

Radio Test Report Salunda Ltd 6891 D10

47 CFR Part 15.247 Effective Date 1st October 2021 DTS: Digital Transmission System Test Date: 3rd January 2023 to 6th January 2023 Report Number: 01-13917-2-23 Issue 01

The testing was carried out by RN Electronics Ltd, an independent test house, at their test facility located at:

R.N. Electronics Ltd. Arnolds Court Arnolds Farm Lane Mountnessing Essex CM13 1UT U.K.

www.RNelectronics.com

Telephone: +44 (0) 1277 352219 Email: sales@RNelectronics.com

This laboratory is accredited in accordance with the recognised International Standard ISO/IEC 17025. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF communiqué dated April 2017).

This report is not to be reproduced by any means except in full and in any case not without the written approval of R.N. Electronics Ltd.

A part of

Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT Certificate of Test 13917-2

The equipment noted below has been fully tested by R.N. Electronics Limited and, where appropriate, conforms to the relevant subpart of 47 CFR Part 15C. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

Equipment:	6891
Model Number:	D10
Unique Serial Number:	0044 (Radiated tests) 0055 (Conducted tests)
Applicant:	Salunda Ltd Unit 6 Avonbury Business Park Howes Lane Bicester, Oxfordshire OX26 2UA
Proposed FCC ID Full measurement results are	2ALTW18016891
detailed in Report Number:	01-13917-2-23 Issue 01
Test Standards:	47 CFR Part 15.247 Effective Date 1st October 2021 DTS: Digital Transmission System

NOTE:

Certain tests were not performed based upon applicant's declarations. Certain other requirements are subject to applicant's declaration only and have not been tested/verified. For details refer to section 3 of this report. This report pertains to 2.4GHz ZigBee operation, for UWB operation please refer to RN report 02-13917-5-23.

DEVIATIONS:

No deviations have been applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Date Of Test:	3rd January 2023 to 6th January 2023	
Test Engineer:		
Approved By: Radio Manager		
Customer Representative:		

1 Contents

1	Contents	3
2	Equipment under test (EUT)	4
2.	1 Equipment specification	4
2.	2 Configurations for testing	5
2.	3 Functional description	5
2.	· · · · · · · · · · · · · · · · · · ·	5
2.	5 Emissions configuration	6
3	Summary of test results	7
4	Specifications	
4.		
4.		
5	Tests, methods and results	
5.	I	
5.		
5.		
5.		
5.		
5.		
5.		
5.		
5.	o i i	
	10 Maximum Peak conducted output power	
	11 Maximum Power Spectral Density	
-	12 Antenna power conducted emissions	
	13 Duty cycle	
	14 FHSS carrier frequency separation	
	15 Average time of occupancy	
	16 Number of Hop Channels	
6	Plots/Graphical results	
6.	· · · · · · · · · · · · · · · · · · ·	
6.		
6. 6.		
о. 6.		
6.		
-		
6. 6.		
	•	
6. 6	 Maximum Peak conducted output power Maximum Power Spectral Density 	
7	Explanatory Notes	
′ 7.		
7.		
8 /.	Photographs	
8.	•	
8.	•	
9	Test equipment calibration list	
10	Auxiliary and peripheral equipment.	
-	0.1 Customer supplied equipment	
	0.2 RN Electronics supplied equipment	
11	Condition of the equipment tested	
	I.1 Modifications before test	
	I.2 Modifications during test.	
12	Description of test sites	
13	Abbreviations and units	

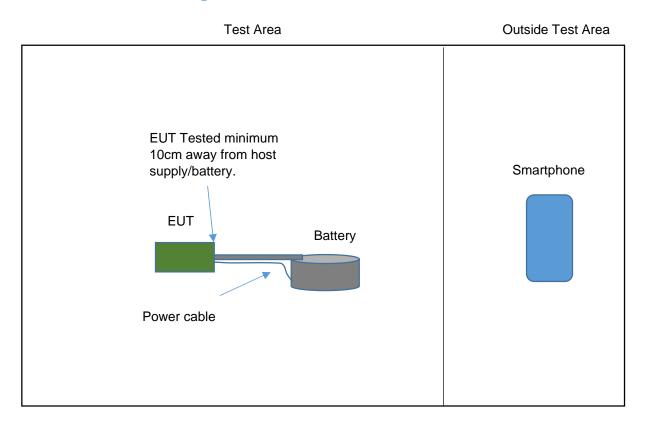
2 Equipment under test (EUT)

2.1 Equipment specification

Applicant	Salunda Ltd			
		Unit 6 Avonbury Business Park		
	Howes Lane			
	Bicester			
	Oxfordshire			
	OX26 2UA			
Manufacturer of EUT	Salunda Ltd			
Full Name of EUT	6891			
Model Number of EUT	D10			
Serial Number of EUT		0044 (Radiated tests)		
	0055 (Conducted te	sts)		
Date Received	6th October 2022			
Date of Test:	3rd January 2023 to 6th January 2023			
Purpose of Test	To demonstrate design compliance to the relevant rules of Chapter 47 of the Code of Federal Regulations.			
Date Report Issued	26th July 2023			
Main Function	Personal/Equipmen	t Locator		
Information Specification	Height	71.5 mm		
	Width	41.5 mm		
	Depth	5 mm		
	Weight	0.002 kg		
	Voltage	3 - 4.2 V		
	Current Not declared			

2.2 Configurations for testing

General Parameters	
EUT Normal use position	Body-worn
Choice of model(s) for type tests	Sample
Antenna details	Integral antenna -2 dBi gain maximum (Johanson 2450AT42E0100)
Antenna port	No
Baseband Data port (yes/no)?	No
Highest Signal generated in EUT	6.5 GHz
Lowest Signal generated in EUT	12 MHz
Hardware Version (HVIN)	Version 1
Software Version	'Salunda NFC Lite' Phone App: 1.7
Firmware Version (FVIN)	2.4GHz RF Processor: 4.251 – GIT Hash: 6b72d63 UWB Main processor: 5.251 – GIT Hash: 67e984d IMU: 1.14
Type of Equipment	Radio board / module
Technology Type	Zigbee
TX Parameters	
Alignment range – transmitter	2405 - 2480 MHz
EUT Declared Modulation Parameters	DSSS
EUT Declared Power level	13 dBm conducted
EUT Declared Signal Bandwidths	2 MHz
EUT Declared Channel Spacing's	5 MHz
EUT Declared Duty Cycle	5%
Unmodulated carrier available?	Yes
Declared frequency stability	Not declared
RX Parameters	
Alignment range – receiver	2405 - 2480 MHz
EUT Declared RX Signal Bandwidth	2 MHz
Receiver Signal Level (RSL)	-108 dBm
FCC Parameters	
FCC Transmitter Class	DTS: Part 15 Digital Transmission System


2.3 Functional description

Locates via UWB and sends location back to server, configuration over the 2.4GHz network, can also operate as gateway which responds to request to range.

2.4 Modes of operation

Mode Refere	nce Description	Used for testing
TX LOW	Transmitting continuous bursts of data at 2405 MHz using system modulation. UWB also transmitting 6.5GHz.	Yes
TX MID	Transmitting continuous bursts of data at 2440 MHz using system modulation. UWB also transmitting 6.5GHz.	Yes
TX HIGH	Transmitting continuous bursts of data at 2480 MHz using system modulation. UWB also transmitting 6.5GHz.	Yes

2.5 Emissions configuration

The unit was powered from a fully charged battery pack. The applicant provided a bracket assembly so that the EUT could be positioned 10 centimetres away from the battery pack for a module certification/test requirement. For conducted tests a modified EUT was provided where the antenna had been removed and a coax cable soldered in its place. For AC conducted emissions the EUT and battery were connected to a AC mains powered charger at 120V AC 60Hz. To configure the EUT into transmit modes a Smartphone was used which was running engineering software (Salunda NFC Lite). Prior to test the required settings were configured into the Smartphone and were transferred to the EUT by moving the smartphone into close proximity to the EUTs NFC antenna. The transmit mode was 100% continuous with modulation and the power settings for each channel were as stated below:-

Low Channel (2405 MHz) = level 13 Mid Channel (2440 MHz) only = level 13 High Channel (2480 MHz) = level 10

In conjunction with the ZigBee test channels above, the UWB transmitter was operating so any intermodulation emissions occurring could be measured.

2.5.1 Signal leads

3 Summary of test results

The 6891, D10 was tested for compliance to the following standard:

47 CFR Part 15.247 Effective Date 1st October 2021 DTS: Digital Transmission System

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Title	References	Results
Transmitter Tests		
1. AC power line conducted emissions	47 CFR Part 15C Part 15.207	PASSED
2. Radiated emissions 9 - 150 kHz	47 CFR Part 15C Part 15.209	PASSED
3. Radiated emissions 150 kHz - 30 MHz	47 CFR Part 15C Part 15.209	PASSED
4. Radiated emissions 30 MHz -1 GHz	47 CFR Part 15C Part 15.247(d) & 15.209	PASSED
5. Radiated emissions above 1 GHz	47 CFR Part 15C Part 15.247(d) & 15.209	PASSED ¹
6. Effective radiated power field strength	47 CFR Part 15C Part 15.247(d)	PASSED
7. Band Edge Compliance	47 CFR Part 15C Part 15.215 & 15.247(d)	PASSED
8. Occupied bandwidth	47 CFR Part 15C Part 15.247(2)	PASSED
9. Maximum Average conducted output power	47 CFR Part 15C Part 15.247	NOT APPLICABLE ²
10. Maximum Peak conducted output power	47 CFR Part 15C Part 15.247(b)(3)	PASSED
11. Maximum Power Spectral Density	47 CFR Part 15C Part 15.247(e)	PASSED
12. Antenna power conducted emissions	47 CFR Part 15C Part 15.247	NOT APPLICABLE ⁴
13. Duty cycle	47 CFR Part 15C Part 15.35	NOT APPLICABLE ⁵
14. FHSS carrier frequency separation	47 CFR Part 15C Part 15.247	NOT APPLICABLE ³
15. Average time of occupancy	47 CFR Part 15C Part 15.247	NOT APPLICABLE ³
16. Number of Hop Channels	47 CFR Part 15C Part 15.247	NOT APPLICABLE ³

¹ Spectrum investigated up to a frequency of 40 GHz based on the highest channel/ signal generated in equipment of 6500 MHz associated with the UWB Transmitter.

