

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION										
Test LabCELLTECH LABS INC.Testing and Engineering Services1955 Moss CourtKelowna, B.C.Canada V1Y 9L3Phone:250-448-7047Fax:250-448-7046e-mail:info@celltechlabs.comweb site:www.celltechlabs.com	Applicant Information E.F. JOHNSON CO. 299 Johnson Ave. SW Waseca, MN 56093 United States									
FCC IDENTIFER: IC IDENTIFIER: Model(s):	ATH2425131 933B-2425131 5130 / 5131									
Rule Part(s): Test Procedure(s): Device Classification: Device Type: Modulation:	FCC 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional) FCC OET Bulletin 65, Supplement C (Edition 01-01) Licensed Non-Broadcast Transmitter Held to Face (TNF) Portable UHF PTT Radio Transceiver FM (UHF)									
Tx Frequency Range: Max. RF Output Power Measured: Antenna Type(s) Tested: Battery Type(s) Tested:	380 - 470 MHz 36.68 dBm Conducted (380 MHz) 37.14 dBm Conducted (425 MHz) 36.74 dBm Conducted (470 MHz) ¹ / ₄ - Wave Whip (P/N: 501-0017-107) NiMH 7.5 V 3600 mAh (P/N: 587-5100-360) Alkaline 1.5 V AA x12 (Battery Case P/N: 250-5100-280) (Type 1: Duracell Procell 2850 mAh, Type 2: Energizer E91 2850 mAh)									
Body-Worn Accessories Tested:	Speaker-Microphone with Antenna (P/N: 589-0015-058) Speaker-Microphone (P/N: 589-0015-057) Boom-Microphone Headset (P/N: 589-0015-059) Plastic Belt-Clip with Metal Spring Connector (P/N: 585-5100-128)									
Max. SAR Levels Evaluated:	Face-held: 2.29 W/kg (50% Duty Cycle) Body-worn: 5.73 W/kg (50% Duty Cycle)									

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 1 (Provisional) for the Occupational / Controlled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Performed By:

Spencer Watton

Spencer Watson Compliance Technologist Celltech Labs Inc.

Reviewed By:

W. Jupe

Russell W. Pipe Senior Compliance Technologist Celltech Labs Inc.

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

TABLE OF CONTENTS							
1.0	INTRODUCTION	3					
2.0	DESCRIPTION OF DUT	3					
3.0	SAR MEASUREMENT SYSTEM	4					
4.0	MEASUREMENT SUMMARY	5-6					
5.0	DETAILS OF SAR EVALUATION	7					
<u> </u>	EVALUATION PROCEDURES	7					
6.0	EVALUATION PROCEDURES	7					
7.0	SYSTEM PERFORMANCE CHECK	8					
7.0		0					
8.0	SIMULATED EQUIVALENT TISSUES	9					
		-					
9.0	SAR SAFETY LIMITS	9					
10.0	ROBOT SYSTEM SPECIFICATIONS	10					
11.0	PROBE SPECIFICATION	11					
12.0	PLANAR PHANTOM	11					
40.0							
13.0	VALIDATION PHANTOM	11					
14.0	DEVICE HOLDER.	11					
14.0							
15.0	TEST EQUIPMENT LIST	12					
10.0		12					
16.0	MEASUREMENT UNCERTAINTIES	13-14					
17.0	REFERENCES	15					
	IX A - SAR MEASUREMENT DATA	16					
	DIX B - SYSTEM PERFORMANCE CHECK DATA	17					
	DIX C - SYSTEM VALIDATION PROCEDURES	18					
	DIX D - PROBE CALIBRATION	19					
	DIX E - MEASURED FLUID DIELECTRIC PARAMETERS	20					
APPEND	DIX F - SAR TEST SETUP & DUT PHOTOGRAPHS	21					

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

1.0 INTRODUCTION

This measurement report demonstrates compliance of the E.F. Johnson 5130/5131 Portable UHF PTT Radio Transceiver FCC ID: ATH2425131 with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]) and IC RSS-102 Issue 1 (Provisional) (see reference [4]), were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

FCC Rule Part(s)							
IC Rule Part(s)							
Test Procedure(s)		on 01-01)					
Device Classification		Licensed No	on-Broadcast 1	ransmitter Held to	Face (TNF)		
Device Type		/er					
FCC IDENTIFIER			ATH	2425131			
IC IDENTIFER			933B	-2425131			
Model(s)							
Serial No.	51	720E344A 36	6148	Proc	luction Unit		
Modulation	FM (UHF)						
Tx Frequency Range		380 - 470 MHz					
	36.68	8 dBm	Conducted		380 MHz		
Max. RF Output Power Measured	37.1	4 dBm	Conducted		425 MHz		
	36.7	4 dBm	Co	nducted	470 MHz		
Antenna Type(s) Tested	¼-Wav	ve Whip	Lengt	h - 140 mm	P/N: 501-0017-107		
	Ni	MH	7.5 V,	3600 mAh	P/N: 587-5100-360		
Battery Type(s) Tested	Alkaline	1.5V AA	Duracell Pr	ocell 2850 mAh	With Battery Case		
	Airaine	(x12)	Energizer E91 2850 mAh		P/N: 250-5100-280		
		Speaker-Mi	crophone with	Antenna (P/N: 589	9-0015-058)		
Body-Worn Accessories Tested		Spea	aker-Microphor	ne (P/N: 589-0015-	.057)		
Douy-Worn Accessories Tested		Boom-M	licrophone He	adset (P/N: 589-00	15-059)		
	Pla	stic Belt-Clip	with Metal Spr	ing Connector (P/N	l: 585-5100-128)		

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with validation phantom

DASY4 SAR Measurement System with Plexiglas planar phantom

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

4.0 MEASUREMENT SUMMARY

	FACE-HELD SAR EVALUATION RESULTS												
Freq. Char	Chan.	Test Mode	DUT	Antenn		Battery D	Separation Distance to Planar	ance Power		ed SAR V/kg)	SAR Drift During	Scaled SAR 1g (W/kg)	
(MHz)		wode	Туре	Туре		Туре	Phantom (cm)	Test (dBm)	100%	Cycle 50%	Test (dB)	1g (V Duty 100% 4.54 4.58 2.48	50%
425	Mid	CW	Radio	Whip	Ν	NiMH	2.5	37.01	4.52	2.26	-0.0225	4.54	2.27
425	Mid	CW	Radio	Whip	Du	uracell	2.5	37.02	4.22	2.11	-0.353	4.58	2.29
425	Mid	CW	SMA	Whip	Ν	NiMH	2.5	36.99	1.98	0.99	-0.985	2.48	1.24
				Spatial	Peak -	Control	.1 1999 - SA led Exposu (averaged (re / Occup	ational				
	Test E	Date		C	ct 17, 20	004		Relative Hu	umidity		32		%
М	easured F	luid Type		45) MHz B	Brain	A	tmospheric		100.3		KPa	
	Dielectric (Constant		IEEE Tar	get	Measu	red A	mbient Tem	perature		22.8		°C
	٤r			43.5	<u>-</u> 5%	42.7		Fluid Temperature			22.9 °(
	Conduc	ctivity		IEEE Tar	get	Measu	red	Fluid Depth			≥ 15		
	σ (mh	o/m)		0.87	<u>-</u> 5%	0.85		ρ (Kg /r	n³)		1	000	

Note(s):

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- If the scaled SAR levels evaluated at the mid channel (50% duty cycle) were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- 3. The power drifts measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. The SAR evaluations were performed within 24 hours of the system performance check.
- 7. Abbreviation(s): SMA Speaker-Microphone with Antenna

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

	BODY-WORN SAR EVALUATION RESULTS															
Test Date	Freq. (MHz)	Chan.	Test Mode	DUT Type	Antenna Type	Battery Type	Body-worn Accessories	Separation Distance to Planar Phantom	Cond. Power Before Test	M	easured 1g (W/ Duty Cy	kg)	SAR Drift During Test	Scaled SAR 1g (W/kg) Duty Cycle		g)
								(cm)	(dBm)	100%		50%	(dB)		100%	50%
Sep-28	425	Mid	CW	Radio	Whip	NiMH	Speaker-Mic Belt-Clip	1.3	37.06		7.19	3.60	-1.32		9.74	4.87
Sep-28	380	Low	CW	Radio	Whip	NiMH	Speaker-Mic	1.3	36.65	Р	8.81	4.41	-1.14	Ρ	11.45	5.73
0cp-20	500	LOW	011	I taulo	winp		Belt-Clip	1.5	36.64	S	7.70	3.85	-1.37	s	10.56	5.28
Oct-16	470	High	CW	Radio	Whip	NiMH	NiMH Speaker-Mic Belt-Clip	1.3	36.74	Р	5.60	2.80	-0.0381	Ρ	5.65	2.82
001-10	470	riigii	011	Taulo	winp			1.5	36.74	S	4.35	2.18	-0.0431	s	4.39	2.20
Sep-28	425	Mid	CW	Radio	Whip	NiMH	Headset Belt-Clip	1.3	37.08		6.40	3.20	-1.40		8.83	4.42
Oct-16	380	Low	CW	Radio	Whip	NiMH	Headset Belt-Clip	1.3	36.68		7.32	3.66	-0.675		8.55 4	
Oct-16	470	High	CW	Radio	Whip	NiMH	Headset	1.3	36.72	Р	5.07	2.54	-0.0193	Ρ	5.09	2.55
001-10	470	riigii	011	I taulo	winp		Belt-Clip		36.71	S	4.33	2.17	-0.102	S	4.43	2.22
Sep-28	425	Mid	CW	Radio	Whip	Duracell Alkaline	Speaker-Mic Belt-Clip	1.3	37.12		5.20	2.60	-1.07		6.65	3.33
Sep-28	425	Mid	CW	Radio	Whip	Duracell	Headset	1.3	37.10	Ρ	4.67	2.34	-1.08	Ρ	5.99	2.99
000 20	420	Mid	011	1 dalo	Winp	Alkaline	Belt-Clip	1.0	37.14	s	4.27	2.14	-0.868	s	5.21	2.61
Oct-18	425	Mid	CW	Radio	Whip	Energizer Alkaline	Speaker-Mic Belt-Clip	1.3	37.03		4.75	2.38	-0.214		4.99	2.49
Oct-16	425	Mid	CW	SMA	Whip	NiMH	Lapel-Clip	1.2	37.10	Р	5.14	2.57	-0.923	Ρ	6.36	3.18
001-10	720	IVIIG	000	OWA	winp				37.11	S	5.50	2.75	-0.905	s	6.77	3.39
						ANSI / IEE	E C95.1 1999 -	SAFETY LIM	IT							

ANSI / IEEE C95.1 1999 - SAFETY LIMIT Spatial Peak - Controlled Exposure / Occupational BODY: 8.0 W/kg (averaged over 1 gram)

						(aronagoa oror r grain)				· · · · · · · · · · · · · · · · · · ·	
	September 28, 2004					Test Date(s)	Sep-28	Oct-16	Oct-18	Unit	
Test Date(s)		-	ctober 16, ctober 18,			Relative Humidity	41	34	33 % 100.7 kPa 22.8 °C 23.9 °C ≥ 15 cm		
Measured Fluid Type	450 MHz Body					Atmospheric Pressure	102.7	101.2	100.7	kPa	
Dielectric Constant	IEEE Target Measured				l .	Ambient Temperature	22.9	23.9	22.8	°C	
ε _r	56.7	<u>+</u> 5%	Sep-28 57.0	Oct-16 57.0	Oct-18 56.6	Oct-18 Fluid Temperature 22.0 22.8 23.9 °C					
Conductivity	IEEE Target Measured			ļ	Fluid Depth	≥ 15 ≥ 15 ≥ 15			cm		
σ (mho/m)	0.94	<u>+</u> 5%	Sep-28 Oct-16 O		Oct-18	ρ (Kg/m³)	1000				
	0.54	<u>+</u> 5%	0.90	0.91	0.90	p (Rg/III)	1000				

Note(s):

1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.

