. PROBE CALIBRATION	
9.1. FREE SPACE CALIBRATION	
9.2. TEMPERATURE TRANSFER CALIBRATION	
EXHIBIT 10. SYSTEM VALIDATION	54
EXHIBIT 11. DUTY CYCLE INFORMATION	

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	SAR (Specific Absorption Rate) Requirements		
	IEEE C95.1-1991,		
	FCC OET Bulletin 65 (Supplement C)		
	Industry Canada RSS-102 (Issue 1).		
	ACA Radiocommunications (Electromagnetic Radiation – Human Exposure),		
	Amendment Standard 2000 (No. 1)		
Title	Safety Levels with respect to human exposure to Radio Frequency Electromagnetic Fields		
	Guideline for Evaluating the Environmental Effects of Radio Frequency Radiation		
Purpose of Test:	To verify compliance with Federal regulated SAR requirements in Canada and the US.		
Method of	IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-		
Measurements:	102(Issue 1)		
Exposure Category	[X] General population, uncontrolled exposure		
	[] occupational, controlled exposure		

1.2. REFERENCES

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title		
IEEE Std. 1528-2001	2001	Draft Recommended practice for determining the Peak Spatial-Average Specific		
Draft		Absorption rate (SAR) in the Human Body Due to Wireless Communications		
		Devices: Experimental Techniques.		
Industry Canada	1999	"Evaluation Procedure for Mobile and Portable Radio Transmitters with respect		
RSS102		to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency		
		Fields"		
ACA	2000	ACA Radiocommunications (Electromagnetic Radiation – Human Exposure)		
		Amendment Standard 2000 (No. 1)		
NCRP Report No.86	1986	"Biological Effects and Exposure Criteria for radio Frequency Electromagnetic		
		Fields"		
FCC OET Bulletin 65	1997	"Evaluating Compliance with FCC Guidelines for Human Exposure to radio		
		Frequency Fields"		
ANSI/IEEE C95.3	1992	"Recommended Practice for the Measurement of Potentially Hazardous		
		Electromagnetic Fields - RF and Microwave"		
ANSI/IEEE C95.1	1992	"Safety Levels with Respect to Human Exposure to Radio Frequency		
		Electromagnetic Fields, 3kHz to 300GHz"		
AS/NZS 2722.1	1998	Interim Australian/New Zealand Standard. "Radiofrequency fields, Part		
		1:Maximum exposure levels – 3kHz to 300GHz "		

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT AND MANUFACTURER INFORMATION

APPLICANT:		
Name:	Intellect International N.V.	
Address:	Leuvensesteenweg 540, BUS 5	
	1930 Zaventem	
	BELGIUM	
Contact Person:	Mr. Cyril Dewaleyne	
	Phone #: +32 2 722 87 11	
	FAX #: +32 2 725 06 28	
	Email: Cyril.dewaleyne@intellect.be	

MANUFACTURER:		
Name:	Intellect International N.V.	
Address:	Leuvensesteenweg 540, BUS 5	
	1930 Zaventem	
	BELGIUM	
Contact Person:	Mr. Cyril Dewaleyne	
	Phone #: +32 2 722 87 11	
	FAX #: +32 2 725 06 28	
	Email: Cyril.dewaleyne@intellect.be	

2.2. EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The following is the information provided by the applicant.

Brand Name	Intellect International N.V.	
Type/Model Number	SAPPHIRE 9870-L / 9870	
Serial Number	Pre-Production	
Type of Equipment	Licensed Non-Broadcast Radio Communication Equipment	
Frequency of Operation	806 – 821 MHz	
Rated RF Power	2 W (conducted)	
Antenna Type	PCB Dipole manufactured by Radiall/Larsen (M/N: KD0131)	
External Power Supply	Intellect, Switching Power Supply (M/N: PSU568766-1,	
	Output: 5.5 VDC 3.0 A)	
Primary User Functions of	Wireless hand held POS/EDC terminal for credit, debit and	
EUT	ERT transactions	

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

2.3. LIST OF ACCESSORIES AND BATTERIES OF EUT

Intellect, Switching Power Supply (M/N: PSU568766-1, Output: 5.5 VDC, 3.0 A) 9870 Battery pack Ni-MH (P/N: 566522-3, Output: 4.8 V, 2100 mAh)

2.4. SPECIAL CHANGES ON THE EUT'S HARDWARE/SOFTWARE FOR TESTING PURPOSES

N/A

2.5. ANCILLARY EQUIPMENT

IBM Laptop, Type 2625-DEF, Serial No. 78-WWM48 96/05

2.6. GENERAL TEST CONFIGURATIONS

2.6.1. Equipment Configuration

Power and signal distribution, grounding, interconnecting cabling and physical placement of equipment of a test system shall simulate the typical application and usage in so far as is practicable, and shall be in accordance with the relevant product specifications of the manufacturer.

The configuration that tends to maximize the EUT's emission or minimize its immunity is not usually intuitively obvious and in most instances selection will involve some trial and error testing. For example, interface cables may be moved or equipment re-orientated during initial stages of testing and the effects on the results observed.

Only configurations within the range of positions likely to occur in normal use need to be considered.

The configuration selected shall be fully detailed and documented in the test report, together with the justification for selecting that particular configuration.

2.6.2. Exercising Equipment

The exercising equipment and other auxiliary equipment shall be sufficiently decoupled from the EUT so that the performance of such equipment does not significantly influence the test results.

2.7. SPECIFIC OPERATING CONDITIONS

- 1. The RS-232 connection is required to place the RIM modem into transmitter test. The carrier is directly controlled from the personal computer software provided by RIM for regulatory compliance. The point-of-sales device cannot by itself, put the RIM module into a continuous transmit mode for testing and the RS-232 connection is required to carry out any transmitter test on this device.
- 2. EUT was configured to transmit the signal with **25% duty cycle** since it cannot transmit more than few seconds with 100% duty cycle and also it is limited on the network the radio modem is designed to be used in. (Refer to EXHIBIT 11. Duty Cycle Information)

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

2.8. BLOCK DIAGRAM OF TEST SETUP

The EUT was configured as normal intended use. The following block diagram shows a representative equipment arrangement during tests:

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

SAPPHIRE 9870-L, Model No.: 9870

EXHIBIT 3. SUMMARY OF TEST RESULTS

3.1. LOCATION OF TESTS

All of the measurements described in this report were performed at UltraTech Group of Labs located at:

3000 Bristol Circle, in the city of Oakville, Province of Ontario, Canada.

All measurements were performed in UltraTech's shielded chamber, 24' x 16' x 8'.

3.2. APPLICABILITY & SUMMARY OF SAR RESULTS

The peak spatial - average SAR measured was found to be **1.422 W/Kg** at **20 mm separation** with **25 % duty cycle** (100 ms : 400 ms)

SAR Limits	Test Requirements	Compliance (Yes/No)
General population/Uncontrolled exposure	Requirements using guidelines established in IEEE C95.1-1991	
0.08W/kg whole body average and spatial peak SAR of 1.6W/kg, averaged over 1gram of tissue	FCC OET Bulletin 65 (Supplement C)	YES
Hands, wrist, feet and ankles have a peak SAR not to exceed 4 W/kg, averaged over 10 grams of tissue.	Industry Canada RSS-102 (Issue 1).	
	ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)	
Occupational/Controlled Exposure	Requirements using guidelines	
0.4W/kg whole body average and spatial peak SAR of 8W/kg, averaged over 1gram of tissue Hands, wrist, feet and ankles have a peak SAR not to exceed 20 W/kg,	FCC OET Bulletin 65 (Supplement C),	N/A
averaged over 10 grams of tissue.	ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)	

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

EXHIBIT 4. MEASUREMENTS, EXAMINATIONS & TEST DATA

4.1. TEST SETUP

EUT Information		Condition	
Radio Type	Mobile Payment Terminal	Robot Type	6 Axis
Model Number	9870	Scan Type	SAR - Area/Zoom
Serial Number	Pre-production	Measured Field	Е
Frequency Band (MHz)	806 - 821	Phantom Type	2mm base Flat Phantom
Frequency Tested (MHz)	806.0, 813.5, 821.0	Phantom Position	Waist
Nominal Output Power (W)	2 W Conducted	Room Temperature	21 °C ± 1 °C
Antenna Type	PCB Dipole	Room Humidity	35 % ± 10 %
Signal Type	FM	Tissue Temperature	21 °C ± 1 °C
Duty Cycle	25% (100 ms : 400 ms)		