² Peak conducted power tested instead.

³ EUT does not employ FHSS technology

⁴ Applies to EUT's with an antenna port. The EUT has an integral antenna only, the EUT was tested for radiated emissions with its dedicated antenna in position.

⁵ No limits apply. Duty cycle verified as 100% for tests.

4 **Specifications**

The tests were performed and operated in accordance with R.N. Electronics Ltd procedures and the relevant standards listed below.

4.1 Relevant standards

Ref.	Standard Number	Version	Description
4.1.1	47 CFR Part 15C	2021	Federal Communications Commission PART 15 – RADIO
			FREQUENCY DEVICES
4.1.2	ANSI C63.10	2013	American National Standard of Procedures for Compliance
			Testing of Unlicensed Wireless Devices
4.1.3	ANSI C63.4	2017	American National Standard for Methods of Measurement of
			Radio-Noise Emissions from Low-Voltage Electrical and
			Electronic Equipment in the Range of 9 kHz to 40 GHz
4.1.4	KDB 558074 D01	2019	Federal Communications Commission Office of Engineering
	v05r02		and Technology Laboratory Division; GUIDANCE FOR
			COMPLIANCE MEASUREMENTS ON DIGITAL
			TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD
			SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES
			OPERATING UNDER SECTION 15.247 OF THE FCC RULES

4.2 **Deviations**

No deviations were applied.

5 Tests, methods and results

5.1 AC power line conducted emissions

5.1.1 Test methods

Test Requirements: Test Method: Limits: 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]
ANSI C63.10 Clause 6.2 [Reference 4.1.2 of this report]
47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]

5.1.2 Configuration of EUT

The EUT was placed in the charging station on a wooden table 0.8m above the ground plane and power supply was connected to a LISN via a 1m mains cable.

Details of the Peripheral and Ancillary Equipment connected for this test are listed in section 10.

During the initial scan it was found that there was no perceivable difference between channels and therefore the EUT was operated in TX MID mode for full test.

5.1.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed in the 'Test Equipment' Section. Measurements were made on the live and neutral conductors using both average and quasi-peak detection.

At least 6 signals within 20dB and/or all signals within 10dB of the limit were investigated.

Tests were performed in Test Site F.

5.1.4 Test equipment

E150, E035, ZSW1, E412, E411

See Section 9 for more details

5.1.5 Test results

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	101 kPa

Band	2400-2483.5 MHz
Power Level	13
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Mid channel	2440 MHz

Plot refs	
13917-2 Cond 1 AC Live 150k-30M Average	
13917-2 Cond 1 AC Live 150k-30M Quasi-Peak	
13917-2 Cond 1 AC Neutral 150k-30M Average	
13917-2 Cond 1 AC Neutral 150k-30M Quasi-Peak	

©2023 RN ELECTRONICS LIMITED ALL RIGHTS RESERVED

QP Amp QP -Lim (dB) AV Amp AV -Lim (dB) Signal No. Freq (MHz) Peak Amp (dBuV) (dBuV) (dBuV) 0.156 48.8 47.9 -17.8 37.0 -18.7 1 2 0.187 43.0 42.0 -22.2 32.4 -21.8 3 0.343 44.1 43.5 42.0 -7.1 -15.6 4 0.374 43.2 42.5 -15.9 41.6 -6.8 5 42.3 0.374 43.4 -16.1 41.5 -6.9 6 -22.9 19.935 38.9 37.1 34.7 -15.3

Table of signals measured for Cond 1 AC Live 150k-30M

Table of signals measured for Cond 1 AC Neutral 150k-30M

Signal No.	Freq (MHz)	Peak Amp (dBuV)	QP Amp (dBuV)	QP -Lim (dB)	AV Amp (dBuV)	AV -Lim (dB)
1	0.156	48.8	47.9	-17.8	37.3	-18.4
2	0.343	44.0	43.5	-15.6	41.9	-7.2
3	0.374	43.2	42.4	-16.0	41.6	-6.8
4	0.467	33.9	33.0	-23.6	31.5	-15.1
5	19.798	32.7	29.1	-30.9	22.0	-28.0
6	19.932	39.9	38.6	-21.4	36.6	-13.4
7	20.201	39.1	37.5	-22.5	34.7	-15.3

No discernible difference was noted in emissions between channels (exploratory measurements); therefore the final measurements are presented for TX mid channel mode only.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report./ Only results within 20dB of limits have been reported.

LIMITS:

15.207: as given in the above tables / drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: UE71 150kHz to $30MHz \pm 3.4dB$

5.2 Radiated emissions 9 - 150 kHz

5.2.1 Test methods

Test Requirements:	47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]
Test Method:	ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]
Limits:	47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

5.2.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery.

The EUT was operated in TX LOW, TX MID and TX HIGH modes.

5.2.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst-case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

5.2.4 Test equipment

TMS81, ZSW1, E412, E411

See Section 9 for more details

5.2.5 Test results

Temperature of test environment	18°C
Humidity of test environment	60%
Pressure of test environment	102kPa

Band	2400-2483.5 MHz	
Power Level	13	
Channel Spacing	5 MHz	
Mod Scheme	Zigbee	
Mid channel	2440 MHz	

Plot refs	
13917-2 Rad 1 9k-150kHz Para	
13917-2 Rad 1 9k-150kHz Perp	

Note: Whilst Low, Mid and High channels were tested, plots are for illustrative purposes only and only Middle channel plots are shown in this report.

No emissions were observed within 20dB of limits.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

©2023 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector. 15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209. The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

9kHz - 30MHz ±3.9dB

5.3 Radiated emissions 150 kHz - 30 MHz

5.3.1 Test methods

Test Requirements:	47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]
Test Method:	ANSI C63.10 Clause 6.4 [Reference 4.1.2 of this report]
Limits:	47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

5.3.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery.

The EUT was operated in TX LOW, TX MID and TX HIGH modes.

5.3.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst-case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

5.3.4 Test equipment

TMS81, ZSW1, E412, E411

See Section 9 for more details

5.3.5 Test results

Temperature of test environment	12°C
Humidity of test environment	60%
Pressure of test environment	101kPa

Band	2400-2483.5 MHz
Power Level	13
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Mid channel	2440 MHz

Plot refs
13917-2 Rad 1 150k-30MHz Para
13917-2 Rad 1 150k-30MHz Perp

Note: Whilst Low, Mid and High channels were tested, plots are for illustrative purposes only and only Middle channel plots are shown in this report.

No emissions were observed within 20dB of limits.

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

©2023 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector. 15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209. The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $9kHz - 30MHz \pm 3.9dB$

5.4 Radiated emissions 30 MHz -1 GHz

5.4.1 Test methods

Test Requirements:
Test Method:
Limits:

47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.5 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.209/15.247(d) [Reference 4.1.1 of this report]

5.4.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery.

The EUT was operated in TX LOW, TX MID and TX HIGH modes.

5.4.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made on a site listed with the FCC. The equipment was rotated 360 degrees and the antenna scanned 1 - 4 metres in both horizontal and vertical polarisations to record the worst-case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

5.4.4 Test equipment

LPE364, E743, NSA-M, ZSW1, E412, E411

See Section 9 for more details

5.4.5 Test results

Temperature of test environment	12°C
Humidity of test environment	60%
Pressure of test environment	102kPa

Band 2400-2483.5 MHz	
Power Level	13 for Low and Mid, 10 for High channel
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Low channel	2405 MHz
Mid channel	2440 MHz
High channel	2480 MHz

Plot refs		
13917-2 Rad 1 VHF Horiz		
13917-2 Rad 1 VHF Vert		
13917-2 Rad 1 UHF Horiz		
13917-2 Rad 1 UHF Vert		

Note: Whilst Low, Mid and High channels were tested, plots are for illustrative purposes only and only Middle channel plots are shown in this report.

Table of signals measured for Rad 1 Horizontal Sig List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	164.730	30.4	24.9	-18.6
2	214.611	37.0	31.5	-12.0
3	351.290	34.0	28.6	-17.4
4	451.665	36.2	31.1	-14.9
5	621.665	41.5	36.8	-9.2
6	915.000	36.9	31.5	-14.5

Table of signals measured for Rad 1 Vertical Sig List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	214.702	32.2	26.3	-17.2
2	355.894	31.6	25.5	-20.5
3	459.894	37.7	30.5	-15.5
4	613.054	36.2	31.0	-15.0
5	630.051	34.7	28.8	-17.2
6	918.050	36.9	31.3	-14.7

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

Results shown above are valid for Low, Mid and High channels setting as no difference was observed between channel settings in this test range, UWB transmitter was also on for these measurements.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

30MHz - 1000MHz ±5.6dB

5.5 Radiated emissions above 1 GHz

5.5.1 Test methods

Test Requirements:4Test Method:ALimits:4

47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report] ANSI C63.10 Clause 6.6 [Reference 4.1.2 of this report] 47 CFR Part 15C Part 15.247(d) & 15.209 [Reference 4.1.1 of this report]

5.5.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery.

The EUT was operated in TX LOW, TX MID and TX HIGH modes.