2. If the scaled SAR levels evaluated at the mid channel (50% duty cycle) were \geq 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).

3. The DUT was evaluated for SAR with Duracell Procell alkaline batteries. To report a SAR comparison between alternate alkaline battery types, an additional evaluation was performed for the highest Duracell Procell alkaline battery SAR level configuration (Body-worn, Mid Channel) using the Energizer E91 batteries (see above table).

4. Secondary peak SAR levels within 2 dB of the primary were reported (P = Primary, S = Secondary).

5. The power drifts measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.

 A SAR-versus-Time power drift evaluation was performed in the test configuration that reported the maximum scaled SAR level (Radio, body-worn, low channel, with Speaker-Microphone accessory). See Appendix A (SAR Test Plots) for SARversus-Time power drift evaluation plot.

7. The SAR evaluations were performed within 24 hours of the system performance check.

8. Abbreviations: SMA - Speaker-Microphone Antenna

© 2004 Celltech Labs Inc.	E.F. Johnson Co. FCC ID: ATH2425131	6 of 21
	Portable UHF PTT Radio Transceiver (380-470 MHz)	00121

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The E.F. Johnson 5130/5131 Portable UHF PTT Radio Transceiver FCC ID: ATH2425131 was compliant for localized Specific Absorption Rate (Occupational / Controlled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix F.

- 1. The Radio Transceiver (DUT) was evaluated for face-held configuration with the front of the DUT placed parallel to the outer surface of the planar phantom at a 2.5 cm separation distance.
- 2. The Speaker-Microphone with Antenna (DUT) was evaluated for face-held configuration connected to the Radio Transceiver with the front of the DUT placed parallel to the outer surface of the planar phantom at a 2.5 cm separation distance. The Speaker-Microphone with Antenna (DUT) was evaluated with the NiMH battery option only. The alkaline battery pack is not intended for operation with the Speaker-Microphone Antenna configuration.
- 3. The Radio Transceiver (DUT) was evaluated for body-worn configuration with the back of the DUT placed parallel to the outer surface of the planar phantom. The attached Belt-Clip accessory was touching the outer surface of the planar phantom and provided a 1.3 cm separation distance between the back of the DUT and the planar phantom. The DUT was evaluated with the speaker-microphone and boom-microphone headset accessories.
- 4. The Speaker-Microphone with Antenna (DUT) was evaluated for body-worn configuration with the back of the DUT placed parallel to the outer surface of the planar phantom. The attached Lapel-Clip was touching the outer surface of the planar phantom and provided a 1.2 cm separation distance between the back of the DUT and the planar phantom. The Speaker-Microphone with Antenna was evaluated with the NiMH battery option only. The alkaline battery pack is not intended for operation with the Speaker-Microphone Antenna configuration.
- 5. The conducted power levels were measured before each test using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
- 6. The power drifts measured by the DASY4 system during the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data tables (pages 5-6).
- 7. A SAR-versus-Time power drift evaluation was performed in the test configuration that reported the maximum scaled SAR level. See Appendix A (SAR Test Plots) for the SAR-versus-Time power drift evaluation data.
- 8. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the DUT was cooled down to room temperature and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 9. The DUT was tested in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 10. Due to the dimensions of the DUT, a Plexiglas planar phantom was used in place of the SAM phantom.
- 11. A stack of low-density, low-loss dielectric foamed polystyrene was used in place of the device holder.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For face-held and body-worn devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
- An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

© 2004 Celltech Labs Inc.	E.F. Johnson Co. FCC ID: ATH2425131	7 of 21
	Portable UHF PTT Radio Transceiver (380-470 MHz)	

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed using a planar phantom with a 450MHz dipole (see Appendix C for system validation procedure). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of ±10% (see Appendix B for system performance check test plots).

	SYSTEM PERFORMANCE CHECK												
Test	FOUN		SAR 1g (W/kg)		Dielectric Constant Conductivi ε _r σ (mho/m		-	ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Date Tissue	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
09/28/04	Brain	1.23 (±10%)	1.28 (+4.1%)	43.5 ±5%	43.0	0.87 ±5%	0.85	1000	23.9	22.3	≥ 15	41	102.9
10/16/04	Brain	1.23 (±10%)	1.31 (+6.5%)	43.5 ±5%	43.5	0.87 ±5%	0.88	1000	23.7	23.3	≥ 15	35	101.1
10/17/04	Brain	1.23 (±10%)	1.27 (+3.3%)	43.5 ±5%	42.7	0.87 ±5%	0.85	1000	22.6	22.9	≥ 15	32	100.4

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures reported in the table above were consistent for all measurement periods.

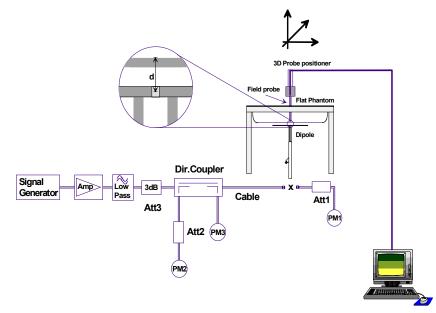


Figure 1. System Performance Check Setup Diagram

450MHz Dipole Setup

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The 450MHz simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared and measured for dielectric parameters (permittivity and conductivity) according to standardized procedures.

SIMULATED TISSUE MIXTURES				
INGREDIENT	450 MHz Brain	450 MHz Body		
INGREDIENT	System Check & DUT Evaluation	DUT Evaluation		
Water	38.56 %	52.00 %		
Sugar	56.32 %	45.65 %		
Salt	3.95 %	1.75 %		
HEC	0.98 %	0.50 %		
Bactericide	0.19 %	0.10 %		

9.0 SAR SAFETY LIMITS

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	4.0	20.0			

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

<u>Specifi</u>	ications	
	POSITIONER:	Stäubli Unimation Corp. Robot Model: RX60L
	Repeatability:	0.02 mm
	No. of axis:	6
Data A	cquisition Electronic (DA	E) System
	Cell Controller	
	Processor:	AMD Athlon XP 2400+
	Clock Speed:	2.0 GHz
	Operating System:	Windows XP Professional
	Data Converter	
	Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
	Software:	DASY4 software
	Connecting Lines:	Optical downlink for data and status info.
	Ū	Optical uplink for commands and clock
DASY4	Measurement Server	
	Function:	Real-time data evaluation for field measurements and surface detection
	Hardware:	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
	Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field	l Probe	
	Model:	ET3DV6
	Serial No.:	5190
	Construction:	Triangular core fiber optic detection system
	Frequency:	10 MHz to 6 GHz
	Linearity:	±0.2 dB (30 MHz to 3 GHz)
	•	
Phanto	om(s)	
	Evaluation Phantom	
	Туре:	Planar Phantom
	Shell Material:	Plexiglas
	Bottom Thickness:	$2.0 \text{ mm} \pm 0.1 \text{ mm}$
	Outer Dimensions:	75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
	Validation Phantom (≤ 4	150MHz)
	Туре:	Planar Phantom
	Shell Material:	Plexiglas
	Bottom Thickness:	$6.2 \text{ mm} \pm 0.1 \text{ mm}$
	Outer Dimensions:	86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges	
Calibration:	PEEK enclosure material (resistant to organic solvents, e.g. glycol) In air from 10 MHz to 2.5 GHz In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)	
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)	
Directivity:	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal to probe axis)	3
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	
Surface Detection:	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces	
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz Compliance tests of mobile phone	ET3

ET3DV6 E-Field Probe

12.0 PLANAR PHANTOM

The planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of handheld and body-worn radio transceivers. The planar phantom is mounted on the side of the DASY4 compact system table.

Planar Phantom

13.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted in the table of the DASY4 compact system.

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Validation Planar Phantom

Device Holder

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

15.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
-DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
-DAE3	353	Dec 2003
-DAE3	370	May 2004
-ET3DV6 E-Field Probe	1387	Mar 2004
-ET3DV6 E-Field Probe	1590	May 2004
-300MHz Validation Dipole	135	Oct 2004
-450MHz Validation Dipole	136	Nov 2003
-835MHz Validation Dipole	411	Mar 2004
-900MHz Validation Dipole	054	June 2004
-1800MHz Validation Dipole	247	June 2004
-1900 MHz Validation Dipole	151	June 2004
-2450MHz Validation Dipole	150	Sept 2004
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
-Plexiglas Planar Phantom	161	N/A
-Validation Planar Phantom	137	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004
Gigatronics 8652A Power Meter	1835267	April 2004
Gigatronics 80701A Power Sensor	1833535	April 2004
Gigatronics 80701A Power Sensor	1833542	April 2004
Gigatronics 80701A Power Sensor	1834350	April 2004
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2004
HP 8753E Network Analyzer	US38433013	April 2004
HP 8648D Signal Generator	3847A00611	April 2004
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

16.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	Vi Or Veff
Measurement System						
Probe calibration	± 4.0	Normal	1	1	± 4.0	œ
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	œ
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	œ
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	x
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	œ
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	œ
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	œ
Readout electronics	± 1.0	Normal	1	1	± 1.0	x
Response time	± 0.8	Rectangular	√3	1	± 0.5	œ
Integration time	± 1.4	Rectangular	√3	1	± 0.8	x
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	œ
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	x
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	œ
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	œ
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	œ
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	x
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Combined Standard Uncertaint	y				± 13.03	
Expanded Uncertainty (k=2)					± 26.07	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	Vi Oľ V _{eff}
Measurement System						
Probe calibration	± 4.0	Normal	1	1	± 4.0	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	x
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	x
Response time	± 0.8	Rectangular	√3	1	± 0.5	x
Integration time	± 1.4	Rectangular	√3	1	± 0.8	x
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	x
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	x
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	x
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	∞
Input Power	± 4.7	Rectangular	√3	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	œ
Combined Standard Uncertaint	у				± 9.58	
Expanded Uncertainty (k=2)					± 19.16	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

17.0 REFERENCES

[1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.

[3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.