Type of Tissue	Muscle
Target Frequency (MHz)	835
Target Dielectric Constant	55.2 ± 5%
Target Conductivity (S/m)	$0.97 \pm 5\%$
Composition (by weight)	DI Water (53.13 %)
	Sugar (45.62 %)
	Salt (0.93%)
	HEC (0.23 %)
	Bactericide (0.10%)
Measured Dielectric Constant	53.5
Measured Conductivity (S/m)	0.97
Probe Name	UT-ETR-0200-1
Probe Orientation	Isotropic
Probe Offset (mm)	2.25
Sensor Factor	10.8
Conversion Factor	0.9664
Calibration Date (MM/DD/YY)	01/31/2002

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

4.2. PHOTOGRAPH OF EUT WITH ALL ACCESORIES

<Front View>

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #. 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- File #: IAP-011-SAR April 8, 2002
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

<Back View>

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #. 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: IAP-011-SAR April 8, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Intellect, switching power supply (M/N: PSU568766-1) >

< 9870 Battery pack Ni-MH (P/N: 566522-3, Output: 4.8 V, 2100 mAh) >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: IAP-011-SAR April 8, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

4.3. PHOTOGRAPH OF EUT CONFIGURATIONS

4.3.1. Body-worn configurations

< Prescan - Left side of EUT faced toward phantom and in contact, swivel antenna 180°(fully extended) >

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Prescan - Front side of EUT faced toward phantom and in contact, swivel antenna 180°(fully extended) >

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Prescan - Right side of EUT faced toward phantom and in contact, swivel antenna 180°(fully extended) >

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Prescan - Back side of EUT faced toward phantom and in contact, swivel antenna 180°(fully extended) >

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Prescan – Right of EUT faced toward phantom and in contact, swivel antenna 0, swivel antenna 0°(fully retracted)

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Right of EUT faced toward phantom at 10 mm separation, swivel antenna 180°(fully extended) >

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Right of EUT faced toward phantom at 20 mm separation, swivel antenna 180°(fully extended) >

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

< Right of EUT faced toward phantom at 20 mm separation, swivel antenna 0°(fully retracted) >

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

4.4. MAXIMUM FIELD LOCATION

The maximum field was found to be located at (0, 50) with the test configuration as described below:

- Body-worn position
- The right side of EUT faced toward phantom
- 806.0 MHz
- Swivel antenna 180 ° (Fully extended)
- 20 mm separation
- 25 % duty cycle

Complete area Pre-scans on all faces of the EUT were conducted to determine the location of the highest SAR and the device was repositioned to allow the identified hot-spots to be orientated with as large an area around the hot-spots to come into contact with the phantom surface. This procedure ensured that the maximum SAR readings would be obtained from the hot-spot areas identified.

Unless otherwise specified, the reference point (0, 0) in the plots was set to the point at the base of antenna in the projected image of EUT to the phantom surface as shown above.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

Page 21

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

4.5. THE MAXIMUM PEAK SPATIAL-AVERAGE SAR MEASURED

Phantom Configurations	Equipment Test Positions	Antenna Position	SAR [W/kg] Test Frequency [MHz]
Configurations			806.0
Body-worn (Waist)	Right side of EUT faced toward phantom	Survey antenna 180 °	1.422
	20 mm separation,	(Eully extended)	
	25 % duty cycle	(Funy extended)	

4.6. SAR MEASUREMENT DATA

4.6.1. Body-worn configuration Results

EUT Configurations	Antenna Position	Separation distance [mm]	SAR [W/kg] Test Frequency [MHz]		
			806.0	813.5	821.0
Right side of EUT faced toward phantom 25% duty cycle	Swivel antenna 180 ° (Fully extended)	20	1.422	1.316	1.280
	Swivel antenna 0 ° (Fully retracted)	10		2.772	
		20	1.212	1.171	0.832

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: IAP-011-SAR April 8, 2002

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

4.6.2. Power drift measurement

SAR near the vicinity of the mid-point of antenna in the target-simulated tissue was measured during the period of 30 minutes.

SAR measured after continuous exposure for 30 minutes was found to be dropped by -4.78 %.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

SAPPHIRE 9870-L, Model No.: 9870

Page 23

EXHIBIT 5. SAR SYSTEM CONFIGURATION & TEST METHODOLOGY

5.1. MEASUREMENT SYSTEM SPECIFICATIONS

Positioning Equipment	Probe		
Type : 3D Near Field Scanner	Sensor : E-Field		
Location Repeatability : 0.1mm	Spatial Resolution : 0.1 cm ³		
Speed 180 °/sec	Isotropic Response : $\pm 0.25 \text{ dB}$		
AC motors	Dynamic Range : 2 μ W/g to 100 mW/g		
Computer	Phantom		
Type : Pentium III 500MHz	Tissue : Simulated Tissue with electrical		
Memory : 256 MB RAM	characteristics similar to those of the human at normal body temperature.		
Operating System : Windows 2000 Pro	Left/Right Head: IEEE P1528 Compliant SAM manufactured by Aprel Body/Frontal Head: IEEE Flat Phantom 2mm Base		
Monitor : 19" SVGA			

5.2. TEST PROCEDURES

In the SAR measurement, the positioning of the probes must be performed with sufficient accuracy to obtain repeatable measurements in the presence of rapid spatial attenuation phenomena. The accurate positioning of the E-field probe is accomplished by using a high precision robot. The robot can be taught to position the probe sensor following a specific pattern of points. In a first sweep, the sensor is positioned as close as possible to the interface, with the sensor enclosure touching the inside of the fiberglass shell. The SAR is measured on a grid of points, which covers the curved surface of the phantom in an area larger than the size of the EUT. After the initial scan, a high-resolution grid is used to locate the absolute maximum measured energy point. At this location, attenuation versus depth scan will be accomplished by the measurement system to calculate the SAR value.

5.3. PHANTOM

For Head mounted devices placed next to the ear, the phantom used in the evaluation of the RF exposure of the user of the wireless device is a IEEE P1528 compliant SAM phantom, shaped like a human head and filled with a mixture simulating the dielectric characteristics of the brain. A left sided head and a right sided head are evaluated to determine the worst case orientation for SAR. For body mounted and frontal held push-to-talk devices, a flat phantom of dimensions 70x42x20cm with a base plate thickness of 2mm is used.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

SAPPHIRE 9870-L, Model No.: 9870

5.4. SIMULATED TISSUE

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

Ingredient	Quantity		
Water	40.4 %		
Sugar	56.0 %		
Salt	2.5 %		
HEC	1.0 %		
Bactericide	0.1 %		

Table. Example of composition of simulated tissue.

This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

Target Frequency	Head		Body	
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: IAP-011-SAR April 8, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Assessed by Inflox) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Adstralia), VCCI (Jap Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

SAPPHIRE 9870-L, Model No.: 9870

5.4.1. Preparation

We determine the volume needs and carefully measure all components. A clean container is used where the ingredients will be mixed. A stirring paddle mounted to a drill press is used to stir the mixture. First we heat the DI water to about 40 °C to help the ingredients dissolve and then we pour the salt and the bactericide. We stir until all the ingredients are completely dissolved. We continue stirring slowly while adding the sugar. We avoid high RPM from the mixing device to prevent air bubbles in the mixture. Later on, we add the HEC to maintain the solution homogeneous. Mixing time is approximately 30 to 40 min.

5.5. MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE

- **1)** Network Analyzer HP8753C or others
- **2)** Slotted Coaxial Waveguide

5.5.1. Description of the slotted coaxial waveguide

The cylindrical waveguide is constructed with copper tube of about 30 to 40 cm in length, generally 12.5 mm diameter, with connectors at both ends. Inside of this tube, a conductive rod about 6.3 mm is coaxial supported by the two ends connectors (radiator). A slot 3 mm wide start at the beginning of the tube to approximately two thirds of the tube length. The outer edge of the slotted tube is marked in increments of 1 centimeter (10 to 12), and 0.5 centimeter for higher frequencies. A saddle piece containing the sampling probe is inserted in the slot so the tip of the probe is close but not in contact with the inner conductor (radiator).

To measure the electrical characteristics of the liquid simulated tissue, we fill the coaxial waveguide with the mixture, select CW frequency and measure amplitude and phase with the Network Analyzer for every point in the slot (typically 11). An effort is made to keep the resultant dielectric constant and conductivity within 5 % of published data.

HP8753C Network Analyzer Waveguide

Electrical Characteristics Measurement Setup

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: IAP-011-SAR April 8, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

0

SAPPHIRE 9870-L, Model No.: 9870

$$c = 3 \cdot 10^{\circ} \text{ m/s}$$

$$A = \frac{\Delta A}{20} \ln_{10} \frac{1}{m}$$

$$\theta = \frac{\Delta \theta \cdot 2\pi}{360}$$

$$\lambda = \frac{c}{f} \cdot \frac{100}{2.54} \text{ inches}$$

$$\varepsilon_{re} = \frac{(A^2 + \theta^2) \cdot \lambda^2}{4\pi^2}$$

$$\theta' = \left| \frac{|A| \cdot \lambda}{4\pi \sqrt{\varepsilon_{re}}} \right|$$

$$S = \tan (2\theta')$$

$$\varepsilon_r = \frac{\varepsilon_{re}}{\sqrt{(1 + S^2)}}$$

$$\sigma = S \cdot 2\pi \cdot f \cdot 8.854 \cdot 10^{12} \cdot \varepsilon_r (S/m)$$

where;

 ΔA is the amplitude attenuation in dB

 $\Delta \theta$ is the phase change in degrees for 5 cm of wave propagation in the slotted line

f is the frequency of interest in Hz.