5.5.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. Horn antennas were used at heights where the whole of the EUT was contained within the main beam. The EUT was rotated through 360 degrees to record the worst-case emissions. A measurement distance of 3m was used between the test range 1 - 6GHz, 1.2m was used in the test range 6 - 18GHz and 0.3m was used in the test range 18 - 40GHz.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M and Site B.

5.5.4 Test equipment

E136, E296-2, E330, E411, E412, E429, TMS78, TMS79, TMS82

See Section 9 for more details

5.5.5 Test results

Temperature of test environment	16°C
Humidity of test environment	60%
Pressure of test environment	102kPa

Note: Channels below were also tested in simultaneous TX mode with the UWB transmission.

Setup Table	
Band	2400-2483.5 MHz
Power Level	13
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Low channel	2405 MHz

Spurious Frequency (MHz)	Measured Peak Level (dBµV/m)	Difference to Peak Limit (dB)	Measured Average Level (dBµV/m)	Difference to Average Limit (dB)	EUT	Antenna Polarisation
No emissions within 20 dB of the limit were observed						

Setup	Table	
Rand		

Band	2400-2483.5 MHz
Power Level	13
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Mid channel	2440 MHz

Spurious Frequency (MHz)	Measured Peak Level (dBµV/m)	Difference to Peak Limit (dB)	Measured Average Level (dBµV/m)	Difference to Average Limit (dB)	EUT Polarisation	Antenna Polarisation
No emissions within 20 dB of the limit were observed						

No emissions within 20 dB of the limit were observed

Plots
13917-2 Rad 1 1-2GHz Horiz
13917-2 Rad 1 1-2GHz Vert
13917-2 Rad 1 2-2.7GHz Horiz
13917-2 Rad 1 2-2.7GHz Vert
13917-2 Rad 1 2.7-5.15GHz Horiz
13917-2 Rad 1 2.7-5.15GHz Vert
13917-2 Rad 1 5.15-6GHz Horiz
13917-2 Rad 1 5.15-6GHz Vert
13917-2 Rad 1 6upto7.77GHz Horiz
13917-2 Rad 1 6upto7.77GHz Vert
13917-2 Rad 1 7.77upto10GHz Horiz
13917-2 Rad 1 7.77upto10GHz Vert
13917-2 Rad 1 10upto12_5GHz Horiz
13917-2 Rad 1 10upto12_5GHz Vert
13917-2 Rad 1 12.5 - 15 GHz Horiz
13917-2 Rad 1 12.5 - 15 GHz Vert
13917-2 Rad 1 15 - 18 GHz Horiz
13917-2 Rad 1 15 - 18 GHz Vert
13917-2 Rad 1 18 - 22 GHz Horiz
13917-2 Rad 1 18 - 22 GHz Vert
13917-2 Rad 1 22 - 26 GHz Horiz
13917-2 Rad 1 22 - 26 GHz Vert
13917-2 Rad 1 26 - 26.5 GHz Horiz
13917-2 Rad 1 26 - 26.5 GHz Vert
13917-2 Rad 1 26.5 - 30 GHz Horiz
13917-2 Rad 1 26.5 - 30 GHz Vert
13917-2 Rad 1 30 - 34 GHz Horiz
13917-2 Rad 1 30 - 34 GHz Vert
13917-2 Rad 1 34 - 38 GHz Horiz
13917-2 Rad 1 34 - 38 GHz Vert
13917-2 Rad 1 38 - 40 GHz Horiz
13917-2 Rad 1 38 - 40 GHz Vert

Setup Table

Band	2400-2483.5 MHz
Power Level	10
Channel Spacing	5 MHz
Mod Scheme	Zigbee
High channel	2480 MHz

Spurious Frequency (MHz)	Measured Peak Level (dBµV/m)	Peak Limit	Measured Average Level (dBµV/m)	Difference to Average Limit (dB)	EUT Polarisation	Antenna Polarisation
No emissions within 20 dB of the limit were observed						

Note: Whilst Low, Mid and High channels were tested, plots are for illustrative purposes only and only Middle channel plots are shown in this report.

Peak detector "Max held" Analyser plots against the Average limit line can be found in Section 6 of this report.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.247(d) other emissions, outside the intentional band, must be attenuated by at least 20/30dB from the level of the fundamental / meet the general limits of 15.209.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

1 – 18 GHz ±3.5dB, 18 – 26.5 GHz ±3.9dB, 26.5 – 40 GHz ±3.9dB

5.6 Effective radiated power field strength

5.6.1 Test methods

Test Requirements:	47 CFR Part 15C Part 15.247(d) [Reference 4.1.1 of this report]
Test Method:	ANSI C63.10 Clause 6.6 [Reference 4.1.2 of this report]
Limits:	47 CFR Part 15C Part 15.247(d) & 15.209(a) [Reference 4.1.1 of this report]

5.6.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was rotated in all three orthogonal planes to maximise emissions. Final measurements were taken at 3m. The EUT was operated in TX LOW, TX MID and TX HIGH modes.

5.6.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test Equipment used' section. The power stated is Peak field strength with EUT in a maximised position. Tests were performed in test site B.

5.6.4 Test equipment

E428, E624, E904, E927, F128

See Section 9 for more details

5.6.5 Test results

Temperature of test environment	18°C
Humidity of test environment	50%
Pressure of test environment	101kPa

Band	2400-2483.5 MHz
Power Level	13 for Low and Mid, 10 for High channel
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Low channel	2405 MHz
Mid channel	2440 MHz
High channel	2480 MHz

	Low channel	Mid channel	High channel
Peak Level (dBµV/m)	99.2	98.8	95.5
	13917-2	13917-2	13917-2
Plot reference	Radiated Power	Radiated Power	Radiated Power
	Low Channel	Mid Channel	High Channel
Antenna Polarisation	Horiz	Horiz	Horiz
EUT Polarisation	Side	Side	Side

Analyser plots can be found in Section 6 of this report.

LIMITS:

The maximum output power in all cases is 30dBm / 1watt, where 30 dBm = 125.2 dBµV/m@3 m.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 3.9 dB

5.7 Band Edge Compliance

5.7.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.215 & 15.247(d) [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 11.12 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.209(a) & 15.247(d) [Reference 4.1.1 of this report]

5.7.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres.

The EUT was operated in TX LOW, TX MID and TX HIGH modes.

5.7.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. The emission from the EUT was maximised before taking the plots.

Tests were performed using Test Site A.

5.7.4 Test equipment

E428, E624, E904, E927, F128

See Section 9 for more details

5.7.5 Test results

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	101kPa

Band	2400-2483.5 MHz
Power Level	13 for Low and Mid, 10
	for High channel
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Low channel	2405 MHz
Mid channel	2440 MHz
High channel	2480 MHz

Restricted Band Edges	Low channel	High channel
Restricted Peak Level measured (dBuV/m)	59.58 67.77	
	13917-2 Restricted Band Edge,	13917-2 Restricted Band Edge,
Restricted band edge Peak Plot	Low Channel, Peak Detector	High Channel, Peak Detector
Restricted Average Level measured (dBuV/m)	37.94	50.99
	13917-2 Restricted Band Edge,	13917-2 Restricted Band Edge,
	Average Detector, Low	Average Detector, High Channel,
Restricted band edge Average Plot	Channel, Trace Average	Trace Average

Authorised Band Edges	Low channel	High channel
Authorised Band Edge (dBc) value measured	-48.98	-47.59
	13917-2 Authorised Band, Low	13917-2 Authorised Band, High
Authorised Band Edge Plot	Channel, Peak Detector	Channel, Peak Detector

Analyser plots for the Band Edge Compliance can be found in Section 6 of this report. These show the 20/30dBc requirement of 15.247(d) are met at the band edges of 2400 and 2483.5 MHz. Restricted band edge plots are also shown in section 6.

The tables list the field strengths observed in the adjacent restricted bands, which are required to meet the tighter 15.209 limits.

LIMITS:

AV = 54dBuV/m at band edges PK = 74dBuV/m at band edges

The restricted band edges closest to the EUT frequency of 2400-2483.5MHz are 2390 & 2483.5MHz.

Further wider span plots have been taken to show the fact that there are no spurious emissions above the restricted limits of 15.209.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 3.9 dB

5.8 Occupied bandwidth

5.8.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.247(a)(2) [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 11.8 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.247(a)(2) [Reference 4.1.1 of this report]

5.8.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was operated in TX LOW, TX MID and TX HIGH modes.

5.8.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. A 100kHz RBW, 3x VBW, auto sweep time and max hold settings were used for the 6dB bandwidth.

Tests were performed using Test Site B.

5.8.4 Test equipment

E428, E624, E904, E927, F128

See Section 9 for more details

5.8.5 Test results

Temperature of test environment	18°C
Humidity of test environment	50%
Pressure of test environment	102kPa

Band	2400-2483.5 MHz
	13 for Low and Mid, 10 for High
Power Level	channel
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Low channel	2405 MHz
Mid channel	2440 MHz
High channel	2480 MHz

	Low channel	Mid channel	High channel
6 dB Bandwidth Result (MHz)	1.58	1.55	1.57
Plot for 6 dB Bandwidth Result (MHz)	13917-2 LOW	13917-2 MID	13917-2 HIGH
99 % Bandwidth Result (MHz)	2.33	2.33	2.33
Frequency Error (kHz)	-7.25	-11.68	-17.53
Operating frequency (MHz)	2405	2440	2480
6 dB FLOW Worst case (MHz)	2404.20275	2439.21332	2479.19747
6 dB FHIGH Worst case (MHz)	2405.78275	2440.76332	2480.76747

Analyser plots for the 6dB bandwidth can be found in Section 6 of this report.