[5] IEEE Std 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX A - SAR MEASUREMENT DATA

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/17/04

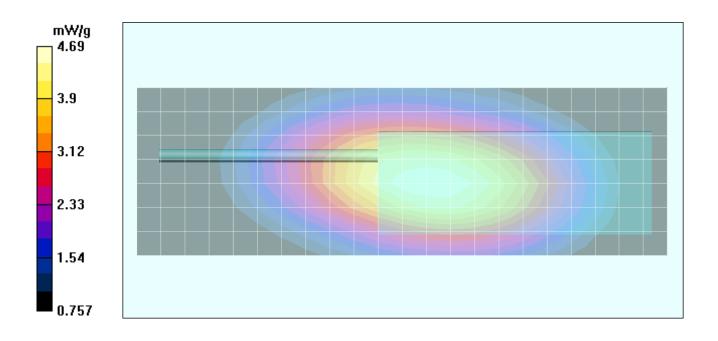
Face-Held SAR - NiMH Battery

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Ambient Temp: 22.8 °C; Fluid Temp: 22.9 °C; Barometric Pressure: 100.3 kPa; Humidity: 32%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.01 dBm (Conducted) 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: HSL450 (σ = 0.85 mho/m; ϵ_r = 42.7; ρ = 1000 kg/m³)

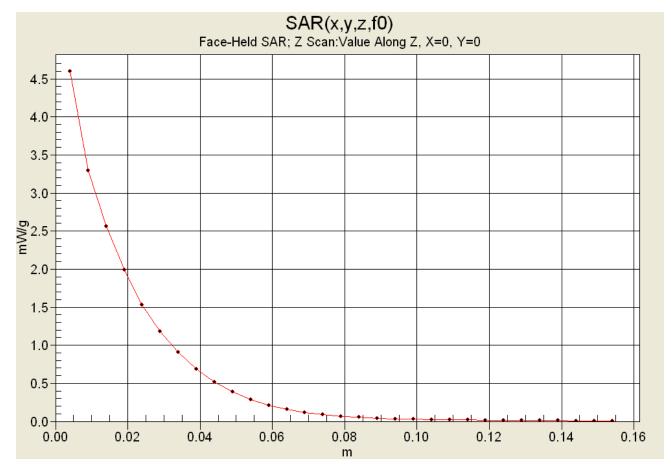
- Probe: ET3DV6 - SN1590; ConvF(7.5, 7.5, 7.5); Calibrated: 24/05/2004


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (8x23x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 70 V/m; Power Drift = -0.0225 dB Peak SAR (extrapolated) = 6.64 W/kg SAR(1 g) = 4.52 mW/g; SAR(10 g) = 3.32 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/17/04

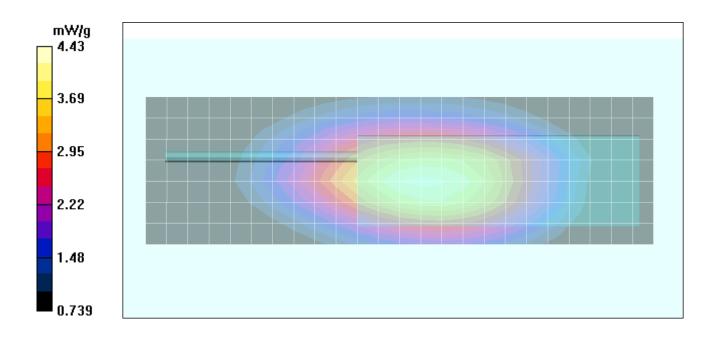
Face-Held SAR - Alkaline Battery Pack (Duracell Procell)

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Ambient Temp: 22.8 °C; Fluid Temp: 22.9 °C; Barometric Pressure: 100.3 kPa; Humidity: 32%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.02 dBm (Conducted) 9V AA Alkaline Duracell ProCell Battery Pack (Battery Case P/N: 250-5100-280) Medium: HSL450 (σ = 0.85 mho/m; ϵ_r = 42.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.5, 7.5, 7.5); Calibrated: 24/05/2004


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (8x25x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 65.3 V/m; Power Drift = -0.353 dB Peak SAR (extrapolated) = 6.3 W/kg SAR(1 g) = 4.22 mW/g; SAR(10 g) = 3.13 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/17/04

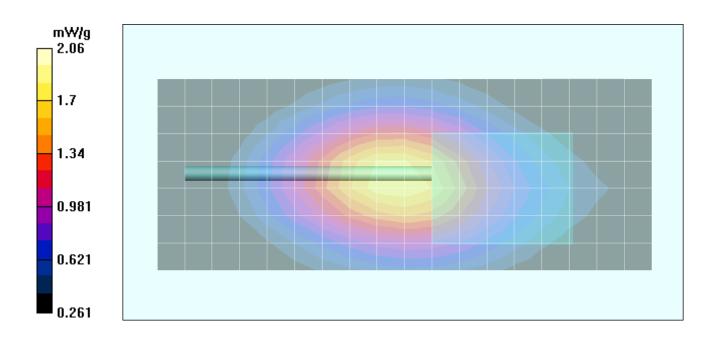
Face-Held SAR - NiMH Battery - Speaker-Microphone with Antenna

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable FM PTT Speaker-Microphone with Antenna; P/N: 589-0015-058

Ambient Temp: 22.8 °C; Fluid Temp: 22.9 °C; Barometric Pressure: 100.3 kPa; Humidity: 32%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 36.99 dBm (Conducted) 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: HSL450 (σ = 0.85 mho/m; ϵ_r = 42.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.5, 7.5, 7.5); Calibrated: 24/05/2004


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (8x19x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 51.2 V/m; Power Drift = -0.985 dB Peak SAR (extrapolated) = 3.01 W/kg SAR(1 g) = 1.98 mW/g; SAR(10 g) = 1.43 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 09/28/04

Body-Worn SAR - NiMH Battery

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Speaker-Microphone (P/N: 589-0015-057)

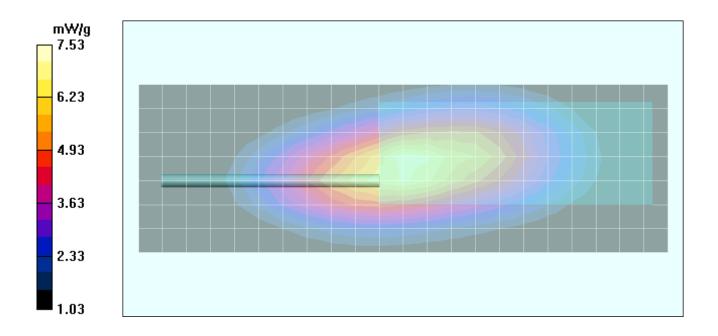
Ambient Temp: 22.9 °C; Fluid Temp: 22.0 °C; Barometric Pressure: 102.7 kPa; Humidity: 41%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.06 dBm (Conducted) 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: M450 (σ = 0.90 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 88.9 V/m; Power Drift = -1.32 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.19 mW/g; SAR(10 g) = 5.01 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 09/28/04

Body-Worn SAR - NiMH Battery

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Speaker-Microphone (P/N: 589-0015-057)

Ambient Temp: 22.9 °C; Fluid Temp: 22.0 °C; Barometric Pressure: 102.7 kPa; Humidity: 41%

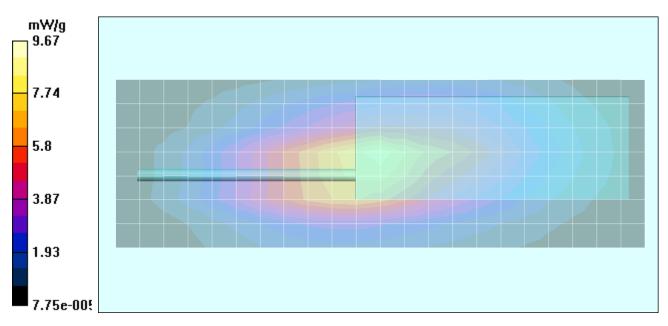
Communication System: FM UHF Frequency: 380 MHz; Duty Cycle: 1:1 RF Output Power: 36.65 dBm (Conducted) RF Output Power: 36.64 dBm (Conducted) 2nd Maximum 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: M450 (σ = 0.90 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

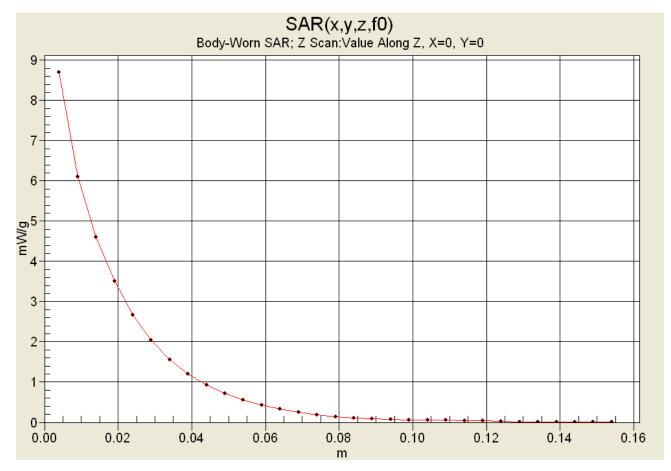
- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Low Channel/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

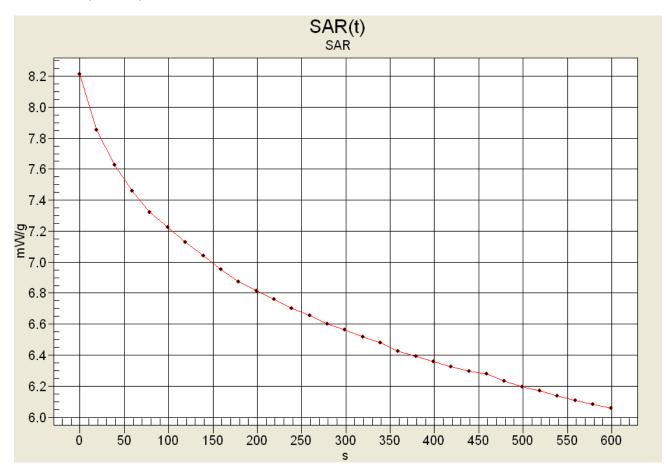
Body-Worn - 1.3 cm Belt-Clip Separation Distance - Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 96.6 V/m; Power Drift = -1.14 dB Peak SAR (extrapolated) = 13.5 W/kg SAR(1 g) = 8.81 mW/g; SAR(10 g) = 5.81 mW/g

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Low Channel/Zoom Scan (5x5x7)/Cube 1:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 96.6 V/m; Power Drift = -1.37 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.70 mW/g; SAR(10 g) = 5.19 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan



Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

SAR-versus-Time Power Drift Evaluation

Body-Worn - with Belt-Clip and Speaker-Microphone NiMH Battery (7.5V 3600mAh) Low Channel (380 MHz)

Begin SAR: 8.19792 mW/g End SAR: 6.04366 mW/g (-1.324dB) SAR after 340s: 6.46721 mW/g (-1.030dB) (340s = Zoom Scan Duration) (600s = Area Scan Duration)

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/16/04

Body-Worn SAR - NiMH Battery

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Speaker-Microphone (P/N: 589-0015-057)

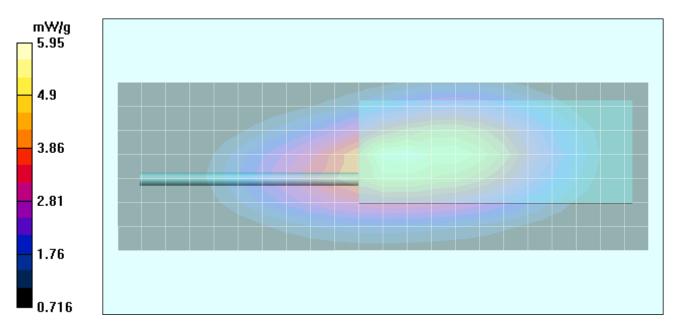
Ambient Temp: 23.9 °C; Fluid Temp: 22.8 °C; Barometric Pressure: 101.2 kPa; Humidity: 34%