5.6. SYSTEM CALIBRATION

The SAR measurement system has two main components:

- a) the probe, which is connected to the inputs of
- b) the instrumentation amplifier whose outputs are connected through the transmission line to
- c) the computer.

The system is calibrated as one unit not as individual components. If any components is modified or replaced, the system must be re-calibrated.

The system calibration is performed by two steps:

- 1) determination of free space E-field from amplified probe outputs in a test RF field, and
- 2) correlation of the measured free space E-field and the measured E-field in the medium to temperature rise in a dielectric medium.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

File #: IAP-011-SAR

April 8, 2002

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

SAPPHIRE 9870-L, Model No.: 9870

5.6.1. Determine E-Field from Amplified Probe Outputs

Note: Equipment must be regularly calibrated.

- RF Signal Generator frequency range to at least 2 GHz,
- RF Amplifier if needed to generate the required power density in the test cell,
- Test Cell TEM (Crawford) cell, waveguide, or other device capable of maintaining a uniform field,
- RF Power Meter capable of measuring at least 5 Watts (current calibration is mandatory!) if possible traceable to the National Institute of Standards and Technology (NIST).
- E-Field Probe (under Calibration)
- Probe Support Fixture
- Instrumentation Amplifier
- Transmission Line
- Computer Program with the Automated Calibration System Program

5.6.1.1. Method

Due to impedance variations in the diodes and the transmission line, and slight differences in gain between the channels of the instrumentation amplifier, a normalization method was designed. The calibration method actually used is to determine the factors necessary adjust each channel of the system so its indicated output can then be equated to the RF field. These factors are referred to as "Amplifier Settings".

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: IAP-011-SAR April 8, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

< Free Space Calibration Setup for Amplifier Setting >

5.6.1.2. Measurement

Free Space Calibration of E-field probes can be performed using a TEM cell manufactured by IFI (Instrumentation for Industry, Farmingdale, NY 11735) with operating frequency at or below 1 GHz.

- Connect the equipment as shown above;
- Adjust the RF generator output so that the power density inside the TEM cell is 1 mW/cm². (For the IFI model CC-110 cell, the correct power level is 271 mW);
- Mount the probe of the system to calibrate in the support fixture. Insert the probe through the aperture of the TEM cell. The probe handle should be at the geometric center of the aperture, i.e. midway between the septum and the upper surface, and orthogonal to the side of the cell. The sensing portion of the probe should be located at a point halfway across the depth of the cell (volumetric center).
- Once the prescribed position is obtained, it must be maintained during the rest of the measurement. The only movement of the probe allowed is rotation on its axis to position the dipole in the plane of the E-field and, for channel 3 only, parallel to the vertical uniform field (max./min. output).
- Verify that the RF power level remains constant throughout the measurement. While the probe is being rotated through 360 degrees, software indicators will show the maximum measured on each channel.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- File #: IAP-011-SAR April 8, 2002
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

SAPPHIRE 9870-L, Model No.: 9870

Thus, the amplifier settings for each channel are as follows:

$$AS_{i} = \frac{Sensor_Factor}{V_{\max_{i}} - DC_{i}} \times \cos^{2} \theta_{i}$$

Where:

As_i : Amplifier Setting for channel i Sensor_Factor : an arbitrary value 10.8 [mV/(mW/cm²⁾] Vmax_i : Maximum voltage recorded for channel i by rotation about the probe axis with the probe in a TEM cell DC_i : DC offset of channel i (the voltage out of the transmission line with the instrumentation amplifier on and RF power off, recorded at the beginning of the probe calibration) θ_i : Angles between the probe axis and the dipole sensor axis of channel i ($\theta_1 = \theta_2 = 45^\circ, \theta_3 = 0^\circ$ for I-beam probe, and $\theta_1 = \theta_2 = \theta_3 = 90^\circ - 54.7^\circ = 35.3^\circ$ for triangular probe when the probe axis is assumed to be perpendicular to the plane of the septum inside TEM cell)

5.6.2. SAR from Temperature Measurement and Correlation to E-Field Probe

5.6.2.1. Measurement

A RF transparent thermistor based temperature probe and a isotropic E-field probe are placed side-by-side in a planar phantom while both are exposed to RF energy from a half wave dipole antenna located below the phantom The E-field probe and amplifiers were previously calibrated.

First, the location of the maximum E-field close to the phantom's bottom is determined as a function of power into the dipole

Then, the E-field probe is moved sideways so that the temperature probe, while affixed to the E-field probe is placed at the previous location of the E-field probe.

Finally, temperature changes for a certain amount of time (generally 30 seconds) exposures at the same RF power levels used for the E-field are recorded. Care is taken to allow cooling down to the original temperature and temperature stabilization between tests.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Recognized/Listed by FCC (USA)

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

Flat Phantom, Thermistor and E-Field Probe

The following simple equation relates SAR to the initial temperature slope:

$$SAR \cdot \Delta t = c \cdot \Delta T$$
 (eq.1)

In (eq.1) Δt is the exposure time (30 sec), c is the specific heat capacity of the simulated brain tissue (approximately c = 2.7 joules/g/°C for simulated brain tissue) and ΔT is the temperature increase due to the RF exposure. SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place.

From (eq.1) it is possible to quantify the electric field in the simulated tissue by equating the thermally-derived SAR to the E-field:

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$
 (eq.2)

where σ is the simulated tissue conductivity and ρ its density; typically $\rho = 1.25$ g/cm³ for simulated brain tissue.

Since, even at the closest practical position, the E-field sensors are at a distance ($\approx 3 \text{ mm}$) from the surface of the phantom shell, the field in the simulated tissue near the shell surface must be calculated. To do so, data are obtained as the probe is moved vertically, from the surface of the planar phantom.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

File #: IAP-011-SAR April 8, 2002

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

The field attenuation is recorded and extrapolated to obtain the $|E|^2$ value at the surface of the phantom, where the maximum SAR is located. This method has given highly repeatable results. (the method is described in the next section).

5.6.2.2. Determination of SAR Conversion Factor (CF)

The conversion factor scales the E-field in terms of the thermally-derived SAR. It is the quotient of SAR_t, the SAR determined from temperature measurements in the flat phantom, and ΔV_t , the E-field prove output voltage obtained at the same location in the phantom

$$CF_{[mW/g/(mW/cm^{2})]} = \frac{SAR_{t}}{\Delta V_{t}} \times 0.0108 \qquad (\Delta V_{t} \text{ in volts})$$
$$CF_{[mW/g/(mW/cm^{2})]} = \frac{SAR_{t}}{\Delta V_{t}} \times 10.8 \qquad (\Delta V_{t} \text{ in mV})$$

For historical reasons, CF is scaled by the factor 10.8 $[mV/(mw/cm^2)]$. (see discussion to sensor factor in Appendix B) Note, as a result of the scaling constant (10.8 $[mV/(mw/cm^2)]$) the dimensions of CF are $[mW/g/(mw/cm^2)]$.

The temperature E-field correlation is illustrated below (for simulated brain tissue) for an example in which the thermal quantities were,

RF power input = 0.5 W $\Delta T = 0.0163^{\circ}C$ (from thermistor base temperature probe) $c = 2.7 \text{ J/g/}^{\circ}C$ (simulated brain tissue) 3.0 (simulated muscle tissue) $\Delta t = 30 \text{ sec.}$

The resulting SAR_t was (eq.1)

 $SAR_t = (2.7 \text{ x } 0.0163) / 30 = 1.47 \text{ mW/g}$

In this case the output of the E-field probe when at the same position as the thermistor probe was

 $\Delta V_t = 28.5 \text{ mV}$ (from the software acquisition screen)

The calculation of CF follows:

 $CF = (1.47[mW/g] / 28.5[mV]) \times 10.8 [mV/(mw/cm^2)] = 0.56 [mW/g/(mw/cm^2)]$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

SAPPHIRE 9870-L, Model No.: 9870

5.6.3. Data Acquisition Methodology

5.6.3.1. E-Field Measurement

The probe calibration must be current before starting measurements. Instrumentation amplifier batteries must be charged. This can be monitored by observing DC offset voltages. A daily log of the DC offset voltages should be kept for this purpose.