LIMITS:

15.247(a)(2) The minimum 6dB bandwidth shall be at least 500kHz.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 1.9 %

5.9 Maximum Average conducted output power

NOT APPLICABLE: Peak conducted power tested instead.

5.10 Maximum Peak conducted output power

5.10.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.247(b)(3) [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 11.9 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.247(b)(3) [Reference 4.1.1 of this report]

5.10.2 Configuration of EUT

The EUT was measured on a bench using a spectrum analyser connected to the temporary RF port. The EUT was set to each mode and test signal in turn (see section 2.4) and highest power levels recorded. The EUT was operated in TX LOW, TX MID and TX HIGH modes for this test.

5.10.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. Peak stated reading is maximum power observed using a spectrum analyser RBW > 6dB BW of the EUT. Measurements were made in site A.

20°C

50%

101kPa

5.10.4 Test equipment

E253, E266, E755, E927

See Section 9 for more details

5.10.5 Test results

Temperature of test environment Humidity of test environment Pressure of test environment

Band	2400-2483.5 MHz
	13 for Low and Mid,
Power Level	10 for High channel
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Low channel	2405 MHz
Mid channel	2440 MHz
High channel	2480 MHz

	Low channel	Mid channel	High channel
Nominal voltage result (dBm)	9.56	9.98	5.33
Plot reference	13917-1 Peak	13917-1 Peak	13917-1 Peak
	Conducted Power 2405	Conducted Power 2440	Conducted Power 2480
	MHz	MHz	MHz
Limit in dBm	30.00	30.00	30.00
Maximum result (dBm)	9.56	9.98	5.33
Margin to Limit (dB)	-20.44	-20.02	-24.67
Result in (W)	0.009	0.010	0.003

LIMITS:

15.247(b)(3)

For systems using digital modulation in the 902-928, 2400-2483.5 or 5725-5850 MHz bands 1 Watt.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 1.0 dB

5.11 Maximum Power Spectral Density

5.11.1 Test methods

Test Requirements:47 CFR Part 15C Part 15.247(e) [Reference 4.1.1 of this report]Test Method:ANSI C63.10 Clause 11.10 [Reference 4.1.2 of this report]Limits:47 CFR Part 15C Part 15.247(e) [Reference 4.1.1 of this report]

5.11.2 Configuration of EUT

The EUT was configured as for the peak conducted power test. The EUT was operated in TX LOW, TX MID and TX HIGH modes for this test.

5.11.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below. PEP was recorded in the required span and bandwidth. Measurements & plots were taken with the span set to 1.5 times the measured DTS bandwidth for each modulation scheme setting. Tests were performed using Test Site A.

5.11.4 Test equipment

E253, E266, E755, E927

See Section 9 for more details

5.11.5 Test results

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	101kPa

Band	2400-2483.5 MHz
Power Level	13 for Low and Mid,
	10 for High channel
Channel Spacing	5 MHz
Mod Scheme	Zigbee
Low channel	2405 MHz
Mid channel	2440 MHz
High channel	2480 MHz

	Low channel	Mid channel	High channel
Duty Cycle (%)	100	100	100
PSD (dBm/3kHz)	-0.7	-0.07	-4.89
Plot reference	13917-2 Power spectral density - Low channel		13917-2 Power spectral density - High channel

Analyser plots can be found in Section 6 of this report.

LIMITS:

15.247(e) +8dBm/3kHz.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

<± 2 dB

5.12 Antenna power conducted emissions

NOT APPLICABLE: Applies to EUT's with an antenna port. The EUT has an integral antenna only & the EUT was tested for radiated emissions with its dedicated antenna in position.

5.13 Duty cycle

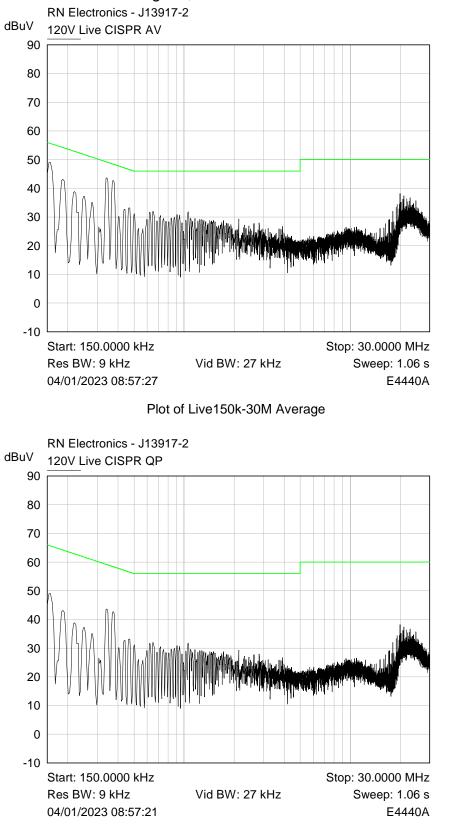
NOT APPLICABLE: No limits apply. Duty cycle verified as 100% for tests.

5.14 FHSS carrier frequency separation

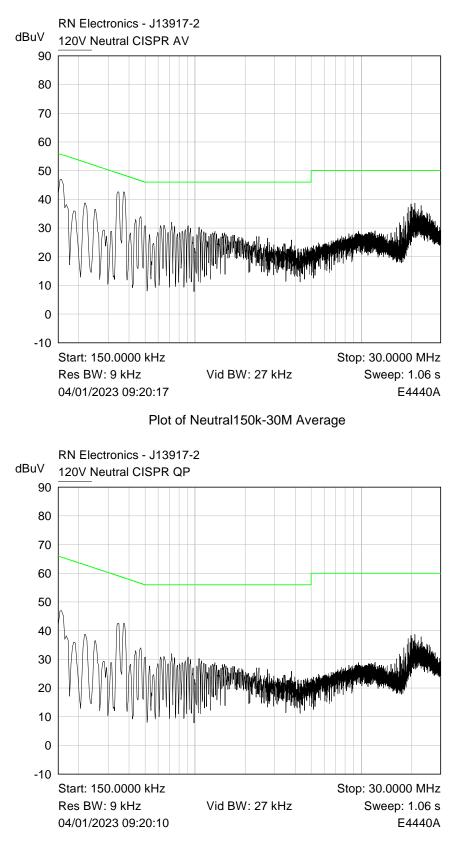
NOT APPLICABLE: EUT does not employ FHSS technology

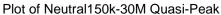
5.15 Average time of occupancy

NOT APPLICABLE: EUT does not employ FHSS technology

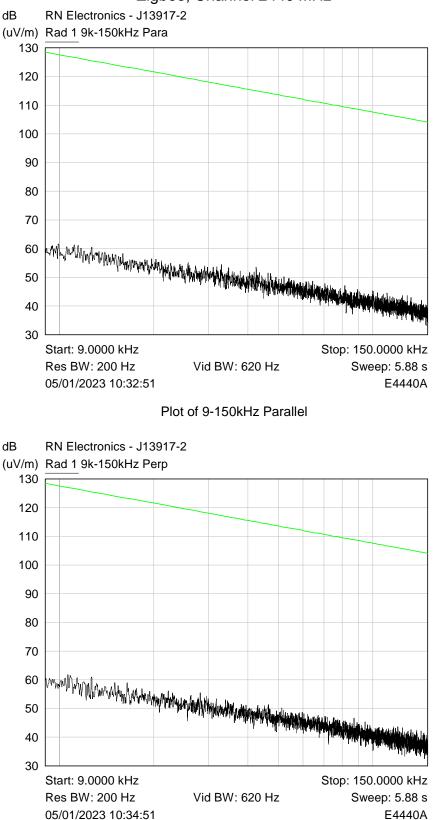

5.16 Number of Hop Channels

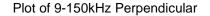
NOT APPLICABLE: EUT does not employ FHSS technology