Communication System: FM UHF Frequency: 470 MHz; Duty Cycle: 1:1 RF Output Power: 36.74 dBm (Conducted) RF Output Power: 36.74 dBm (Conducted) 2nd Maximum 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: M450 (σ = 0.91 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.3 cm Belt-Clip Separation Distance - High Channel/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.3 cm Belt-Clip Separation Distance - High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 67.7 V/m; Power Drift = -0.0381 dB Peak SAR (extrapolated) = 9.74 W/kg SAR(1 g) = 5.60 mW/g; SAR(10 g) = 3.77 mW/g

Body-Worn - 1.3 cm Belt-Clip Separation Distance - High Channel/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 64.9 V/m; Power Drift = -0.0431 dB Peak SAR (extrapolated) = 6.36 W/kg SAR(1 g) = 4.35 mW/g; SAR(10 g) = 3.19 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 09/28/04

Body-Worn SAR - NiMH Battery

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Boom-Microphone Headset (P/N: 589-0015-059)

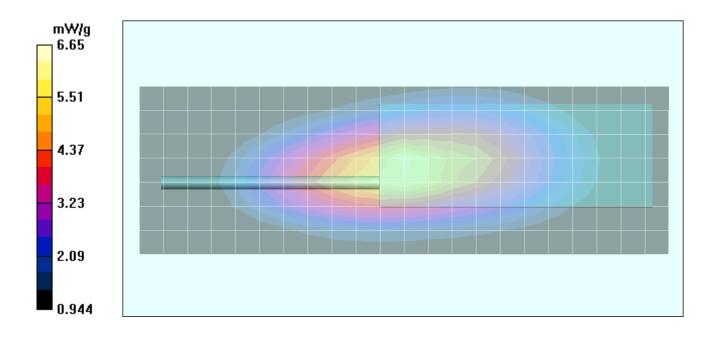
Ambient Temp: 22.9 °C; Fluid Temp: 22.0 °C; Barometric Pressure: 102.7 kPa; Humidity: 41%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.08 dBm (Conducted) 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: M450 (σ = 0.90 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 87 V/m; Power Drift = -1.40 dB Peak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 6.40 mW/g; SAR(10 g) = 4.43 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/16/04

Body-Worn SAR - NiMH Battery

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Boom-Microphone Headset (P/N: 589-0015-059)

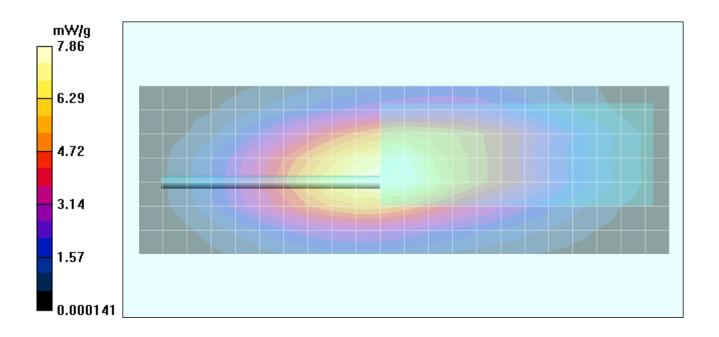
Ambient Temp: 23.9 °C; Fluid Temp: 22.8 °C; Barometric Pressure: 101.2 kPa; Humidity: 34%

Communication System: FM UHF Frequency: 380 MHz; Duty Cycle: 1:1 RF Output Power: 36.68 dBm (Conducted) 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: M450 (σ = 0.91 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

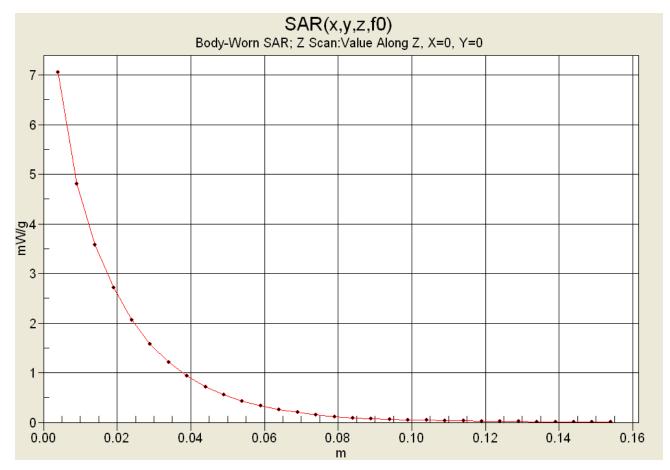
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Low Channel/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Low Channel/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 90.7 V/m; Power Drift = -0.675 dB Peak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 7.32 mW/g; SAR(10 g) = 5.16 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/16/04

Body-Worn SAR - NiMH Battery

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Boom-Microphone Headset (P/N: 589-0015-059)

Ambient Temp: 23.9 °C; Fluid Temp: 22.8 °C; Barometric Pressure: 101.2 kPa; Humidity: 34%

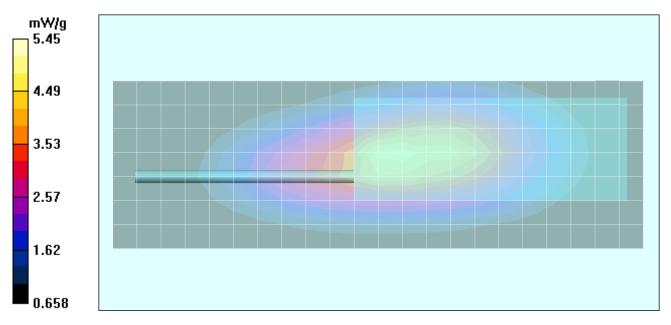
Communication System: FM UHF Frequency: 470 MHz; Duty Cycle: 1:1 RF Output Power: 36.72 dBm (Conducted) RF Output Power: 36.71 dBm (Conducted) 2nd Maximum 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: M450 (σ = 0.91 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.3 cm Belt-Clip Separation Distance - High Channel/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.3 cm Belt-Clip Separation Distance - High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 65.3 V/m; Power Drift = -0.0193 dB Peak SAR (extrapolated) = 8.95 W/kg SAR(1 g) = 5.07 mW/g; SAR(10 g) = 3.36 mW/g

Body-Worn - 1.3 cm Belt-Clip Separation Distance - High Channel/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 65.3 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 6.4 W/kg SAR(1 g) = 4.33 mW/g; SAR(10 g) = 3.18 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 09/28/04

Body-Worn SAR - Alkaline Battery Pack (Duracell Procell)

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Speaker-Microphone (P/N: 589-0015-057)

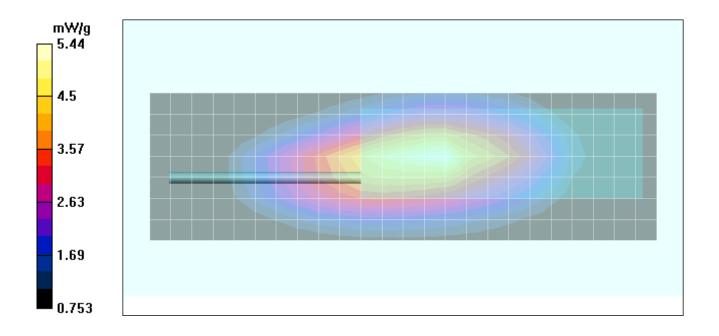
Ambient Temp: 22.9 °C; Fluid Temp: 22.0 °C; Barometric Pressure: 102.7 kPa; Humidity: 41%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.12 dBm (Conducted) 9V AA Alkaline Duracell ProCell Battery Pack (Battery Case P/N: 250-5100-280) Medium: M450 (σ = 0.90 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (8x25x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 70.6 V/m; Power Drift = -1.07 dB Peak SAR (extrapolated) = 8.23 W/kg SAR(1 g) = 5.20 mW/g; SAR(10 g) = 3.66 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 09/28/04

Body-Worn SAR - Alkaline Battery Pack (Duracell Procell)

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Boom-Microphone Headset (P/N: 589-0015-059)

Ambient Temp: 22.9 °C; Fluid Temp: 22.0 °C; Barometric Pressure: 102.7 kPa; Humidity: 41%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.10 dBm (Conducted) RF Output Power: 37.14 dBm (Conducted) 2nd Maximum 9V AA Alkaline Duracell ProCell Battery Pack (Battery Case P/N: 250-5100-280) Medium: M450 (σ = 0.90 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

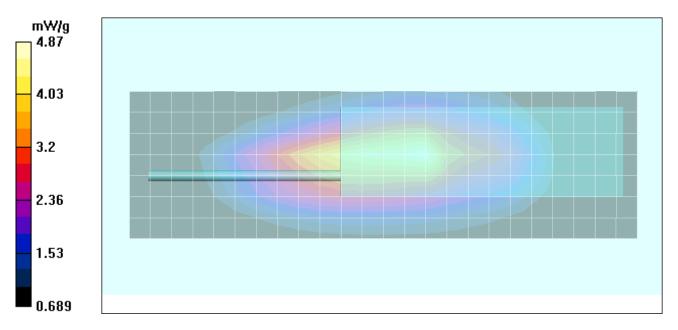
- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127


Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (8x25x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 66.8 V/m; Power Drift = -1.08 dB Peak SAR (extrapolated) = 7.45 W/kg

SAR(1 g) = 4.67 mW/g; SAR(10 g) = 3.3 mW/g

Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 1:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 66.8 V/m; Power Drift = -0.868 dB Peak SAR (extrapolated) = 6.39 W/kg SAR(1 g) = 4.27 mW/g; SAR(10 g) = 3.11 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/18/04

Body-Worn SAR - Alkaline Battery Pack (Energizer E91)

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable UHF PTT Radio Transceiver; Serial: 51720E344A 36148

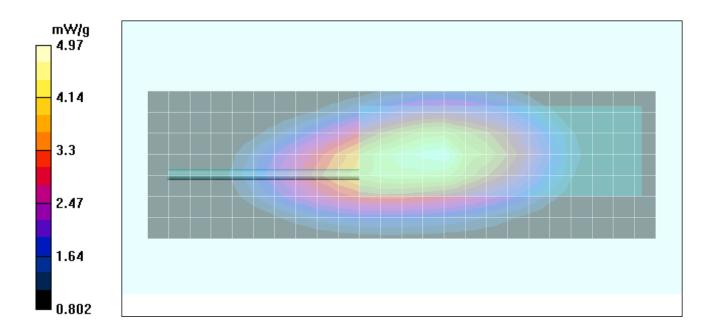
Body-Worn Accessories: Belt-Clip (P/N: 585-5100-128), Speaker-Microphone (P/N: 589-0015-057)

Ambient Temp: 22.8 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 100.7 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.03 dBm (Conducted) 9V AA Alkaline Energizer E91 Battery Pack (Battery Case P/N: 250-5100-280) Medium: M450 (σ = 0.90 mho/m; ϵ_r = 56.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