Measurements in the phantom are automatically calculated for each location by summation of the three dipole outputs. Because each dipole produces an output voltage proportional to the square of the electric field component along the dipole, the sum of dipole voltages represents the RMS values for the total electric field. Thus, taking into consideration the amplifier settings and the DC offset voltages, the total electric field strength at a measurement location is as follows. See Appendix C. Pd_{tot} is labeled by the software as measure of values (volts). The SAR for calculations that are derived from the measure of values are discussed below.

At each measurement point, the program records the output of the three channels:

$$E_1 = V_1 - DC_1$$

$$E_2 = V_2 - DC_2$$

$$E_3 = V_3 - DC_3$$

$$Pd_{tot} = (E_1 \times AS_1) + (E_2 \times AS_2) + (E_3 \times AS_3)$$

 V_n = Voltmeter reading of channel n at one measurement point E_n = Actual voltage of channel n at one measurement point AS_n = amplifier setting of channel n Pd_{tot} = Total probe output at one measurement point (see Appendix C)

5.6.3.2. SAR Measurement

The goals of the measurement process are to scan the phantom over a selected area in order to find the region of highest levels of RF energy and then to obtain a single value for the peak spatial average of SAR over a volume that would contain one gram (in the shape of a cube) of biological tissue (brain or muscle). The test procedure, of course, measures SAR in the simulated tissue.

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: IAP-011-SAR April 8, 2002

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Recognized/Listed by FCC (USA)

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation - Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

The software request the user to move the probe to locations at two extreme corners of a rectangle that encloses the area to be scanned. An arbitrary origin and the spatial resolution for the scan are also specified. Under program control, the scan is performed automatically by the robot-guided probe.

Next, using a higher spatial resolution, the robot guides the probe through locations with the highest SAR. Finally, the SAR is averaged over the cubic volume surrounding the peak localized SAR. This spatially-averaged SAR is reported as SAR (W/kg).

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

5.6.3.3. Data Extrapolation

The distance from the center of the sensor (diode) to the end of the protective tube is called the 'probe offset'. To compensate we use an exponential curve fitting method to obtain the peak surface value from the voltages measured at the distance from the inner surface of the phantom. At the point where the highest voltage was recorded, the field is measured as close as possible to the phantom's surface and every 1mm along the 'Z' axis for a distance of 50 mm. The appropriate exponential curve is obtained from all the points measured and used to define an exponential decay of the energy density versus depth.

$$E(z) = E_0 \cdot e^{-2 \cdot z/\delta}$$
 (mV)

5.6.3.4. Data Interpolation and Gram Averaging

The voltage, (1 cm) above the phantoms surface (E_{tot} 1 cm), is needed to calculate the exposure over one gram of tissue. This SAR value that estimates the average over 1 gram of tissue, is obtained by taking the integral over 1 cm² surface of the measured field along the exponential decay curve of the energy density with depth.

$$SAR(mW/g) = \int_{v=1g} SAR(\bullet) dv = \int_{s=1cm^2} \int_0^{1cm} E(z) \cdot \frac{CF}{SensorFactor} dz ds$$

5.6.4. Determining the Heat Capacity of Simulated Tissue

5.6.4.1. Instruments and Materials

- Calibrated differential thermometer (Vitek or BAT-8 or equivalent)
- Two identical 500 ml containers
- A thermally insulated vessel (thick styrofoam, with a form fitting hole for one container)
- Hot and cold tap water
- Solution under test
- Hot plate
- Temperature vs. time (chart recorder, or data loger)

5.6.4.2. Method

Heat can be propagated by conduction, convection and radiation. In the case of liquids heated from below, gravity convection is the main and predominant heating mechanism of the fluid mass.

Obtain two containers that can be rapidly heated (e.g. glass or suitable plastic). Fill one container with 250 ml of water, the other with the same mass of simulated tissue. The initial temperature of the water should be the same as that of the simulated tissue (\pm 1°C). Since we are dealing with heating by electromagnetic sources at ambient temperature, it is essential that we eliminate the chance of any direct infrared heating of the temperature sensor. To ensure this, position the tip of the sensor 2 mm from the bottom of the center of the container. Turn on the heat source and wait at least 5 minutes for its temperature to

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- File #: IAP-011-SAR April 8, 2002
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

Page 35

stabilize. Record the initial temperature of the water. Place the container of water 5 mm above the center of the hot plate and monitor the temperature increase.

After 30 seconds of heating, the water temperature should have increased by at least 5°C. Record the time and temperature. Remove the container from the heat source and place it in the thermally insulated vessel. Stir the liquid thoroughly and record the steady state temperature 1-2 minutes after stirring.

Repeat the above procedure using the container of simulated tissue. Ensure that the container is placed on the same area of the hot plate, is heated for the identical length of time, and the steady state temperature is recorded after the identical time interval.

Since the heat capacity of water is $C_w = 1$ cal/°C/g with excellent approximation (~1%) in the temperature range of interest, the heat capacity (C_s) of the solution is given by:

$$C_s = C_w \cdot \frac{\Delta T_w}{\Delta T_s}$$

where ΔT_w is the temperature increase of water and ΔT_s the temperature increase of the solution. The ratio of the values, $\Delta T_w / \Delta T_s$, should be the same (within the sensivity of the thermometer) at the end of the heating and stirring. This ensures that the liquids have been uniformly heated.

5.6.4.3. Rationale

$C \cdot \Delta T = Heat$ Flow $\cdot Time = Total$ Heating Energy

If the heat flow, sample mass, and absorption (heat transfer) are the same for both liquids, then:

$$C_{w} \cdot \Delta T_{w} = C_{s} \cdot \Delta T_{s}$$

The heat flow and total heating are kept constant by using the same source for the same amount of time. If the heat transfer mechanisms for the woe liquids are about the same, with insignificant differences in convective and conductive characteristics, then any differences in temperature increase are a direct measure of the specific heat capacity, C.

5.6.5. Definition of Amplifier Setting and Other Terms

5.6.5.1. Related to Sensor Calibration

The initial sequence of probe calibrations steps performed with SAR determinations produces the factors used in scaling probe output voltage to RF power density. For historical reasons all probes factors are compared to a factor 10.8 mV per mW/cm^2 that was typical of a prototype probe, but is in fact an arbitrary ure. The factor of 10.8 mV/mW/cm² is known as the sensor factor, but does not change. To calibrate a probe, each channel is assigned an amplifier setting. This factor is obtained from the maximum probe output voltage measured during probe calibration. This probe output voltage is corrected for any DC offset of the instrumentation amplifier, usually a very small amount.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

File #: IAP-011-SAR April 8, 2002

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)
IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

Page 36

FCC ID: QHM-9870

During calibration, for probe with I-beam cross-section, the channel 3 is aligned parallel to the E-field, but each of the channel 1 and 2 dipoles are at 45° to the direction of the field, resulting in outputs one half as large. Thus, the amplifier settings for each channel are as follows:

$$AS_{i} = \frac{Sensor_Factor}{V_{\max_{i}} - DC_{i}} \times \cos^{2} \theta_{i}$$

Where:

As_i: Amplifier Setting for channel i

Sensor_Factor : an arbitrary value 10.8 [mV/(mW/cm²⁾]

Vmax_i: Maximum voltage recorded for channel i by rotation about the probe axis with the probe in a TEM

cell

 DC_i : DC offset of channel i (the voltage out of the transmission line with the instrumentation amplifier on and RF power off, recorded at the beginning of the probe calibration)

 θ_i : Angles between the probe axis and the dipole sensor axis of channel i ($\theta_1 = \theta_2 = 45^\circ, \theta_3 = 0^\circ$ for I-beam probe, and $\theta_1 = \theta_2 = \theta_3 = 90^\circ - 54.7^\circ = 35.3^\circ$ for triangular probe when the probe axis is assumed to be perpendicular to the plane of the septum inside TEM cell)

5.6.5.2. Note on Units and Various Calibration Factors

Three calibration factors, already defined, are used in the process of obtaining electric field strengths and SARs. This note shows how the units applicable to each are consistent and produce suitable units for the final quantities. The units Pd_{tot} are also discussed.

<u>Sensor Factor</u> is a numerical constant fixed by the properties of a particular probe used in the past. It represents the voltage output from a probe placed in a flux density of 1 mW/cm^2 .

Sensor
$$_Factor = 10.8 (mV/(mW/cm^2))$$

Sensor $_Factor = 0.0108 (V/(mW/cm^2))$

<u>Amplifier Setting</u> (AS) is a calibration factor that reflects the probe and amplifier properties. The values of AS for each channel are computed by the software. The data for the values of each AS are obtained when the E-field probe is rotated for maximum output from the probe channels while in a TEM cell with a field strength of 1 [mW/cm²]. The AS values are shown on screen and in the output as Amplifier Channel Settings.