6 Plots/Graphical results

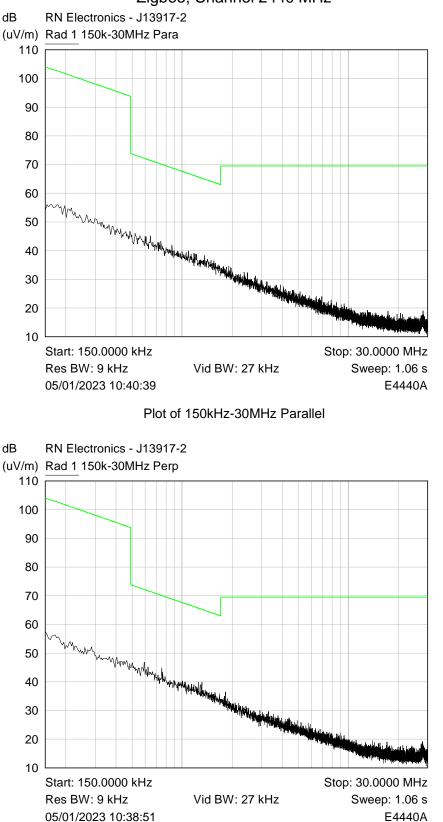

6.1 AC power line conducted emissions

RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz

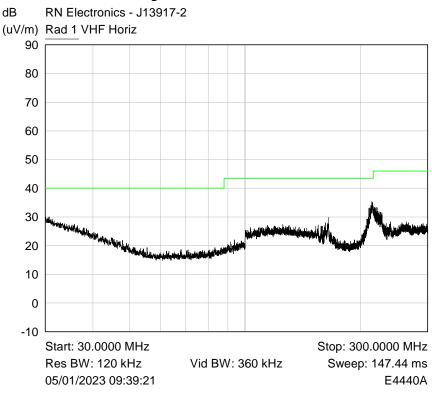

Plot of Live150k-30M Quasi-Peak

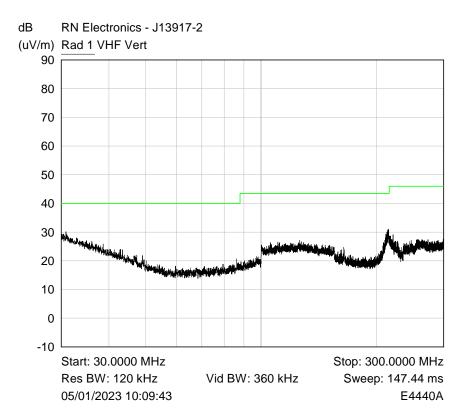


6.2 Radiated emissions 9 - 150 kHz

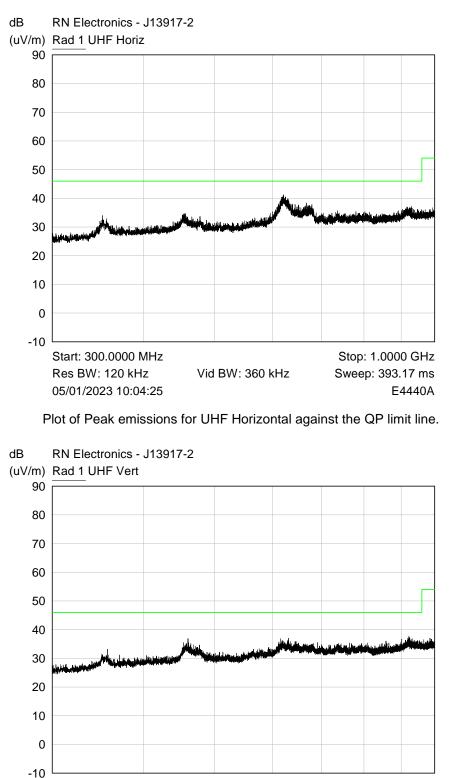

RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz

6.3 Radiated emissions 150 kHz - 30 MHz


RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz



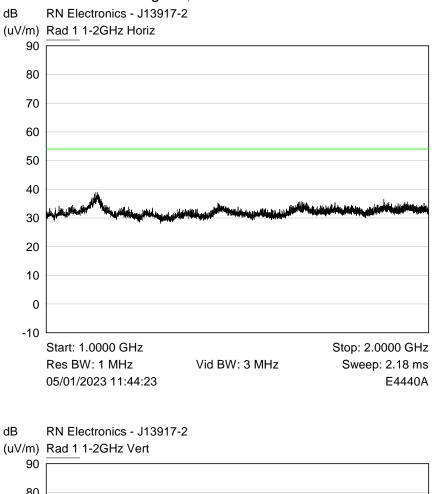
6.4 Radiated emissions 30 MHz -1 GHz

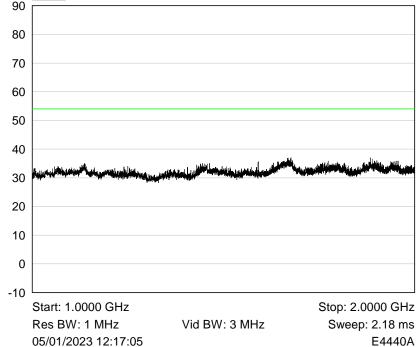

RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz

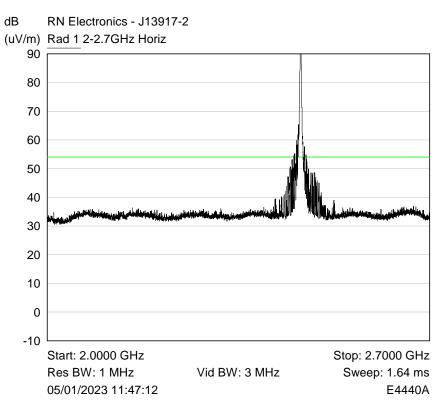
Plot of Peak emissions for VHF Horizontal against the QP limit line.

Plot of Peak emissions for VHF Vertical against the QP limit line.

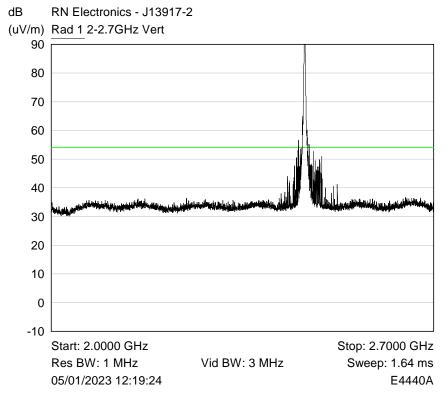
 Start: 300.0000 MHz
 Stop: 1.0000 GHz

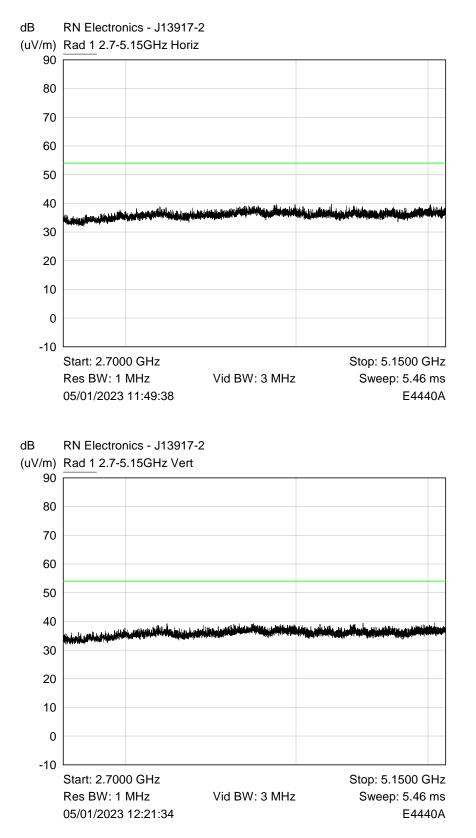

 Res BW: 120 kHz
 Vid BW: 360 kHz
 Sweep: 393.17 ms

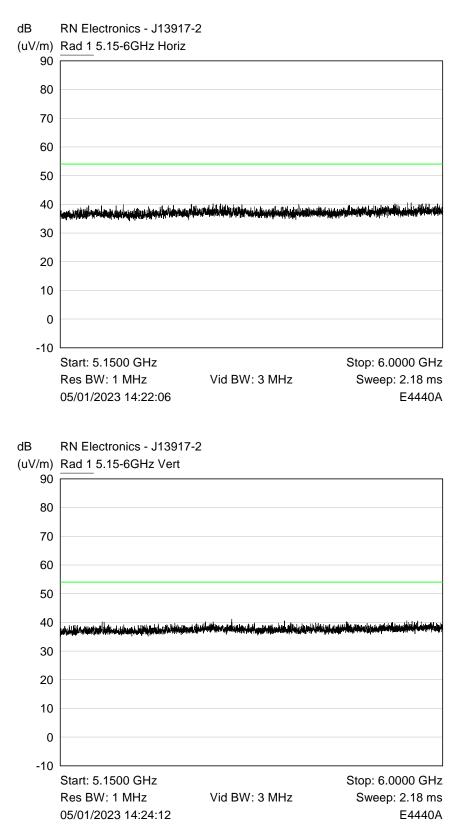

 05/01/2023 10:13:05
 E4440A

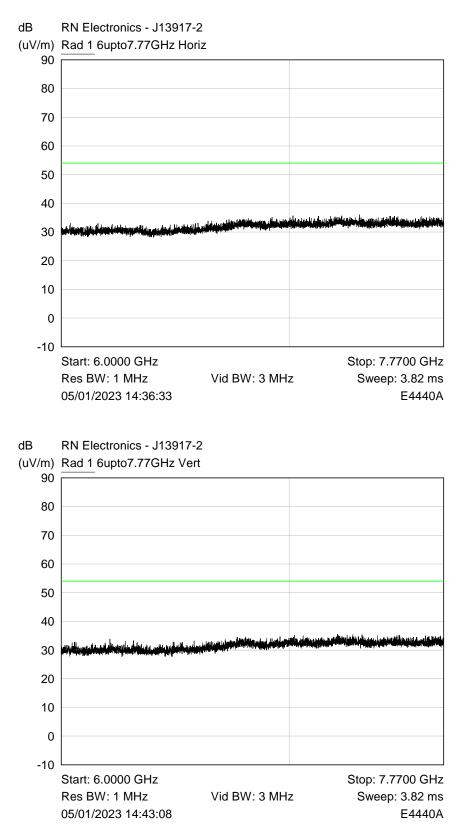

Plot of Peak emissions for UHF Vertical against the QP limit line.