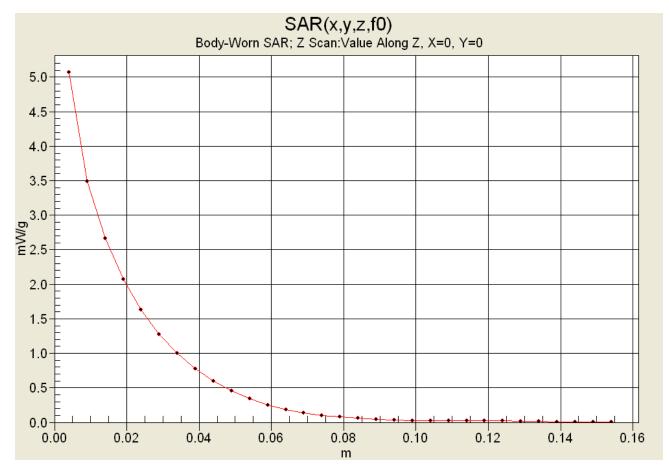
- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn -1.3 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (8x25x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn - 1.3 cm Belt-Clip Separation Distance - Mid Channel /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 65.4 V/m; Power Drift = -0.214 dB Peak SAR (extrapolated) = 7.29 W/kg SAR(1 g) = 4.75 mW/g; SAR(10 g) = 3.43 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/16/04

Body-Worn SAR - NiMH Battery - Speaker-Microphone with Antenna

DUT: EF Johnson Co. Model: 5130/5131; Type: Portable FM PTT Speaker-Microphone with Antenna; P/N: 589-0015-058

Body-Worn Accessories: Lapel-Clip

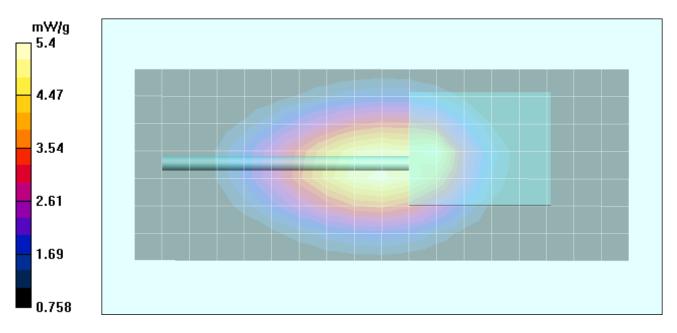
Ambient Temp: 23.9 °C; Fluid Temp: 22.8 °C; Barometric Pressure: 101.2 kPa; Humidity: 34%

Communication System: FM UHF Frequency: 425 MHz; Duty Cycle: 1:1 RF Output Power: 37.10 dBm (Conducted) RF Output Power: 37.11 dBm (Conducted) 2nd Maximum 7.5V 3600mAh NiMH Battery Pack (P/N: 587-5100-360) Medium: M450 (σ = 0.91 mho/m; ϵ_r = 57.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.7, 7.7, 7.7); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.2 cm Lapel-Clip Separation Distance - Mid Channel/Area Scan (8x19x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Lapel-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 82.2 V/m; Power Drift = -0.923 dB Peak SAR (extrapolated) = 7.93 W/kg SAR(1 g) = 5.14 mW/g; SAR(10 g) = 3.63 mW/g

Body-Worn - 1.2 cm Lapel-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 82.2 V/m; Power Drift = -0.905 dB Peak SAR (extrapolated) = 9.83 W/kg SAR(1 g) = 5.50 mW/g; SAR(10 g) = 3.83 mW/g

E.F. Johnson Co. FCC ID: ATH2425131 Portable UHF PTT Radio Transceiver (380-470 MHz)

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 09/28/04

System Performance Check - 450 MHz Dipole

DUT: Dipole 450 MHz; Model: D450V2; Type: System Performance Check; Serial: 136; Calibrated: 11/04/2003

Ambient Temp: 23.9 °C; Fluid Temp: 22.3 °C; Barometric Pressure: 102.9 kPa; Humidity: 41%

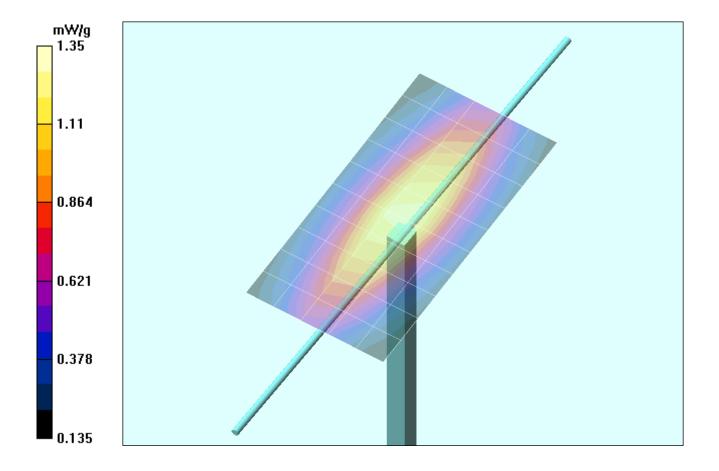
Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 (σ = 0.85 mho/m; ϵ_r = 43.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7.5, 7.5, 7.5); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: Validation Planar; Type: Plexiglas; Serial: 137

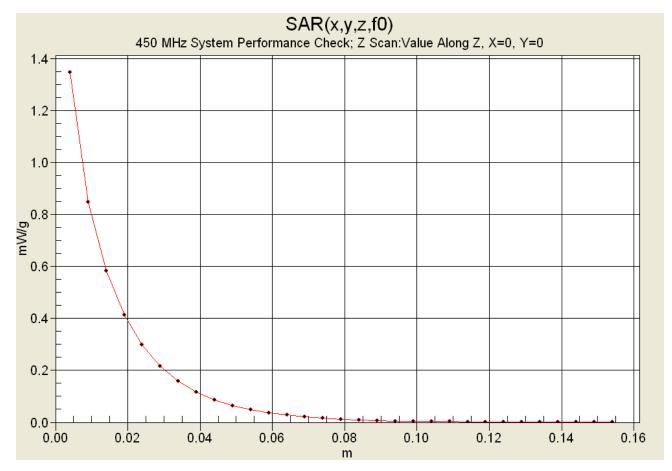

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

450 MHz System Performance Check/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm

450 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.9 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 2.18 W/kg SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.827 mW/g



E.F. Johnson Co. FCC ID: ATH2425131 Portable UHF PTT Radio Transceiver (380-470 MHz)

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/16/04

System Performance Check - 450 MHz Dipole

DUT: Dipole 450 MHz; Model: D450V2; Type: System Performance Check; Serial: 136; Calibrated: 11/04/2003

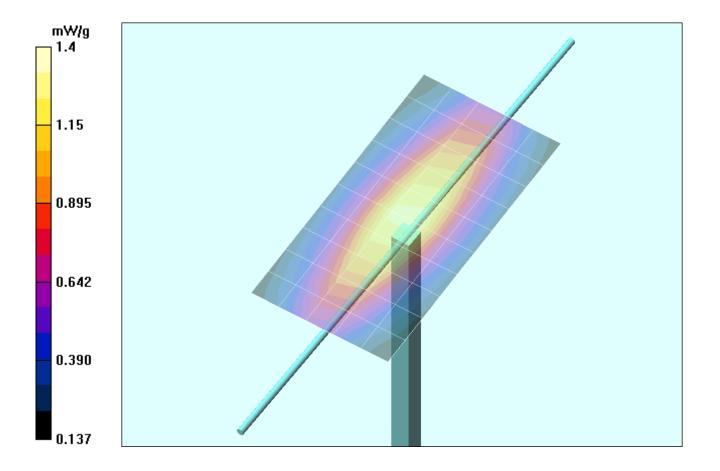
Ambient Temp: 23.7 °C; Fluid Temp: 23.3 °C; Barometric Pressure: 101.1 kPa; Humidity: 35%

 $\begin{array}{l} \mbox{Communication System: CW} \\ \mbox{Forward Conducted Power: 250mW} \\ \mbox{Frequency: 450 MHz; Duty Cycle: 1:1} \\ \mbox{Medium: HSL450 (σ = 0.88 mho/m; ϵ_r = 43.5; ρ = 1000 kg/m³$)} \end{array}$

- Probe: ET3DV6 - SN1590; ConvF(7.5, 7.5, 7.5); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

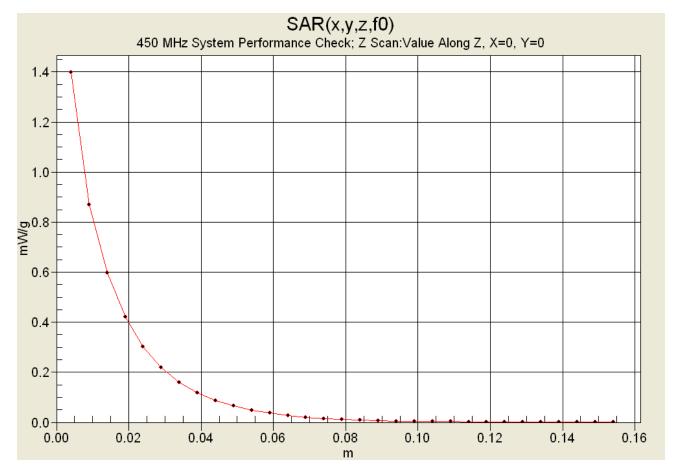
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137


- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

450 MHz System Performance Check/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm

450 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 40.1 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 2.25 W/kg SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.849 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 10/17/04

System Performance Check - 450 MHz Dipole

DUT: Dipole 450 MHz; Model: D450V2; Type: System Performance Check; Serial: 136; Calibrated: 11/04/2003

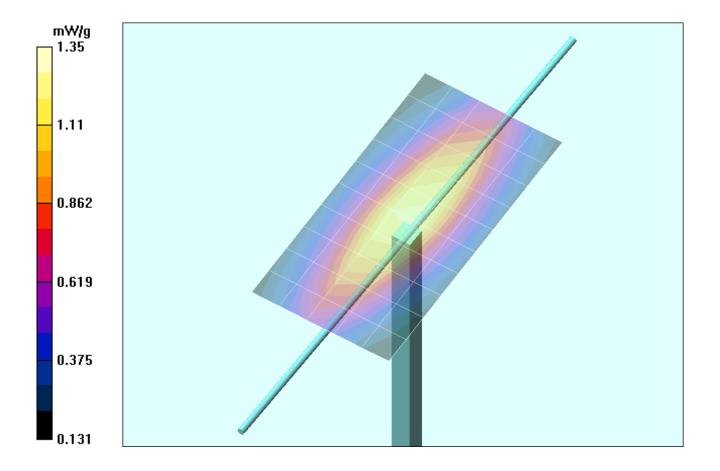
Ambient Temp: 22.6 °C; Fluid Temp: 22.9 °C; Barometric Pressure: 100.4 kPa; Humidity: 32%

 $\begin{array}{l} \mbox{Communication System: CW} \\ \mbox{Forward Conducted Power: 250mW} \\ \mbox{Frequency: 450 MHz; Duty Cycle: 1:1} \\ \mbox{Medium: HSL450 (σ = 0.85 mho/m; ϵ_r = 42.7; ρ = 1000 kg/m³$)} \end{array}$

- Probe: ET3DV6 - SN1590; ConvF(7.5, 7.5, 7.5); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

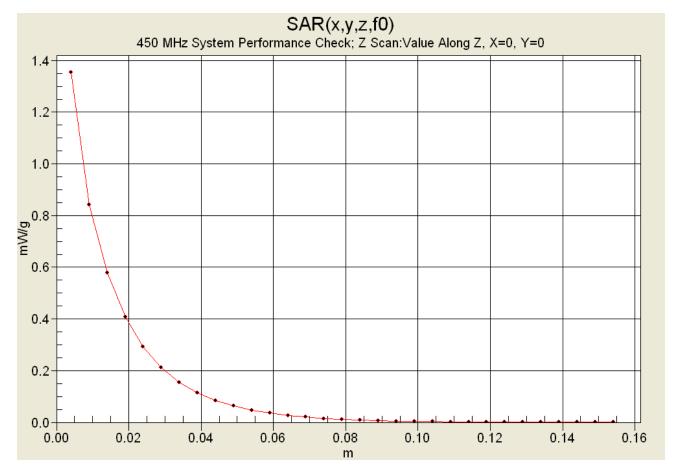
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137


- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

450 MHz System Performance Check/Area Scan (6x11x1):

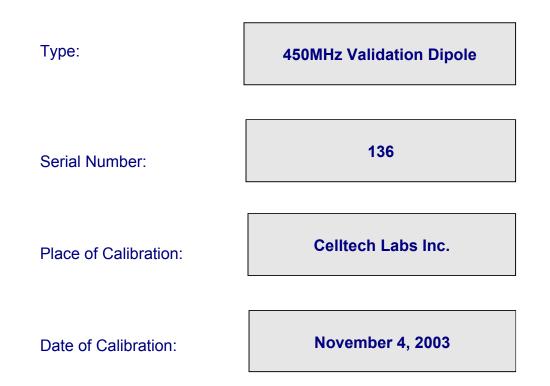
Measurement grid: dx=15mm, dy=15mm

450 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.8 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 2.18 W/kg SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.820 mW/g

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan



Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX C - SYSTEM VALIDATION

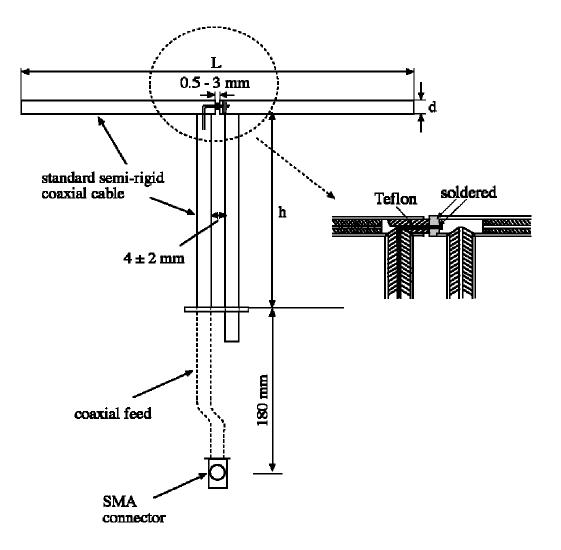
450MHz SYSTEM VALIDATION DIPOLE

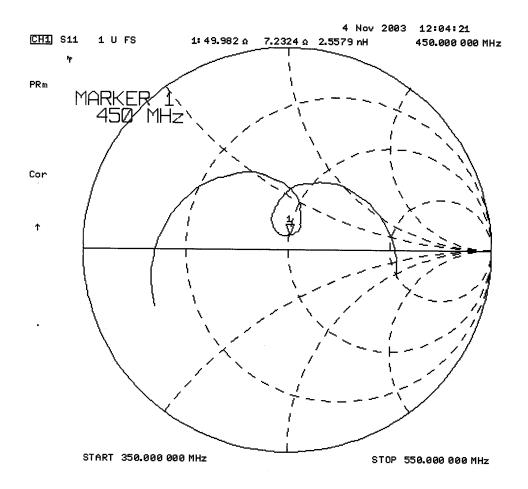
Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

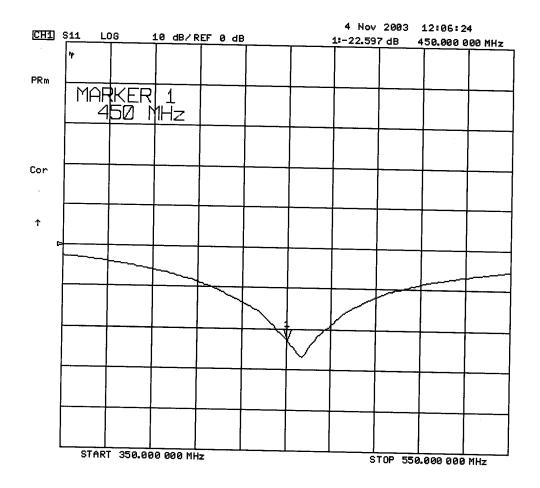
Calibrated by:

Spencer Water

Approved by:


Kussell W. Piepe




1. Dipole Construction & Electrical Characteristics

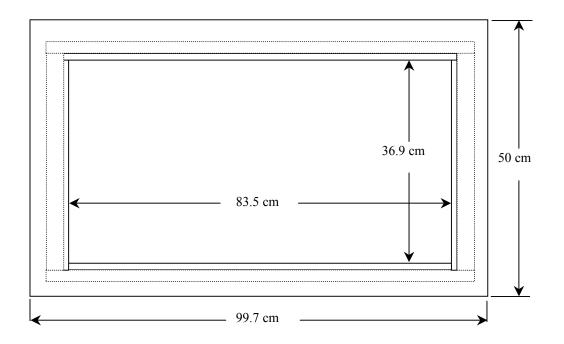
The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

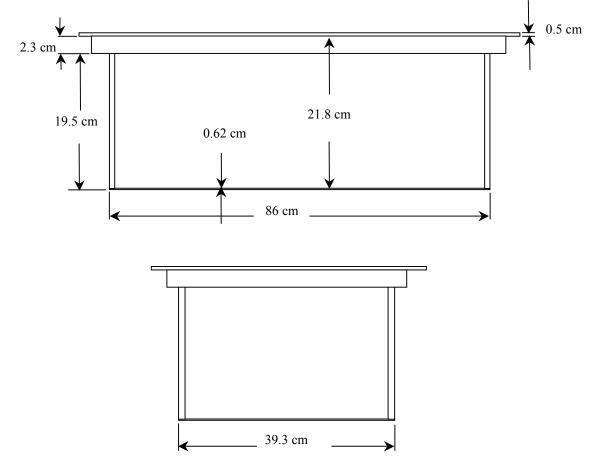
Feed point impedance at 450MHz	Re{Z} = 49.982Ω
	lm{Z} = 7.2324Ω
Return Loss at 450MHz	-22.597dB

2. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

3. Validation Phantom


The validation phantom was constructed using relatively low-loss tangent Plexiglas material. The inner dimensions of the phantom are as follows:


Length:	83.5 cm
Width:	36.9 cm
Height:	21.8 cm

The bottom section of the validation phantom is constructed of 6.2 ± 0.1 mm Plexiglas.

4. Dimensions of Plexiglas Planar Phantom

5. 450MHz System Validation Setup

450MHz System Validation Setup

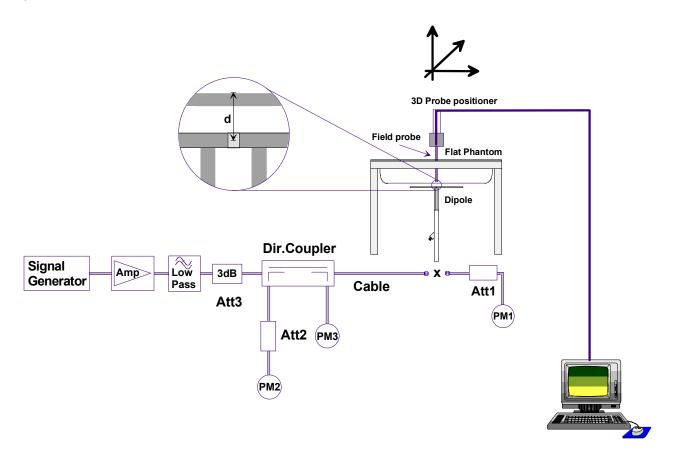
6. Measurement Conditions

The planar phantom was filled with brain simulating tissue having the following parameters at 450MHz:

Relative Permittivity:	43.7
Conductivity:	0.88 mho/m
Fluid Temperature:	22.0 °C
Fluid Depth:	≥ 15.0 cm

Environmental Conditions:

Ambient Temperature:	22.1 °C
Humidity:	49 %
Barometric Pressure:	102.8 kPa


The 450MHz simulated brain tissue mixture consists of the following ingredients:

Ingredient	Percentage by weight
Water	38.56%
Sugar	56.32%
Salt	3.95%
HEC	0.98%
Dowicil 75	0.19%
450MHz Target Dielectric Parameters at 22 °C	ε _r = 43.5 σ = 0.87 S/m

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	1.29	5.16	0.810	3.24	2.28
Test 2	1.31	5.24	0.827	3.31	2.31
Test 3	1.30	5.20	0.823	3.29	2.29
Test 4	1.30	5.20	0.822	3.29	2.29
Test 5	1.29	5.16	0.819	3.28	2.28
Test 6	1.30	5.20	0.826	3.30	2.28
Test 7	1.31	5.24	0.826	3.30	2.30
Test 8	1.31	5.24	0.829	3.32	2.30
Test 9	1.30	5.20	0.822	3.29	2.28
Test 10	1.31	5.24	0.822	3.29	2.33
Average Value	1.30	5.21	0.823	3.29	2.29

The results have been normalized to 1W (forward power) into the dipole.

IEEE Target over 1cm³ (1g) of tissue: 1.23 mW/g (+/- 10%)

Averaged over 1cm (1g) of tissue: 5.21 mW/g

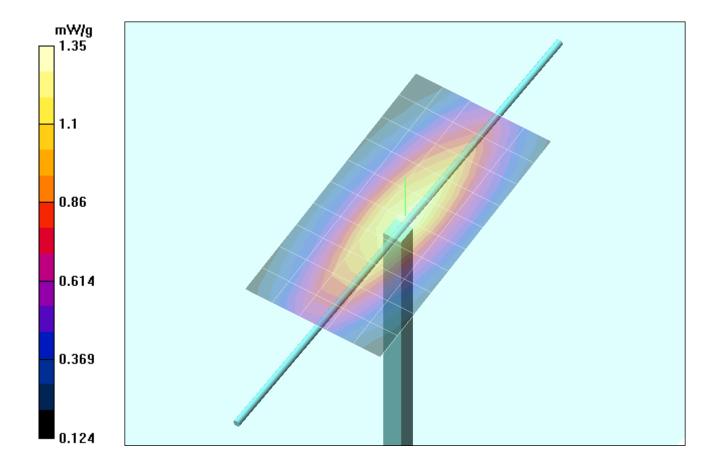
Averaged over 10cm (10g) of tissue: 3.29 mW/g

Test Date: 11/04/03

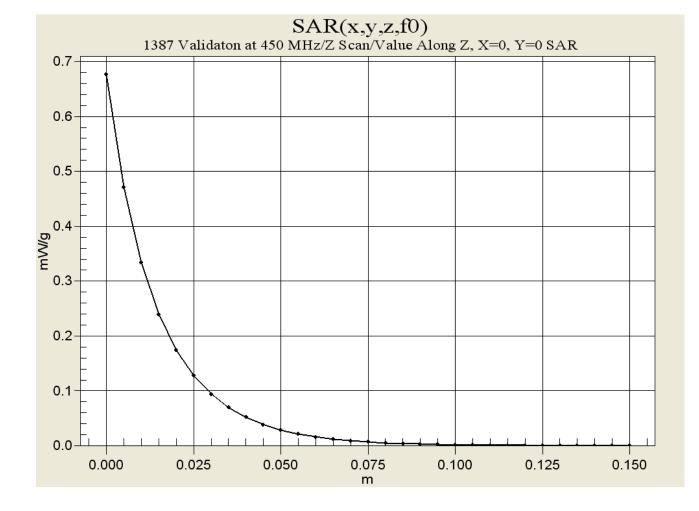
DUT: Dipole 450MHz; Model: D450V2; Type: System Performance Check; Serial: 136