For a simple example, assume only channel 3 of the probe had a non-zero output. If CF = 0.56 (mW/g/V), $AS_3 = 0.375$ and $E_3 = 350 \text{ mV}$, the SAR at this location is:

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

$$SAR = E_3 \cdot AS_3 \cdot \frac{CF}{Sensor_Factor}$$
$$SAR = 0.350 \cdot 0.375 \cdot \frac{0.56}{0.0108} = 6.81 [mW/g]$$

The appearance of the Sensor Factor in the denominator for the SAR calculation effectively cancels the introduction of the same scaling constant (10.8) used in making the calculation of CF. See above for discussion of the units for AS and Sensor Factor.

The numerical scaling for CF is based on the TEM cell measurement where a test flux density of 1 mW/cm^2 was used. This flux density corresponds to an electric field strength in the TEM cell of 0.614 V/cm, or the squared value of 0.377 V²/cm² (E²). For historical reasons, CF is defined in terms on an intermediate scaling constant for a particular probe which produced an output of 10.8 mV in the TEM cell when the field strength was 0.614 V/cm.

The units of the total output of the probe, Pd_{tot} are mV. In physical terms, the probe voltages are developed in diodes and represents an electric field squared (V^2/m^2) and equivalently a power density (W/kg). Therefore, Pd_{tot} is physically appropriate for measurement of SAR. To obtain the power density corresponding to Pd_{tot} perform the following calculation:

$$SAR = Pd_{tot} \times \frac{CF}{Sensor Factor}$$

,or to show the units explicitly,

$$SAR(mW/g) = Pd_{tot}(mV) \times \frac{CF(mW/g/(mW/cm^{2}))}{Sensor_Factor(mV/(mW/cm^{2}))}$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

5.7. SAR MEASUREMENT SYSTEM VALIDATION

5.7.1. Standard Source

A half-wave dipole is positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. The distance between the liquid filled phantom bottom surface and the center of the dipole axis, *s*, is chosen as specified IEEE 1528 at the specific test frequency (i.e. 15 mm at 835 MHz). A low loss and low dielectric constant spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom.

5.7.2. Standard Source Input Power Measurement

The system validation is performed as shown below or in Figure 7.1 in IEEE 1528.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power was verified to be at least 20dB below the forward power.

5.7.3. System Validation Procedure

A complete 1g-averaged SAR measurement is performed. The measured 1g-averaged SAR value is normalized to a forward power of 1W to a half-wave dipole and compared with the reference SAR value for the reference dipole and flat phantom shown in columns 2 and 3 of Table 7.1 in IEEE 1528.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Recognized/Listed by FCC (USA)

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation - Human Exposure) Amendment Standard 2000 (No. 1)

5.8. POWER MEASUREMENT

Whenever possible, a conducted power measurement is performed. To accomplish this, we utilize a fully charged battery, a calibrated power meter and a cable adapter provided by the manufacturer. The data of the cable and related circuit losses are also provided by the manufacturer. The power measurement is then performed across the operational band and the channel with the highest output power is recorded.

Power measurement is performed before and after the SAR to verify if the battery was delivering full power at the time of testing. A difference in output power would determine a need for battery replacement and to repeat the SAR test

Measured Power + Cable and Switching Mechanism Loss

5.9. **POSITIONING OF EUT**

The clear SAM phantom shell have been previously marked with a highly visible grid with a defined centre line, so it can easily be seen through the liquid simulated tissue. In the case of testing a cellular phone, this line is connecting the ear channel with the corner of the lips. The EUT is then placed by centering the speaker with the ear channel and the center of the radio width with the corner of the mouth.

For HAND HELD devices (push-to-talk), or any other type of wireless transmitters postioned in front of the face, the EUT will be positioned 2.5cm distance from a flat phantom to simulate the frontal facial position in use. All body-worn operating configurations are tested using a flat phantom. The length and width of the phantom is at least twice the corresponding dimensions of the test device, including its antenna.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

Page 41

horizontal reference lines – fixed case

Figure 5.2b – Handset vertical and horizontal reference lines – "clam-shell"

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

Figure 5.3 – Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only (also see Section 4).

Figure 5.4 – Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only (also see Section 4).

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

SAPPHIRE 9870-L, Model No.: 9870

Page 43

5.10. SAR MEASUREMENT UNCERTAINTY

This uncertainty analysis covers the 3D-EMC Laboratory test procedure for Specific Absorption Rate (SAR) associated with wireless telephones and similar devices.

Standards Covered Are:

WGMTE 96/4 - Secretary SC211/B

FCC 96-326, ET Docket No. 93-62

Industry Canada RSS 102

ACA Radiocommunications (Electromagnetic Radiation - Human Exposure) Amendment Standard 2000 (No. 1)

The laboratory test procedure, and this uncertainty analysis, may be used to cover all standards above. It is based on test equipment and procedures specified by 3D-EMC Laboratories, Inc. located in Ft. Lauderdale, Florida.

5.10.1. Measurement Uncertainty

5.10.1.1. Measurement Uncertainty evaluation for handset SAR test

							<i>h</i> =	<i>i</i> =	
a	b	с	d	e = f(d,k)	F	g	cxf/e	cxg/e	k
Uncertainty		Tol.	Prob.		c _i	c _i	1-g	10-g	
Component		(± %)	Dist.		(1-g)	(10-g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
	Sec.			Div.			(±%)	(±%)	v _i
Measurement System									
Probe Calibration	E1.1	3.0	Ν	1	1	1	3.0	3.0	×
Axial Isotropy	E1.2	5.0	R	$\sqrt{3}$	0.7	0.7	2.0	2.0	×
Hemispherical Isotropy	E1.2	8.0	R	√3	1	1	4.6	4.6	×
Boundary Effect	E1.3	10.0	R	√3	1	1	5.8	5.8	×
Linearity	E1.4	4.2	R	$\sqrt{3}$	1	1	2.4	2.4	8
System Detection Limits	E1.5	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
Readout Electronics	E1.6	1.0	Ν	1	1	1	1.0	1.0	×
Response Time	E1.7	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	×
Integration Time	E1.8	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	×
RF Ambient Conditions	E5.1	3.0	R	√3	1	1	1.7	1.7	×
Probe Positioner Mechanical Tolerance	E5.2	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Probe Positioning with respect to Phantom Shell	E5.3	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E4.2	3.5	R	$\sqrt{3}$	1	1	2.0	2.0	80
Test sample Related									
Test Sample Positioning	E3.2.1	7.5	Ν	1	1	1	7.5	7.5	11

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

Device Holder Uncertainty	E3.1.1	6.5	Ν	1	1	1	6.5	6.5	8
Output Power Variation - SAR drift measurement	5.6.2	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E2.1	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
Liquid Conductivity Target - tolerance	E2.2	5.0	R	√3	0.7	0.5	2.0	1.4	ø
Liquid Conductivity - measurement uncertainty	E2.2	4.0	R	$\sqrt{3}$	0.7	0.5	1.6	1.2	×
Liquid Permittivity Target tolerance	E2.2	5.0	R	√3	0.6	0.5	1.7	1.4	8
Liquid Permittivity - measurement uncertainty	E2.2	4.0	R	√3	0.6	0.5	1.4	1.2	×
Combined Standard Uncertainty			RSS				14.3	14.2	
Expanded Uncertainty (95% confidence interval)							28.5	28.3	

5.10.1.2. Measurement Uncertainty for System Performance Check

							h =	<i>i</i> =	
а	b	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
Uncertainty		Tol.	Prob.		Ci	<i>c</i> _i	1-g	10-g	vi
Component	See.	(± %)	Dist.		(1-g)	(10-g)	\boldsymbol{u}_i	\boldsymbol{u}_i	or v _{eff}
	Sec.			Div.			(±%)	(±%)	
Measurement System									
Probe Calibration	E1.1	3.0	Ν	1	1	1	3.0	3.0	×
Axial Isotropy	E1.2	5.0	R	√3	0.7	0.7	2.0	2.0	~
Hemispherical Isotropy	E1.2	8.0	R	$\sqrt{3}$	1	1	4.6	4.6	~
Boundary Effect	E1.3	10.0	R	$\sqrt{3}$	1	1	5.8	5.8	×
Linearity	E1.4	4.2	R	$\sqrt{3}$	1	1	2.4	2.4	×
System Detection Limits	E1.5	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
Readout Electronics	E1.6	1.0	Ν	1	1	1	1.0	1.0	8
Response Time	E1.7	1.5	R	√3	1	1	0.9	0.9	×
Integration Time	E1.8	2.0	R	√3	1	1	1.2	1.2	×
RF Ambient Conditions	E5.1	3.0	R	√3	1	1	1.7	1.7	×
Probe Positioner Mechanical Tolerance	E5.2	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	×
Probe Positioning with respect to Phantom Shell	E5.3	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	×
Extrapolation, interpolation and Integration Algorithms for Max.									
SAR Evaluation	E4.2	3.5	R	√3	1	1	2.0	2.0	×
Dipole									
Dipole Axis to Liquid Distance	7, X3.2	2.0	R	√3	1	1	1.2	1.2	×
Input Power and SAR Drift Measurement	7, 5.6.2	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	×
Phantom and Tissue Parameters									
Phantom Uncertainty - shell thickness tolerance	E2.1	4.0	R	√3	1	1	2.3	2.3	8