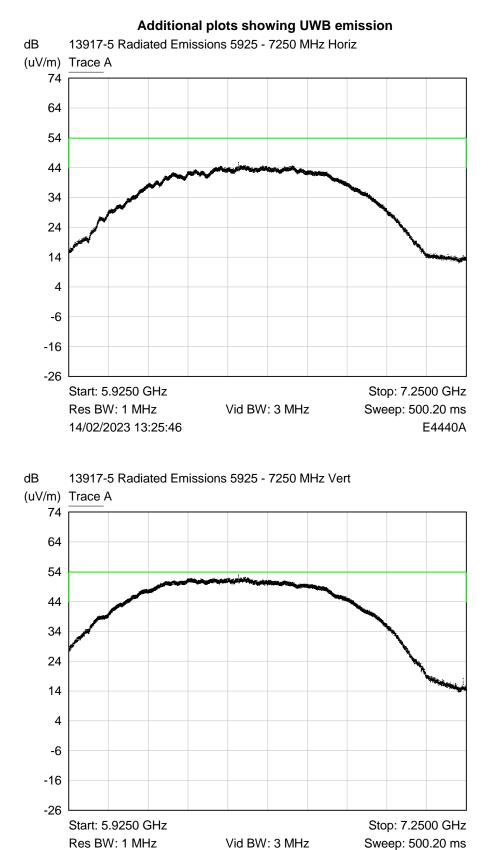
6.5 Radiated emissions above 1 GHz


RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz

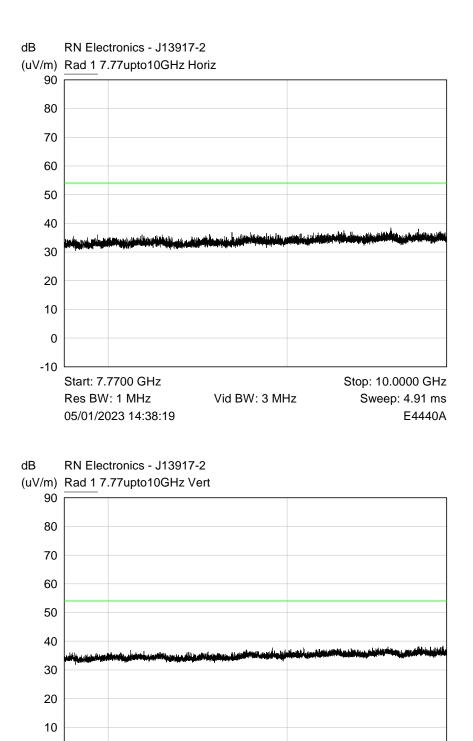





The signal that exceeds the limit line is the fundamental transmit carrier



The signal that exceeds the limit line is the fundamental transmit carrier



14/02/2023 13:23:08

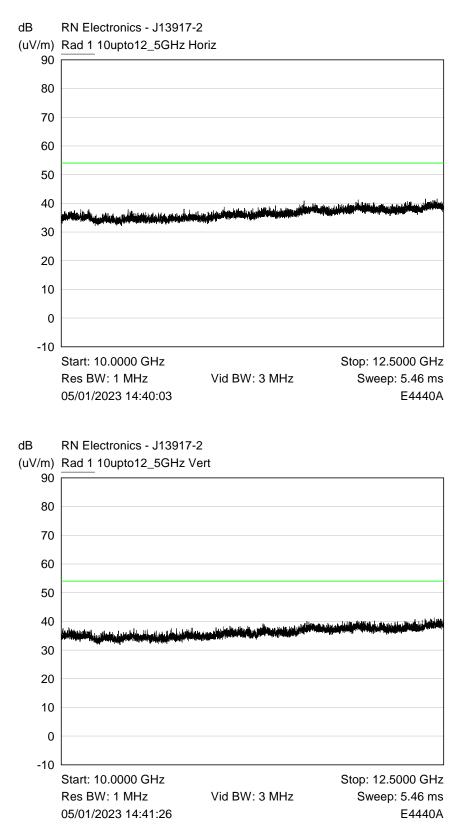
E4440A

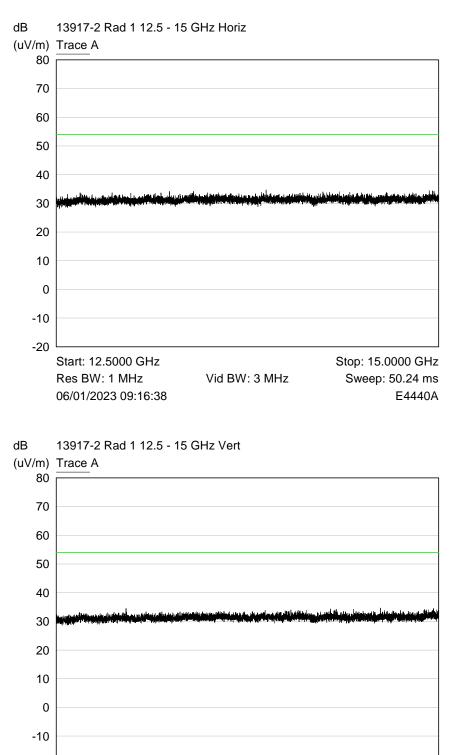
Vid BW: 3 MHz

Start: 7.7700 GHz

05/01/2023 14:49:21

Res BW: 1 MHz

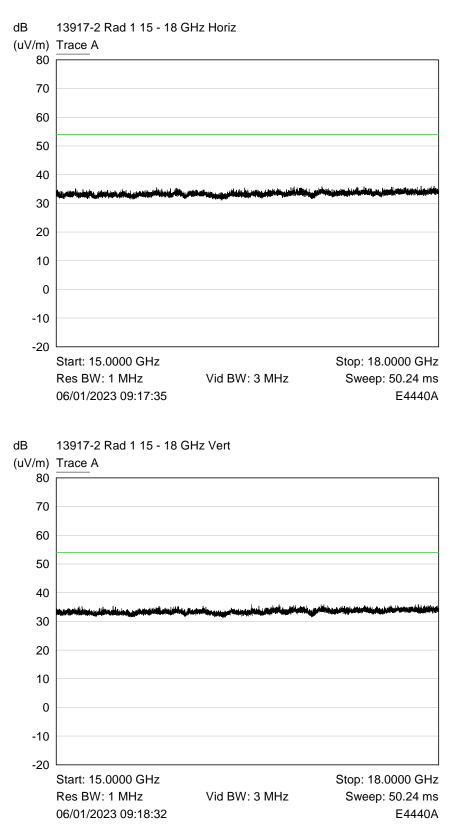

0

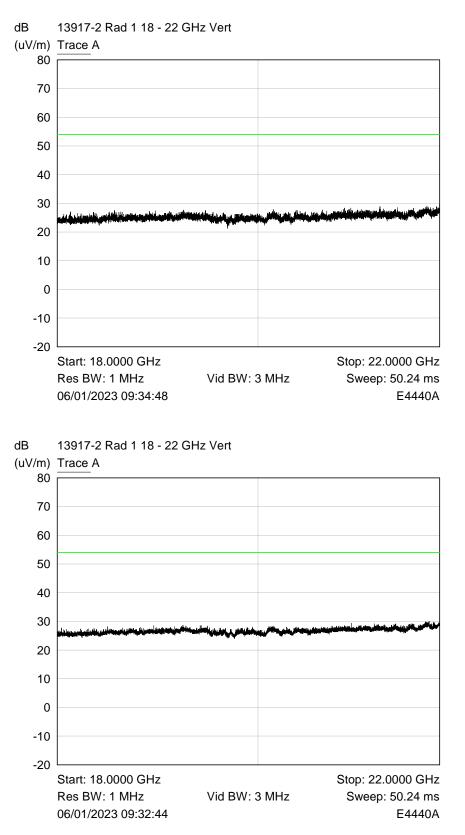

-10

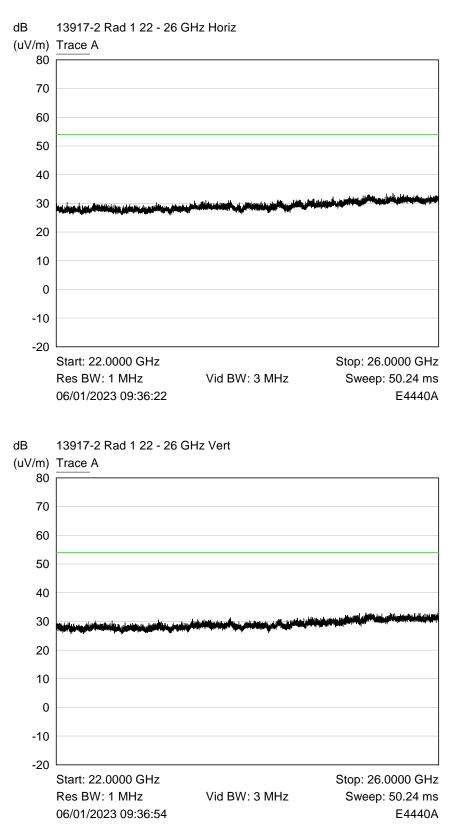
Stop: 10.0000 GHz

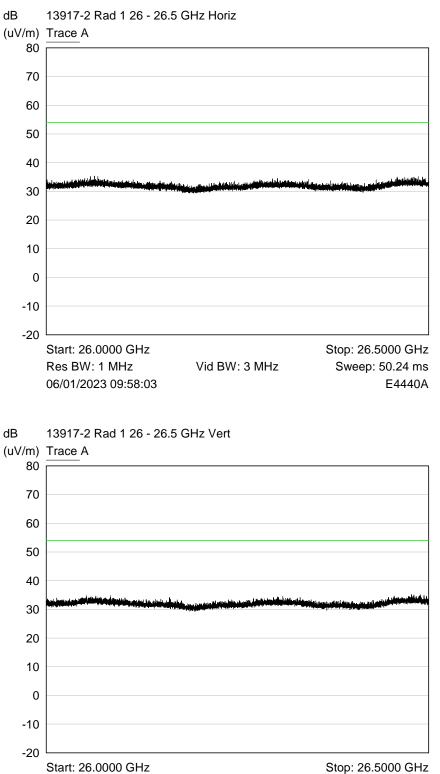
Sweep: 4.91 ms

E4440A



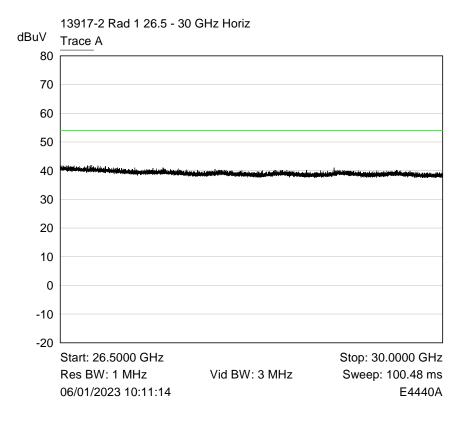

 Start: 12.5000 GHz
 Stop: 15.0000 GHz


 Res BW: 1 MHz
 Vid BW: 3 MHz
 Sweep: 50.24 ms

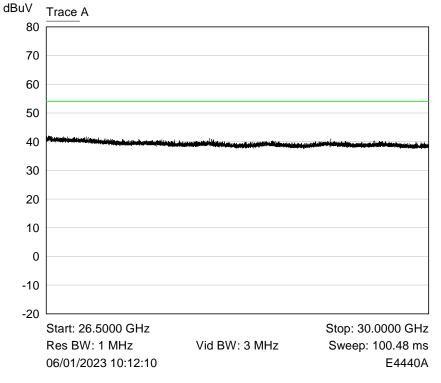

 06/01/2023 09:14:38
 E4440A

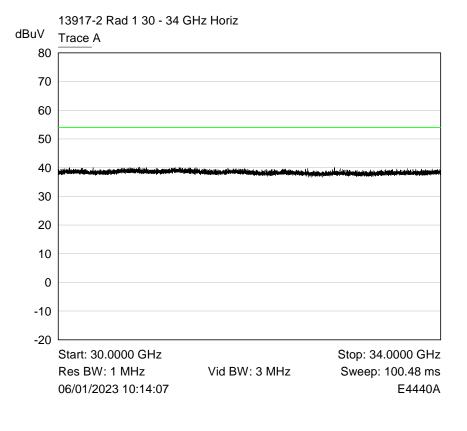
-20

 Start: 26.0000 GHz

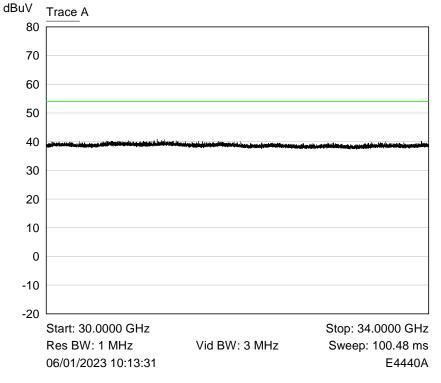

 Res BW: 1 MHz
 Vid BW: 3 MHz

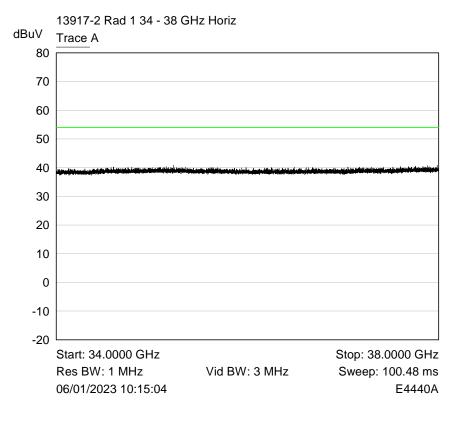
 06/01/2023 09:57:23
 Vid BW: 3 MHz