Ambient Temp: 22.1°C; Fluid Temp: 22.0°C; Barometric Pressure: 102.8 kPa; Humidity: 49%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 (σ = 0.88 mho/m, ϵ_r = 43.7, ρ = 1000 kg/m³)


- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 26/02/2003

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

450 MHz Validation/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 39 V/m Power Drift = -0.08 dB Maximum value of SAR = 1.3 mW/g

450 MHz Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 2.28 W/kg **SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.822 mW/g** Reference Value = 39 V/m Power Drift = 0.08 dB

450MHz System Validation Measured Fluid Dielectric Parameters (Brain) November 04, 2003

Frequency	e'	e"
350.000000 MHz	46.2660	40.8224
360.000000 MHz	45.9937	40.0986
370.000000 MHz	45.7556	39.4543
380.000000 MHz	45.5625	38.7387
390.000000 MHz	45.2820	38.1140
400.000000 MHz	45.0146	37.4981
410.000000 MHz	44.7508	36.9734
420.000000 MHz	44.5046	36.4917
430.000000 MHz	44.2494	35.9460
440.000000 MHz	43.9621	35.5647
<mark>450.000000 MHz</mark>	<mark>43.7384</mark>	<mark>35.2106</mark>
460.000000 MHz	43.5513	34.7930
470.000000 MHz	43.2846	34.3970
480.000000 MHz	43.0654	33.9576
490.000000 MHz	42.8566	33.6391
500.000000 MHz	42.6744	33.2270
510.000000 MHz	42.5036	32.8459
520.000000 MHz	42.3492	32.5261
530.000000 MHz	42.1783	32.1727
540.000000 MHz	41.9985	31.7385
550.000000 MHz	41.8097	31.4862

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION C	ERTIFICAT	E					
Dbject(s)	ET3DV6 - SN:1590						
Calibration procedure(s)	QA CAL-01.v2 Calibration procedure for dosimetric E-field probes						
Calibration date:	May 24, 2004						
Condition of the calibrated item	In Tolerance (a	according to the specific calibratio	on document)				
The measurements and the uncerta	inties with confidence pr	nal standards, which realize the physical units of me obability are given on the following pages and are pa y facility: environ ment temperature 22 +/- 2 degrees C	rt of the certificate.				
Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	5-May-04 (METAS, No 251-00388) 5-May-04 (METAS, No 251-00388) 3-May-04 (METAS, No 251-00388) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	May-05 May-05 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05				
	Name	Function	Signature				
Calibrated by:	Nico Vetterli	Technician	Ditetta				
Approved by:	Katja Pokovic	Laboratory Director	Blon: Kely				
			Date issued: May 24, 2004				
This calibration certificate is issued a Calibration Laboratory of Schmid & I		ion until the accreditation process (based on ISO/IEC is completed.	17025 International Standard) for				

Probe ET3DV6

SN:1590

Manufactured: Last calibrated: Recalibrated: March 19, 2001 May 15, 2003 May 24, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1590

May 24, 2004

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space

Diode Compression^A

NormX	1.85 μV/(V/m) ²	DCP X	91	mV
NormY	2.01 μV/(V/m) ²	DCP Y	91	mV
NormZ	1.73 μV/(V/m) ²	DCP Z	91	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

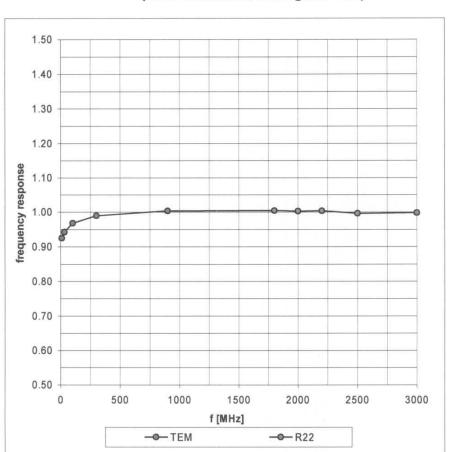
900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm 4.	7 mm
SAR _{be} [%]	Without Correction Algorithm	8.0	4.4
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Head

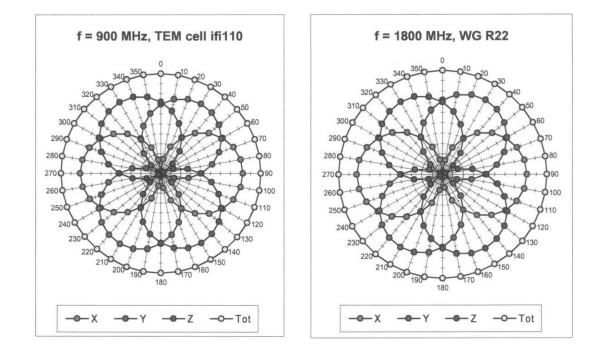
1800 MHz Typical SAR gradient: 10 % per mm

Sensor Center	to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.2	8.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

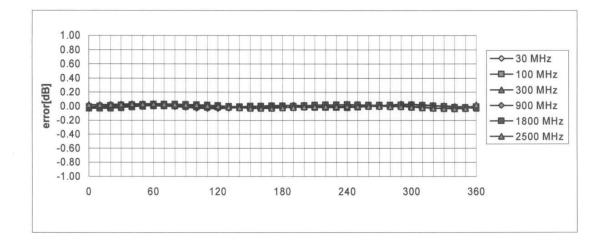

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	in tol	erance

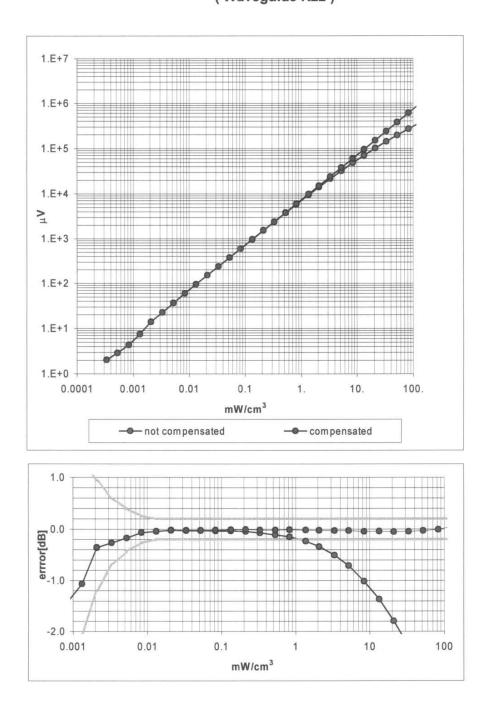
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.


A numerical linearization parameter: uncertainty not required

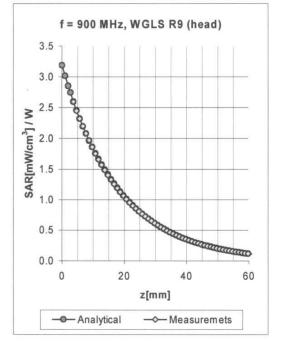
ET3DV6 SN:1590



Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

Receiving Pattern (ϕ), θ = 0°

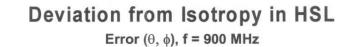


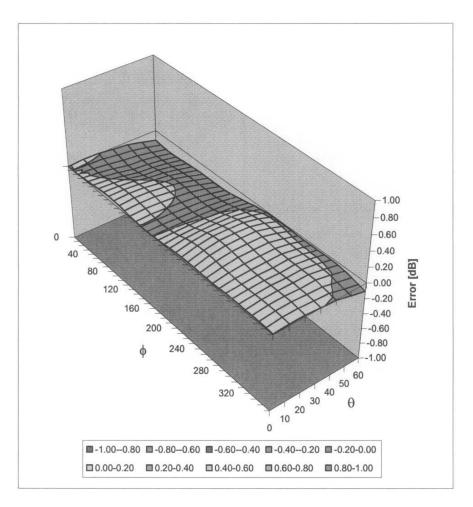
Axial Isotropy Error < ± 0.2 dB

Dynamic Range f(SAR_{head}) (Waveguide R22)

Probe Linearity Error < ± 0.2 dB

f = 1750 MHz, WGLS R22 (head) 25.0 20.0 SAR[mW/cm³] / W 15.0 10.0 5.0 Communication 0.0 20 0 40 60 z[mm] -- Analytical --->-- Measuremets


Conversion Factor Assessment


f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.68	1.64	6.71 ± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.43	2.67	5.28 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.46	2.81	5.03 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.81	1.95	4.44 ± 9.7% (k=2)
835	750-950	Body	55.2 ± 5%	0.97 ± 5%	0.49	1.99	6.54 ± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.50	2.87	4.68 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.52	2.93	4.58 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	0.91	1.78	4.22 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

May 24, 2004

ET3DV6 SN:1590

Spherical Isotropy Error < ± 0.4 dB

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	May 25, 2004
Probe Calibration Date:	May 24, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

plan: llate

Assessed by:

ET3DV6-SN:1590

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

150 MHz	ConvF	9.1 ± 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
300 MHz	ConvF	7.9 ± 8%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.5±8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
150 MHz	ConvF	8.8±8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
450 MHz	ConvF	7.7 ± 8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Test Report S/N:	091704ATH-T560-S90U
Test Date(s):	Sept. 28 & Oct. 16-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

450 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) September 28, 2004

Frequency	e'	e"
350.000000 MHz	45.3335	39.6489
360.000000 MHz	44.9456	39.0571
370.000000 MHz	44.6629	38.5190
380.000000 MHz	44.4416	37.9249
390.000000 MHz	44.1472	37.3498
400.000000 MHz	43.9721	36.7874
410.000000 MHz	43.7534	36.1560
420.000000 MHz	43.6112	35.6530
430.000000 MHz	43.3952	35.0761
440.000000 MHz	43.2378	34.5833
<mark>450.000000 MHz</mark>	<mark>43.0026</mark>	<mark>34.0957</mark>
460.000000 MHz	42.7596	33.7960
470.000000 MHz	42.4948	33.4055
480.000000 MHz	42.1910	33.0386
490.000000 MHz	41.9459	32.7478
500.000000 MHz	41.7096	32.4513
510.000000 MHz	41.4003	32.1629
520.000000 MHz	41.2106	31.8343
530.000000 MHz	41.0608	31.5116
540.000000 MHz	40.9683	31.0798
550.000000 MHz	40.8235	30.7811

450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) September 28, 2004

Frequency	e'	e"
350.000000 MHz	58.6035	42.0663
360.000000 MHz	58.4773	41.2203
370.000000 MHz	58.4390	40.4692
380.000000 MHz	58.3891	39.8435
390.000000 MHz	58.2817	39.3102
400.000000 MHz	58.0250	38.7430
410.000000 MHz	57.7595	38.0695
420.000000 MHz	57.5142	37.5044
430.000000 MHz	57.3714	36.8552
440.000000 MHz	57.1754	36.3116
450.000000 MHz	<mark>56.9780</mark>	<mark>35.8672</mark>
460.000000 MHz	56.8586	35.4437
470.000000 MHz	56.7548	35.0695
480.000000 MHz	56.6740	34.6949
490.000000 MHz	56.4927	34.4085
500.000000 MHz	56.2637	33.9874
510.000000 MHz	56.0900	33.5870
520.000000 MHz	55.9245	33.2328
530.000000 MHz	55.8206	32.8685
540.000000 MHz	55.6715	32.4698
550.000000 MHz	55.4894	32.1803