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

Liquid Conductivity – deviation from target values	F2 2	5.0	R	$\sqrt{3}$	0.7	0.5	2.0	1.4	~
Elquid Conductivity – deviation nom target values	L2.2	5.0	R	10	0.7	0.5	2.0	1.7	~
Liquid Conductivity - measurement uncertainty	E2.2	4.0	R	√3	0.7	0.5	1.6	1.2	8
Liquid Permittivity – deviation from target values	E2.2	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	8
Liquid Permittivity - measurement uncertainty	E2.2	4.0	R	$\sqrt{3}$	0.6	0.5	1.4	1.2	8
Combined Standard Uncertainty			RSS				10.0	9.9	
Expanded Uncertainty									
(95% confidence interval)							20.1	19.8	

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

EXHIBIT 6. SAR PRESCANS

6.1. BODY WORN POSITION

Test configurations used

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The EUT was placed against the phantom and tested in its appropriate holster as would normally be used by the end user. If the SAR measured at the middle channel for each test is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional

When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components..

Equipment permutation investigated for each orientation

The normal holster mounting position was the only permutation tested for determining peak-spatial average SAR analysis.

Comments on non-tested configurations

No other configurations considered abnormal use, were investigated.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: IAP-011-SAR April 8, 2002

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and caution statements should be included in the manual. The information should allow users to make informed decisions on the type of body-worn accessories and operating configurations that are appropriate for the device. The following are *examples* of typical statements that provide end-users with the necessary information about body-worn accessories:

1. For a product that has the potential to be used in a body worn configuration and has been tested and certified with a specific accessory device(s):

"For body worn operation, this phone has been tested and meets the FCC RF exposure guidelines when used with the (*manufacturer name*) accessories supplied or designated for this product. Use of other accessories may not ensure compliance with FCC RF exposure guidelines."

2. For a product that has the potential to be used in a body worn configuration and has not been certified with a specific accessory device(s):

"For body worn operation, this phone has been tested and meets FCC RF exposure guidelines when used with an accessory that contains no metal and that positions the handset a minimum of (specified distance) from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines."

3. For a product that has the potential to be used in a body worn configuration with future manufacturer designed accessories:

"For body worn operation, this phone has been tested and meets the FCC RF exposure guidelines when used with a (*manufacturer name*) accessory designated for this product or when used with an accessory that contains no metal and that positions the handset a minimum of (specified distance) from the body."

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Recognized/Listed by FCC (USA)

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPOSURE

6.3.1. Body-worn configurations

FUT Configurations	Antonno Position	SAR [W/kg] Test Frequency [MHz]
EU i Configurations	Antenna i ostion	813.5
Left side of EUT faced toward phantom and in contact	Swivel antenna 180 °	0.078
25 % duty cycle	(Fully extended)	
Front side of EUT faced toward phantom and in contact	Swivel antenna 180 °	0.400
25 % duty cycle	(Fully extended)	0.400
Right side of EUT faced toward phantom and in contact	Swivel antenna 180 °	5 853
25 % duty cycle	(Fully extended)	5.855
Back side of EUT faced toward phantom and in contact	Swivel antenna 180 °	0.221
25 % duty cycle	(Fully extended)	0.231
Right side of EUT faced toward phantom and in contact	Swivel antenna 0 °	4 402
25 % duty cycle	(Fully retracted)	4.472

Prescans for the feasible configurations had been performed in order to determine the worst case under the specific configurations as described in the table. Through these prescans, the hot spot was found to be located at the vicinity of the base of the antenna. The test configurations in which a failure was found, were re-evaluated by increasing the separation distance until it was compliant with FCC limit.

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

SAPPHIRE 9870-L, Model No.: 9870

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

FCC ID: QHM-9870

EXHIBIT 7. BODY-WORN CONFIGURATION SAR MEASUREMENTS

7.1. RIHGT OF EUT FACED TOWARD PHANTOM

		~ .	SAR [W/kg]			
EUT Configurations	Antenna Position	Separation distance [mm]	Device Test Frequency [MHz]			
			806.0	813.5	821.0	
Right side of EUT faced toward	Swivel antenna 180 ° (Fully extended)	20	1.422	1.316	1.280	
phantom 25% duty cycle	Swivel antenna 0 ° (Fully retracted)	10		2.772		
		20	1.212	1.171	0.832	

Unless otherwise specified, the reference point (0, 0) in the plots was set to the point at the base of antenna in the projected image of EUT to the phantom surface as shown above.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: IAP-011-SAR April 8, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Date : 02/04/2002 Time : 2:35:11 PM

Product	: Sapphire 9870-L	Test	: SAR
Manufacturer	: Intellect International N.V.	Frequency (MHz)	: 806.0
Model Number	: 9870-L	Nominal Output Power (W)	: 2
Serial Number	: PreProduction	Antenna Type	: Dipole
FCC ID Number	: QHM-9870	Signal	: 25% Duty cycle
<u>Phantom</u> Simulated Tissu	: Flat e : Muscle	Dielectric Constant Conductivity	: 53.5 : 0.97
Probe	: UT-ETR-0200-1	Antenna Position	: Swivel 180 deg
Probe Offset (m	m) : 2.250	Measured Power (dBm)	: 31.4

(ERP)

11020	OI DIR 0200 I
Probe Offset (mm)	: 2.250
Sensor Factor (mV)	: 10.8
Conversion Factor	: 0.966
Calibrated Date	: 31/01/2002

 Amplifier Setting :
 Channel 1 : 0.0050
 Channel 2 : 0.0042
 Channel 3 : 0.0053

Location of Maximum Field :

X = 0 Y = 50

Measured Values (mV) :

21.950	18.695	18.936	17.562	15.521	13.911
12.342	12.254	12.568	12.043	10.903	

 Peak Voltage (mV)
 : 26.029
 1 Cm Voltage (mV)
 : 12.537
 SAR (W/Kg)
 : 1.422

Date : 02/04/2002 Time : 1:35:23 PM

Product	: Sapphire 9870-L	Test	: SAR
Manufacturer	: Intellect International N.V.	Frequency (MHz)	: 813.5
Model Number	: 9870-L	Nominal Output Power (W)	: 2
Serial Number	: PreProduction	Antenna Type	: Dipole
FCC ID Number	: QHM-9870	Signal	: 25% Duty cycle
<u>Phantom</u> Simulated Tissu	: Flat Muscle	Dielectric Constant Conductivity	: 53.5 : 0.97
<u>Probe</u> Probe Offset (m	: UT-ETR-0200-1 m) : 2.250	Antenna Position Measured Power (dBm)	: Swivel 180 deg : 32.2

(ERP)

Probe	: UT-ETR-0200-1
Probe Offset (mm)	: 2.250
Sensor Factor (mV)	: 10.8
Conversion Factor	: 0.966
Calibrated Date	: 31/01/2002

Amplifier Setting :

Channel 1	:	0.0050	Channel	2	:	0.0042	Channel	3	:	0.005	53
-----------	---	--------	---------	---	---	--------	---------	---	---	-------	----

Location of Maximum Field :

X = 0 Y = 45

Measured Values (mV) :

20.809	20.137	18.643	16.765	14.812	13.399
12.204	12.519	12.504	11.062	10.085	

 Peak Voltage (mV)
 : 24.901
 1 Cm Voltage (mV)
 : 11.998
 SAR (W/Kg)
 : 1.316

Date : 02/04/2002 Time : 2:06:33 PM

Product	: Sapphire 9870-L	Test	: SAR
Manufacturer	: Intellect International N.V.	Frequency (MHz)	: 821.0
Model Number	: 9870-L	Nominal Output Power (W)	: 2
Serial Number	: PreProduction	Antenna Type	: Dipole
FCC ID Number	: QHM-9870	Signal	: 25% Duty cycle
<u>Phantom</u> Simulated Tissu	: Flat e : Muscle	Dielectric Constant Conductivity	: 53.5 : 0.97
<u>Probe</u> Probe Offset (m	: UT-ETR-0200-1 m) : 2.250	Antenna Position Measured Power (dBm)	: Swivel 180 deg : 31.6

(ERP)

Probe	· 01-E1R-0200-1
Probe Offset (mm)	: 2.250
Sensor Factor (mV)	: 10.8
Conversion Factor	: 0.966
Calibrated Date	: 31/01/2002