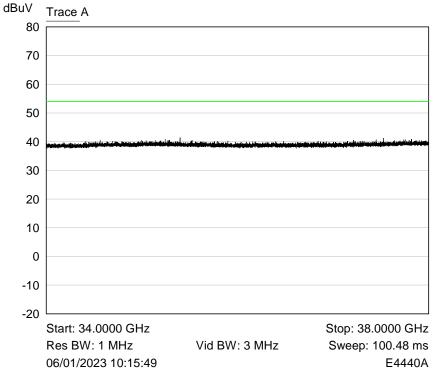

Sweep: 50.24 ms

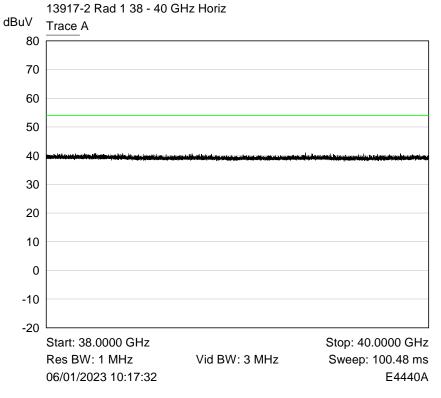

E4440A

File Name: Salunda Ltd.13917-2 Issue 01 QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2021

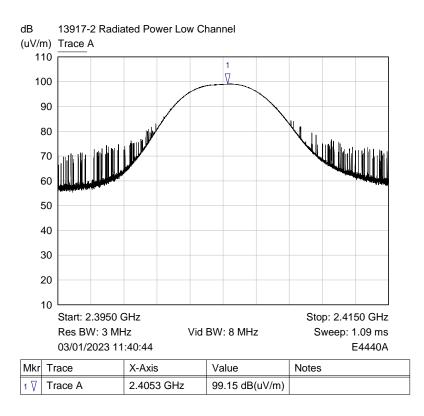



13917-2 Rad 1 26.5 - 30 GHz Vert

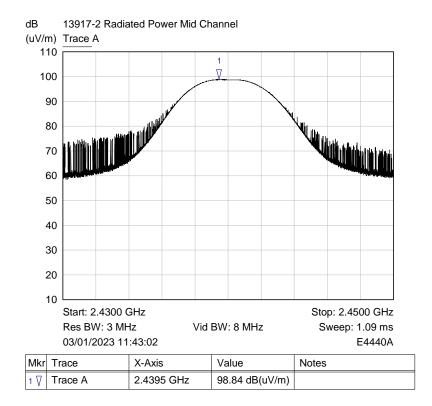



13917-2 Rad 1 30 - 34 GHz Vert

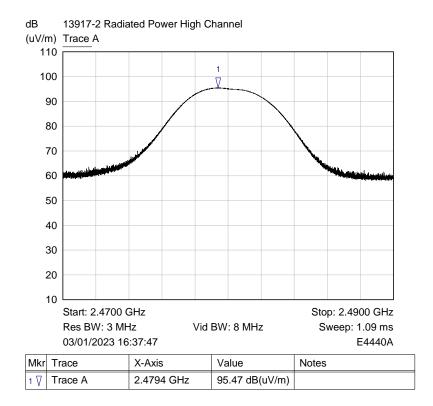
13917-2 Rad 1 34 - 38 GHz Vert



13917-2 Rad 1 38 - 40 GHz Vert dBuV Trace A 80 70 60 50 40 30 20 10 0 -10 -20 Stop: 40.0000 GHz Start: 38.0000 GHz Res BW: 1 MHz Vid BW: 3 MHz Sweep: 100.48 ms 06/01/2023 10:16:36 E4440A

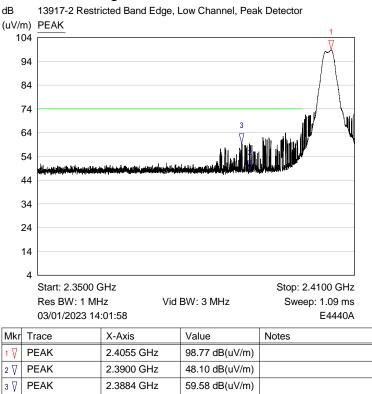

6.6 Effective radiated power field strength

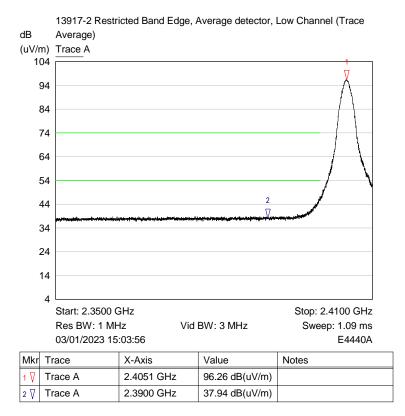
RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2405 MHz


Plot of Horiz polarisation and EUT in Side position

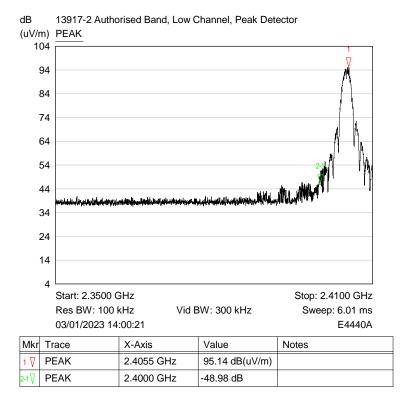
RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz

Plot of Horiz polarisation and EUT in Side position

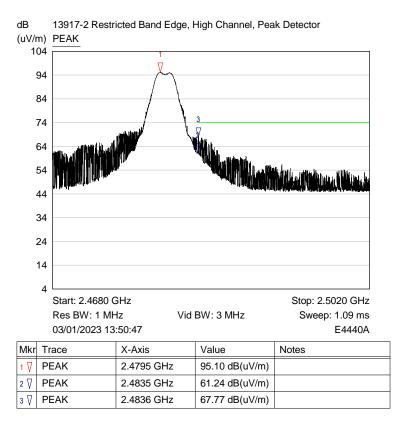

RF Parameters: Band 2400-2483.5 MHz, Power 10, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2480 MHz