450 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) October 16, 2004

350.000000 MHz45.910640.7374360.000000 MHz45.693040.0108370.000000 MHz45.519339.3733380.000000 MHz45.297638.7311390.000000 MHz45.062638.0803400.000000 MHz45.062638.0803400.000000 MHz44.759337.4716410.000000 MHz44.495536.9081420.000000 MHz44.252036.4089430.000000 MHz43.983035.8686440.000000 MHz43.776135.4781450.000000 MHz43.245634.6664470.000000 MHz43.021134.3311480.000000 MHz42.786433.9855490.000000 MHz42.608433.6108500.000000 MHz42.253732.8552520.000000 MHz41.871732.1782540.000000 MHz41.692431.7615550.000000 MHz41.470231.4695	Frequency	e'	e"
370.000000 MHz 45.5193 39.3733 380.000000 MHz 45.2976 38.7311 390.000000 MHz 45.0626 38.0803 400.000000 MHz 44.7593 37.4716 410.000000 MHz 44.7593 37.4716 410.000000 MHz 44.4955 36.9081 420.000000 MHz 44.2520 36.4089 430.000000 MHz 43.9830 35.8686 440.000000 MHz 43.7761 35.4781 450.000000 MHz 43.2456 34.6664 470.000000 MHz 43.0211 34.3311 480.000000 MHz 42.7864 33.9855 490.000000 MHz 42.6084 33.6108 500.000000 MHz 42.2537 32.8552 520.000000 MHz 42.0663 32.5094 530.000000 MHz 41.6924 31.7615	350.000000 MHz	45.9106	40.7374
380.000000 MHz 45.2976 38.7311 390.000000 MHz 45.0626 38.0803 400.000000 MHz 44.7593 37.4716 410.000000 MHz 44.4955 36.9081 420.000000 MHz 44.4955 36.9081 420.000000 MHz 44.4955 36.9081 420.000000 MHz 44.2520 36.4089 430.000000 MHz 43.9830 35.8686 440.000000 MHz 43.9830 35.4781 450.000000 MHz 43.2456 34.6664 470.000000 MHz 43.2456 34.6664 470.000000 MHz 42.7864 33.9855 490.000000 MHz 42.6084 33.6108 500.000000 MHz 42.2537 32.8552 520.000000 MHz 42.0663 32.5094 530.000000 MHz 41.8717 32.1782 540.000000 MHz 41.6924 31.7615	360.000000 MHz	45.6930	40.0108
390.000000 MHz 45.0626 38.0803 400.000000 MHz 44.7593 37.4716 410.000000 MHz 44.4955 36.9081 420.000000 MHz 44.4955 36.9081 420.000000 MHz 44.2520 36.4089 430.000000 MHz 43.9830 35.8686 440.000000 MHz 43.7761 35.4781 450.000000 MHz 43.4853 35.0339 460.000000 MHz 43.2456 34.6664 470.000000 MHz 43.0211 34.3311 480.000000 MHz 42.7864 33.9855 490.000000 MHz 42.4198 33.2358 510.000000 MHz 42.2537 32.8552 520.000000 MHz 42.0663 32.5094 530.000000 MHz 41.6924 31.7615	370.000000 MHz	45.5193	39.3733
400.00000 MHz 44.7593 37.4716 410.000000 MHz 44.4955 36.9081 420.000000 MHz 44.4955 36.9081 420.000000 MHz 44.2520 36.4089 430.000000 MHz 43.9830 35.8686 440.000000 MHz 43.9830 35.8686 440.000000 MHz 43.7761 35.4781 450.000000 MHz 43.4853 35.0339 460.000000 MHz 43.2456 34.6664 470.000000 MHz 43.0211 34.3311 480.000000 MHz 42.7864 33.9855 490.000000 MHz 42.4198 33.2358 510.000000 MHz 42.2537 32.8552 520.000000 MHz 42.0663 32.5094 530.000000 MHz 41.6924 31.7615	380.000000 MHz	45.2976	38.7311
410.000000 MHz44.495536.9081420.000000 MHz44.252036.4089430.000000 MHz43.983035.8686440.000000 MHz43.776135.4781450.000000 MHz43.776135.4781450.000000 MHz43.485335.0339460.000000 MHz43.245634.6664470.000000 MHz43.021134.3311480.000000 MHz42.786433.9855490.000000 MHz42.608433.6108500.000000 MHz42.419833.2358510.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	390.000000 MHz	45.0626	38.0803
420.000000 MHz 44.2520 36.4089 430.000000 MHz 43.9830 35.8686 440.000000 MHz 43.7761 35.4781 450.000000 MHz 43.7761 35.4781 450.000000 MHz 43.7761 35.4781 450.000000 MHz 43.2456 34.6664 470.000000 MHz 43.2456 34.6664 470.000000 MHz 43.0211 34.3311 480.000000 MHz 42.7864 33.9855 490.000000 MHz 42.6084 33.6108 500.000000 MHz 42.4198 33.2358 510.000000 MHz 42.0663 32.5094 520.000000 MHz 41.8717 32.1782 540.000000 MHz 41.6924 31.7615	400.000000 MHz	44.7593	37.4716
430.000000 MHz 43.9830 35.8686 440.000000 MHz 43.7761 35.4781 450.000000 MHz 43.7761 35.4781 450.000000 MHz 43.4853 35.0339 460.000000 MHz 43.2456 34.6664 470.000000 MHz 43.0211 34.3311 480.000000 MHz 42.7864 33.9855 490.000000 MHz 42.6084 33.6108 500.000000 MHz 42.4198 33.2358 510.000000 MHz 42.0663 32.5094 520.000000 MHz 41.8717 32.1782 540.000000 MHz 41.6924 31.7615	410.000000 MHz	44.4955	36.9081
440.000000 MHz43.776135.4781450.000000 MHz43.485335.0339460.000000 MHz43.245634.6664470.000000 MHz43.021134.3311480.000000 MHz42.786433.9855490.000000 MHz42.608433.6108500.000000 MHz42.419833.2358510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	420.000000 MHz	44.2520	36.4089
450.000000 MHz43.485335.0339460.000000 MHz43.245634.6664470.000000 MHz43.021134.3311480.000000 MHz42.786433.9855490.000000 MHz42.608433.6108500.000000 MHz42.419833.2358510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	430.000000 MHz	43.9830	35.8686
460.000000 MHz43.245634.6664470.000000 MHz43.021134.3311480.000000 MHz42.786433.9855490.000000 MHz42.608433.6108500.000000 MHz42.419833.2358510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	440.000000 MHz	43.7761	35.4781
470.000000 MHz43.021134.3311480.000000 MHz42.786433.9855490.000000 MHz42.608433.6108500.000000 MHz42.419833.2358510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	<mark>450.000000 MHz</mark>	<mark>43.4853</mark>	<mark>35.0339</mark>
480.000000 MHz42.786433.9855490.000000 MHz42.608433.6108500.000000 MHz42.419833.2358510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	460.000000 MHz	43.2456	34.6664
490.000000 MHz42.608433.6108500.000000 MHz42.419833.2358510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	470.000000 MHz	43.0211	34.3311
500.000000 MHz42.419833.2358510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	480.000000 MHz	42.7864	33.9855
510.000000 MHz42.253732.8552520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	490.000000 MHz	42.6084	33.6108
520.000000 MHz42.066332.5094530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	500.000000 MHz	42.4198	33.2358
530.000000 MHz41.871732.1782540.000000 MHz41.692431.7615	510.000000 MHz	42.2537	32.8552
540.000000 MHz 41.6924 31.7615	520.000000 MHz	42.0663	32.5094
	530.000000 MHz	41.8717	32.1782
550.000000 MHz 41.4702 31.4695	540.000000 MHz	41.6924	31.7615
	550.000000 MHz	41.4702	31.4695

450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) October 16, 2004

Frequency	e'	e"
350.000000 MHz	58.6012	42.7155
360.000000 MHz	58.3354	41.9112
370.000000 MHz	58.2148	41.1582
380.000000 MHz	58.0698	40.4342
390.000000 MHz	57.8789	39.7307
400.000000 MHz	57.7696	39.0876
410.000000 MHz	57.6211	38.4383
420.000000 MHz	57.4620	37.9209
430.000000 MHz	57.3333	37.3202
440.000000 MHz	57.1791	36.8173
450.000000 MHz	<mark>56.9652</mark>	<mark>36.3662</mark>
460.000000 MHz	56.8767	35.9360
470.000000 MHz	56.7212	35.5175
480.000000 MHz	56.5096	35.0189
490.000000 MHz	56.3176	34.6594
500.000000 MHz	56.1084	34.2654
510.000000 MHz	55.9496	33.9093
520.000000 MHz	55.8461	33.6205
530.000000 MHz	55.6841	33.2722
540.000000 MHz	55.6234	32.8468
550.000000 MHz	55.4416	32.5437

450 MHz System Performance Check & DUT Evaluation (Face) Measured Fluid Dielectric Parameters (Brain) October 17, 2004

Frequency	e'	e"
350.000000 MHz	44.9503	39.2358
360.000000 MHz	44.5994	38.5141
370.000000 MHz	44.3788	37.8938
380.000000 MHz	44.1772	37.2595
390.000000 MHz	43.9171	36.7612
400.000000 MHz	43.7662	36.2106
410.000000 MHz	43.5850	35.6903
420.000000 MHz	43.3869	35.2766
430.000000 MHz	43.2329	34.8366
440.000000 MHz	43.0236	34.3672
<mark>450.000000 MHz</mark>	<mark>42.7432</mark>	<mark>33.9296</mark>
460.000000 MHz	42.5165	33.5312
470.000000 MHz	42.2574	33.1554
480.000000 MHz	42.0553	32.7429
490.000000 MHz	41.7815	32.3765
500.000000 MHz	41.5229	31.9385
510.000000 MHz	41.2809	31.6489
520.000000 MHz	41.0629	31.3511
530.000000 MHz	40.9253	31.0998
540.000000 MHz	40.7708	30.7659
550.000000 MHz	40.6166	30.5374

450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) October 18, 2004

Frequency	e'	e"
350.000000 MHz	58.1640	42.3178
360.000000 MHz	57.9083	41.5257
370.000000 MHz	57.7418	40.7937
380.000000 MHz	57.6090	40.0915
390.000000 MHz	57.4032	39.3808
400.000000 MHz	57.3131	38.6825
410.000000 MHz	57.1774	38.0644
420.000000 MHz	57.0720	37.5281
430.000000 MHz	56.9348	36.9604
440.000000 MHz	56.7878	36.4667
<mark>450.000000 MHz</mark>	<mark>56.6101</mark>	<mark>36.0278</mark>
460.000000 MHz	56.4610	35.6009
470.000000 MHz	56.2916	35.2224
480.000000 MHz	56.1255	34.7409
490.000000 MHz	55.8950	34.3447
500.000000 MHz	55.6190	33.9396
510.000000 MHz	55.4825	33.6560
520.000000 MHz	55.3310	33.3524
530.000000 MHz	55.2277	33.0153
540.000000 MHz	55.1216	32.6492
550.000000 MHz	55.0399	32.3368