Amplifier Setting: Channel 1 : 0.0050 Channel 2 : 0.0042 Channel 3 : 0.0053

 $Channel I \cdot 0.0050 \qquad Channel 2 \cdot 0.0042 \qquad Channel 5 \cdot 0.$

Location of Maximum Field :

X = 0 Y = 40

Measured Values (mV) :

16.507	17.463	16.017	14.541	13.366	12.611
11.813	11.080	10.360	9.558	8.570	

 Peak Voltage (mV)
 : 21.099
 1 Cm Voltage (mV)
 : 9.908
 SAR (W/Kg)
 : 1.280

Date : 02/04/2002 Time : 11:23:30 AM

Product	: Sapphire 9870-L	Test	: SAR
Manufacturer	: Intellect International N.V.	Frequency (MHz)	: 813.5
Model Number	: 9870-L	Nominal Output Power (W)	: 2
Serial Number	: PreProduction	Antenna Type	: Dipole
FCC ID Number	: QHM-9870	Signal	: 25% Duty cycle
<u>Phantom</u> Simulated Tissu	: Flat e : Muscle	Dielectric Constant Conductivity	: 53.5 : 0.97

Antenna Position: Swivel 0 degMeasured Power (dBm): 32.2

(ERP)

Probe	: UT-ETR-0200-1
Probe Offset (mm)	: 2.250
Sensor Factor (mV)	: 10.8
Conversion Factor	: 0.966
Calibrated Date	: 31/01/2002

Amplifier Setting :		

Channel 1 : 0.0050	Channel 2 : 0.0042	Channel 3 : 0.0053
--------------------	--------------------	--------------------

Location of Maximum Field :

X = 0 Y = -60

Measured Values (mV) :

32.806	33.431	28.744	28.896	27.274	24.219
21.560	19.226	17.811	18.223	17.522	

 Peak Voltage (mV)
 : 39.285
 1 Cm Voltage (mV)
 : 18.948
 SAR (W/Kg)
 : 2.772

Date : 02/04/2002 Time : 3:31:54 PM

Product	: Sapphire 9870-L	Test	: SAR
Manufacturer	: Intellect International N.V.	Frequency (MHz)	: 806.0
Model Number	: 9870-L	Nominal Output Power (W)	: 2
Serial Number	: PreProduction	Antenna Type	: Dipole
FCC ID Number	: QHM-9870	Signal	: 25% Duty cycle
Phantom Simulated Tissu	: Flat 1 e : Muscle	Dielectric Constant Conductivity	: 53.5 : 0.97
Probe	: UT-ETR-0200-1	Antenna Position	: Swivel 0 deg

• 01-EIK-0200-1
: 2.250
: 10.8
: 0.966
: 31/01/2002

Antenna Position	: Swivel 0
Measured Power (dBm)	: 31.4
(ERP)	

 Amplifier Setting :
 Channel 1 : 0.0050
 Channel 2 : 0.0042
 Channel 3 : 0.0053

Location of Maximum Field :

X = 0 Y = -40

Measured Values (mV) :

14.697	12.559	11.938	11.792	10.839	9.715
8.678	7.762	7.123	6.560	7.093	

 Peak Voltage (mV)
 : 17.211
 1 Cm Voltage (mV)
 : 7.989
 SAR (W/Kg)
 : 1.212

-130 -20

0 X Axis (mm)

-10

10

20

Date : 02/04/2002 Time : 4:26:55 PM

Product	: Sapphire 9870-L	Test	: SAR
Manufacturer	: Intellect International N.V.	Frequency (MHz)	: 813.5
Model Number	: 9870-L	Nominal Output Power (W)	: 2
Serial Number	: PreProduction	Antenna Type	: Dipole
FCC ID Number	: QHM-9870	Signal	: 25% Duty cycle
Phantom	: Flat	Dielectric Constant	: 53.5
Simulated Tissu	le : Muscle	Conductivity	: 0.97

Probe	: UT-ETR-0200-1
Probe Offset (mm)	: 2.250
Sensor Factor (mV)	: 10.8
Conversion Factor	: 0.966
Calibrated Date	: 31/01/2002

Antenna Position	:	Swivel	0	deg
Measured Power (dBm)	:	32.2		
(ERP)				

Amplifier Setting	:							
Channel 1 :	0.0050	Channel	2:	0.0042	Channel	3	:	0.0053

Location of Maximum Field :

X = 0 Y = -50

Measured Values (mV) :

14.188	14.144	12.391	10.774	10.831	10.512
10.331	9.238	8.493	7.382	6.726	

 Peak Voltage (mV)
 : 16.683
 1 Cm Voltage (mV)
 : 8.454
 SAR (W/Kg)
 : 1.171

Test Information

Date : 02/04/2002 **Time** : 4:58:52 PM

Product	: Sapphire 9870-L	Test	: SAR
Manufacturer	: Intellect International N.V.	Frequency (MHz)	: 821.0
Model Number	: 9870-L	Nominal Output Power (W)	: 2
Serial Number	: PreProduction	Antenna Type	: Dipole
FCC ID Number	: QHM-9870	Signal	: 25% Duty cycle
Phantom	: Flat	Dielectric Constant	: 53 5
Simulated Tissu	e · Muscle	Conductivity	• 0.97

Antenna Position: SwiveMeasured Power (dBm): 31.6

(ERP)

: Swivel 0 deg

Probe	: UT-ETR-0200-1
Probe Offset (mm)	: 2.250
Sensor Factor (mV)	: 10.8
Conversion Factor	: 0.966
Calibrated Date	: 31/01/2002

Amplifier Setting :		
Channel 1 : 0.0050	Channel 2 : 0.0042	Channel 3 : 0.0053

Location of Maximum Field :

X = 0 Y = -50

Measured Values (mV) :

14.292	15.300	13.208	11.474	10.248	9.428
9.059	9.437	9.096	8.388	7.502	

 Peak Voltage (mV)
 : 17.293
 1 Cm Voltage (mV)
 : 8.624
 SAR (W/Kg)
 : 0.832

SAPPHIRE 9870-L, Model No.: 9870

Page 50

EXHIBIT 8. TISSUE CALIBRATION

8.1. DIELECTRIC PROPERTIES

The tissue conductivity was calibrated in accordance with IEEE Std 1528-200X, Draft 6.1 November 14, 2000, Sponsor IEEE SCC 34

The solution was initially calibrated using the slotted coaxial waveguide on 01/09/2002 as shown in the next page.

The dielectric parameters of the solutions were verified **again** using HP 85070C dielectric probe kit as shown below.

Calibration Kit	Tissue Type	Calibrated Date	f [MHz]	Tissue Temp. [°C]	ε′	ε″	σ [S/m]
HB 85070C Dialastria Draha Kit	Brain	N/A					
nr 85070C Dielectric Plobe Kit	Muscle	04/02/2002	835	22.0 ± 1	53.5	20.9	0.97

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Ultratech Group of Labs. 3000 Bristol Circle Road Oakville, Ontario Canada L6H 6G4

Phone (905) 829-1570 FAX (905) 829-8050 Email vhk.ultratech@sympatico.ca

Name:	Jay					Date:	01/09/02	
Frequency:	835	MHz	Mixture:	Muscle	l	Room Temp.:	22.5	±1°C
# of Points:	11		Point Dist:	1.0	cm	Compositio	n	
		-			-		weight	% by weight
Point	Amplitude	Phase				DI Water	35,178.0 g	53.13 %
1	-27.28	-21.36		Su	$(98 \%) \leftarrow$	Sugar	30,208.2 g	45.62 %
2	-29.25	-98.89		2-(2-ButoxyEth	hoxy) Ethanol \leftarrow	Alcohol	0.0 g	0.00 %
3	-31.19	-170.87		Sodium Chlo	oride (99+ %) \leftarrow	Salt	613.8 g	0.93 %
4	-33.36	109.71		Hydroxye	thyl Cellulose \leftarrow	HEC	150.0 g	0.23 %
5	-35.41	32.02				Bactericide	66.0 g	0.10 %
6	-37.43	-42.98				1,2-propanediol	0.0 g	0.00 %
7	-39.40	-117.31					0.0 g	0.00 %
8	-41.64	168.35					0.0 g	0.00 %
9	-43.92	90.10				Total	66,216.0 g	100.00 %
10	-46.14	15.05		Mass Den.	1235.6			
11	-48.14	-60.91		Heat Cap.	3.2		ω(rad/sec)	5.246E+09
							ε₀ (F/m)	8.854E-12
Results:		Target	Low Limit	High Limit	% Off Target		μ (H/m)	1.257E-06
D. Const:	55.43	55.20	52.440	57.960	0.41		α_{avg} (Np/cm)	-0.24140
Conductivity:	0.97	0.97	0.922	1.019	0.04		$\beta_{avg}(\text{rad/cm})$	-1.32504

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

8.2. SAR SENSITIVITY

At 835MHz, the sensitivity of SAR(1g) to the percentage change from that proposed in IEEE 1528 for the dielectric constant and the conductivity, are -0.57 % and +0.59 % each. Thus the influence of SAR due to parameter error was found to be less than 1.0 %.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Application Note: SAR Sensitivities

Introduction

The measured SAR-values in homogeneous phantoms depend strongly on the electrical parameters of the liquid. Liquids with exactly matching parameters are difficult to produce; there is always a small error involved in the production or measurement of the liquid parameters. The following sensitivities allow the estimation of the influence of small parameter errors on the measured SAR values. The calculations are based on an approximation formula [1] for the SAR of an electrical dipole near the phantom surface and a adapted plane wave approximation for the penetration depth. The sensitivities are given in percent SAR change per percent change in the controlling parameter:

$$S(x) = \frac{d SAR / SAR}{d x / x}$$

The controlling parameters x are:

- ε : permitivity
- σ : conductivity
- ρ : brain density (= one over integration volume)

For example: If The liquid permitivity increases by 2 percent and the sensitivity of the SAR to permitivity is -0.6 then the SAR will decrease by 1.2 percent.

The sensitivities are given for surface SAR values and averaged SAR values for 1 g and 10 g cubes and for dipole distances d of 10mm (for frequencies below 1000 MHz) and 15mm (for frequencies above 1000 MHz) from the liquid surface.

Liquid parameters are as proposed in the new standards (e.g., IEEE 1528).

References

[1] N. Kuster and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz", *IEEE Transacions on Vehicular Technology*, vol. 41(1), pp. 17-23, 1992.

Parameter	ε	σ	ρ			
f=300 MHz (ϵ r=45.3, σ =0.87S/m, ρ =1g/cm ³)						
d=15mm: Surface	- 0.41	+ 0.48				
1 g	- 0.33	+ 0.28	0.08			
	- 0.26	+ 0.09	0.16			
f=450 MHz (ϵ r=43.5, σ =0.87S/m, ρ =1g/cm ³)						
d=15mm: Surface	- 0.56	+ 0.67				
1 g	- 0.46	+ 0.43	0.09			
10 g	- 0.37	+ 0.22	0.17			
f=835 MHz (εr=41.5, σ =0.90S/m, ρ =1g/cm ³)						
d=15mm: Surface	- 0.70	+ 0.86				
1 g	- 0.57	+ 0.59	0.10			
10 g	- 0.45	+ 0.35	0.18			
f=900 MHz (ϵ r=41.5, σ =0.97S/m, ρ =1g/cm ³)						
d=15mm: Surface	- 0.69	+ 0.86				
1 g	- 0.55	+ 0.57	0.10			
10 g	- 0.44	+ 0.32	0.19			
f=1450 MHz (ϵ r=40.5, σ =1.20/m, ρ =1g/cm ³)						
d=10mm: Surface	- 0.73	+ 0.91	_			
1 g	- 0.55	+ 0.55	0.12			
10 g	- 0.42	+ 0.27	0.22			
f=1800 MHz (ϵ r=40.0, σ =1.40S/m, ρ =1g/cm ³)						
d=10mm: Surface	- 0.73	+ 0.92				
1 g	- 0.52	+ 0.51	0.14			
10 g	- 0.38	+ 0.21	0.24			
f=1900 MHz (ϵ r=40.0, σ =1.40S/m, ρ =1g/cm ³)						
d=10mm: Surface	- 0.73	+ 0.93				
1 g	- 0.53	+ 0.51	0.14			
10 g	- 0.39	+ 0.22	0.24			
f=2000 MHz (ϵ r=40.0, σ =1.40S/m, ρ =1g/cm ³)						
d=10mm: Surface	- 0.74	+ 0.94	_			
1 g	- 0.53	+ 0.52	0.14			
10 g	- 0.39	+ 0.22	0.24			
f=2450 MHz (ϵ r=39.2, σ =1.80S/m, ρ =1g/cm ³)						
d=10mm: Surface	- 0.74	+ 0.93				
1 g	- 0.49	+ 0.41	0.17			
10 g	- 0.34	+ 0.12	0.28			
f=3000 MHz (ϵ r=38.5, σ =2.40S/m, ρ =1g/cm ³)						
d=10mm: Surface	- 0.75	+ 0.90				
1 g	- 0.45	+ 0.28	0.21			
10 g	- 0.32	+ 0.02	0.31			

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

EXHIBIT 9. PROBE CALIBRATION

9.1. FREE SPACE CALIBRATION

Probe Type	E-Field Triangle		
Model Number	UT-ETR		
Serial Number	0200-01		
Manufacturer	3D-EMC Laboratory Inc.		
Manufactured Date	February 2000		
Length	270 [mm]		
Internal sensor offset	2.25 [mm]		
Tip diameter	4.0 [mm]		
Sensor Factor	$10.8 \text{ [mV/(mW/cm^2)]}$ or 2.864 [uV/(V/m)^2]		

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Free space calibration at 815MHz - Amplifier Settings and Isotropy

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

9.2. TEMPERATURE TRANSFER CALIBRATION

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

EXHIBIT 10. SYSTEM VALIDATION

The system was verified in the flat phantom (2.0mm \pm 0.2mm base thickness) using 835MHz dipole validation kit(M/N: 3125-870 S/N:1008) manufactured by EMCO. A forward power of 1.0 W was fed to the dipole and the distance between the dipole axis and the liquid were 15mm as specified in IEEE Standards 1528.

Validation Kit	Target SAR (W/Kg) over 1g volume	SAR (W/Kg) over 1g volume
EMCO M/N:3125-870	9.5	9.934

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

EXHIBIT 11. DUTY CYCLE INFORMATION

Duty Cycle = $100 \text{ ms} / (100 + 300) \text{ ms} \times 100 \cong 25\%$

The Crest Factor is a parameter which describes the SAR systems ability to measure signals that have various peak to RMS ratios while still remaining within the system specifications. The crest factor is not provided for the 3D-EMC system and a verification test was carried out to determine that the SAR system is responding to the duty cycle waveform as an averaging system. A uniform field within a TEM cell is used to compare the output of the SAR system of a CW signal at the frequency of interest, with a pulse modulated carrier using the same pulse width and repetition rate as the Sapphire 9870 previously tested at 25%. An HP 437A Peak power meter is used to set the same peak power in both test conditions. The 3D-EMC system allows for a real-time monitoring of all amplifier channels. The summed output of the three amplifier channels from the probe is directly proportional to the E^2 which is also directly proportional to SAR according to the equation:

$$SAR = \frac{\sigma E^2}{2}$$

The measured results from the monitor are:

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

Page 56

SAR System Output for CW = 39.094SAR System Output for 25% = 9.788

The ratio of the CW to Duty Cycle Field = 9.788/39.094*100% = 25.04%

The above test verifies that the SAR system is correctly averaging the pulsed carrier and that the measured SAR values are time based average values.

Figure 1. Amplifier channel real-time output monitor of SAR system for a CW signal

Figure 2. Amplifier channel real-time output monitor of SAR system for a 25% Pulse modulated Signal

ULTRATECH GROUP OF LABS

File #: IAP-011-SAR April 8, 2002

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

SAPPHIRE 9870-L, Model No.: 9870

FCC ID: QHM-9870

Research In Motion Limited 295 Phillip Street Waterloo, Ontario Canada N2L 3W8 +1 519 888 7465, fax +1 519 888 6906 E-mail: info@rim.net

Ref: 02400-CERT-FCC

July 21, 2000

Federal Communications Commission Equipment Authorization Division Application Processing Branch 7435 Oakland Mills Rd. Columbia, Md. 21046

To whom it may concern,

RIM has implemented and tested a duty factor limiting algorithm for the RIM 802D radio modem module (FCC ID L6AR802D-2-O). The algorithm controls the timing of when uplink (transmit) transactions are initiated. When an uplink (transmit) transaction occurs the algorithm accrues the actual transmit time. The algorithm ensures that the idle (transmitter off) time is sufficient to ensure the duty factor is less than the 25% before the next uplink (transmit) transaction is initiated. This ensures that the duty factor is limited to 25% over all times.

This algorithm will be permanently integrated with the radio firmware and installed at the time of manufacture in the production facility. The algorithm cannot be modified or disabled by the user.

Should you have any questions, please do not hesitate to contact our Senior Certification Engineer, Masud Attayi, at (519) 888-7465 x2442 or by email at <u>mattayi@rim.net</u>.

Yours truly,

and Chydrin

Andy Clipsham OEM Product Manager Research In Motion Limited +1-519-888-7465 x2482 aclipsham@rim.net

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

- Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)