Plot of Horiz polarisation and EUT inside position

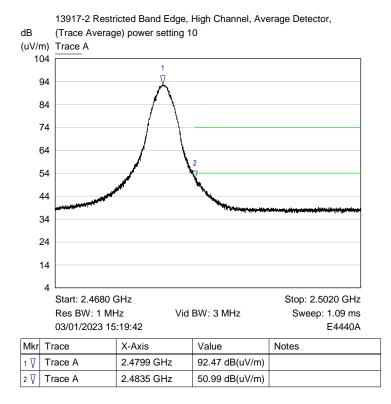
6.7 Band Edge Compliance


RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2405 MHz

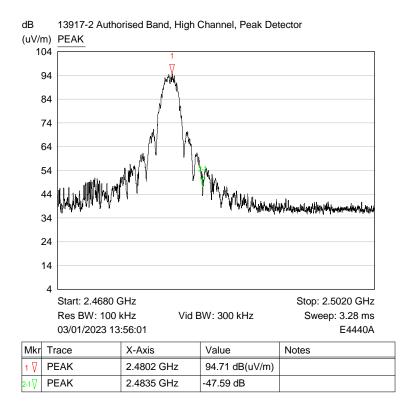
Restricted band edge Peak Plot



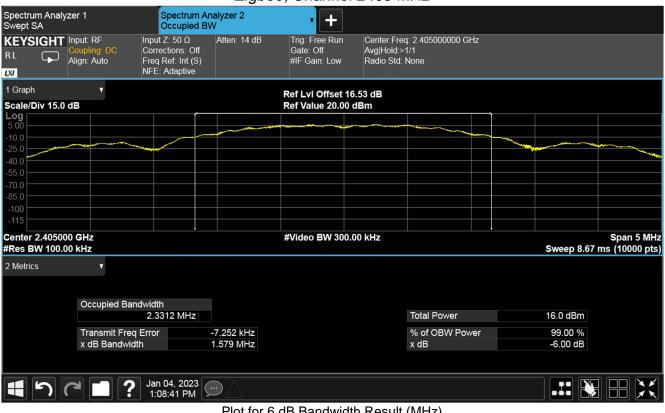
Restricted band edge Average Plot



Authorised Band Edge Plot


RF Parameters: Band 2400-2483.5 MHz, Power 10 dBm, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2480 MHz

Restricted band edge Peak Plot


Restricted band edge Average Plot

Authorised Band Edge Plot

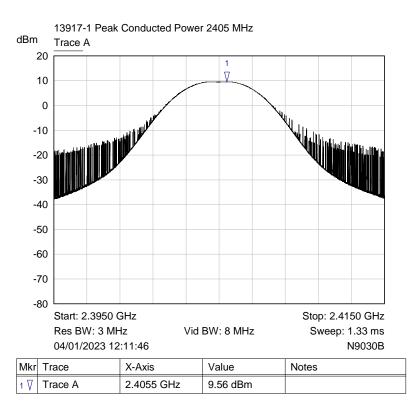
Occupied bandwidth 6.8

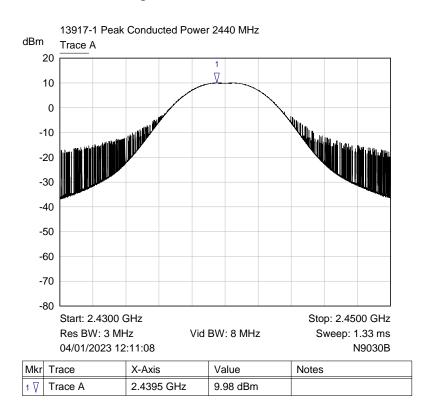
RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2405 MHz


Plot for 6 dB Bandwidth Result (MHz)

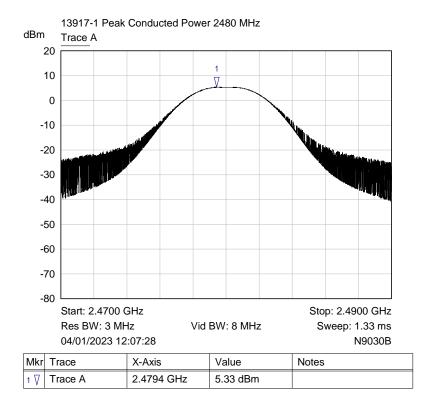
RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz

File Name: Salunda Ltd.13917-2 Issue 01 QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2021

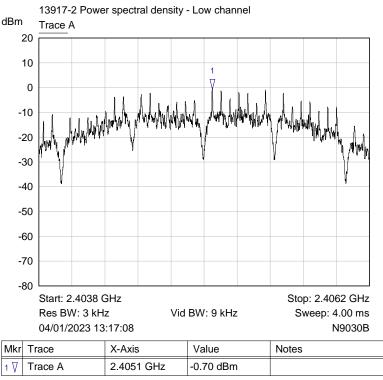

RF Parameters: Band 2400-2483.5 MHz, Power 10, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2480 MHz


Plot for 6 dB Bandwidth Result (MHz)

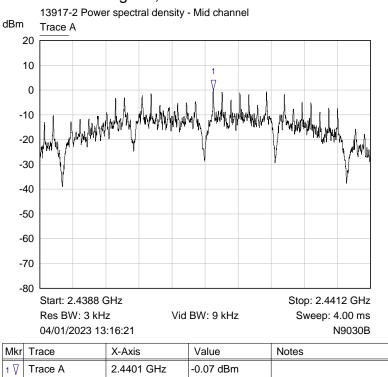
6.9 Maximum Peak conducted output power


RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2405 MHz

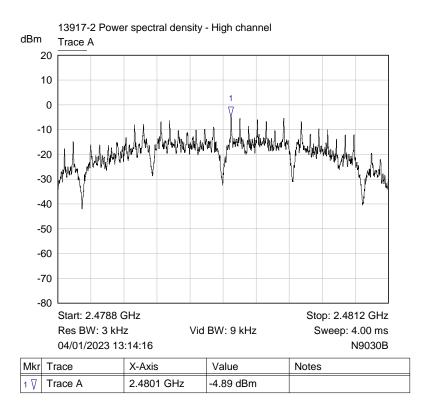
RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz



RF Parameters: Band 2400-2483.5 MHz, Power 10, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2480 MHz



6.10 Maximum Power Spectral Density


RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2405 MHz

RF Parameters: Band 2400-2483.5 MHz, Power 13, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2440 MHz

RF Parameters: Band 2400-2483.5 MHz, Power 10, Channel Spacing 5 MHz, Modulation Zigbee, Channel 2480 MHz

7 Explanatory Notes

7.1 Explanation of Table of Signals Measured

Measurements are made as required by the standard. These measurements are made and recorded using detectors, either peak, quasi peak or average dependant on the test. A table of results has been given following the relevant plots. This table looks similar to the one illustrated below dependant on the measurements required by the test: -

Signal No.	Freq (MHz)	Peak Amp (dBuV)	Pk – Lim 1 (dB)	QP Amp (dBuV)	QP - Lim1 (dB)	Av Amp (dBuV)	Av - Lim1 (dB)
1	12345	54.9	-10.5	48	-12.6	37.6	-14.4

Column One - Labelled Signal No. is an incremental number that the receiver has given to each signal that has been measured.

Column Two - Labelled Freq (MHz) is the approximate frequency of the signal received.

Column Three - Labelled Peak Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the peak detector.

Column Four - Labelled Pk - Lim1 (dB) is the difference in level from the peak signal given to the active limit line. If this column appears in the table the peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Five - Labelled QP Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the quasi-peak detector.

Column Six - Labelled QP - Lim1 (dB) is the difference in level from the quasi-peak signal given to the active limit line. If this column appears in the table the quasi-peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Seven - Labelled Av Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the average detector.

Column Eight - Labelled Av - Lim1 (dB) is the difference in level from the average signal given to the active limit line. If this column appears in the table the average detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Only signals highlighted in red are deemed to exceed the limit of the detector required.

7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in μ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB μ V/m referenced to the measuring instrument inputs. RN Electronics calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

(a) limit of 500 μ V/m equates to 20.log (500) = 54 dB μ V/m.

(b) limit of 300 μ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB μ V/m at 3m

(c) limit of 30 μ V/m at 30m, but below 30MHz, equates to 20.log(30) + 40.log(30/3) = 69.5 dB μ V/m at 3m, as extrapolation factor below 30MHz is 40dB/decade per 15.31(f)(2).

The measurement receiver used for emissions testing, performs the field strength (FS) calculations automatically. The receiver combines the signal amplitude (RA), Antenna Factor (AF) and Cable Loss (CL) factors for the frequency to be measured.

Example calculation: - FS = RA + AF + CL.

Receiver amplitude (RA)	Antenna factor (3m) (AF)	Cable loss (CL)	Field strength result (3m) (FS)
20dBuV	25 dB	3 dB	48dBuV/m

Additional calculation examples per ANSI C63.10 clause 9.4 – 9.6 equations 21, 22, 25 & 26:

Equation 21: $E_{\text{Linear}} = 10^{((E_{\text{log}}-120)/20)}$ And therefore equation 21 transposed is: $E_{\text{Log}} = 20x\text{Log}(E_{\text{Linear}}) + 120$ Where: E_{Linear} is the field strength of the emission in V/m E_{Log} is the field strength of the emissions in dBµV/m

Equation 22: EIRP = E_{Meas} + 20log(d_{Meas}) -104.7

Where:

EIRP is equivalent isotropically radiated power in dBm

 E_{Meas} is the field strength of the emission at the measurement distance in $dB\mu V\!/m$

d_{Meas} is the measurement distance in metres

Equation 25: PD = EIRP_{Linear} / $4\pi d^2$

And therefore equation 25 transposed is: EIRP_{Linear} = PD x $4\pi d^2$ Where:

PD is the power density at distance specified by the limit, in W/m² EIRP_{Linear} is the equivalent isotropically radiated power in Watts d is the distance at which the power density limit is specified in metres

Equation 26: PD = E²Speclimit / 377

And therefore equation 26 transposed is: $E_{Spec \, limit} = \sqrt{(PD \, x \, 377)}$ Where: PD is the power density at distance specified by the limit, in W/m²

 $E_{\mbox{\scriptsize spec limit}}$ is the field strength at the distance specified by the limit in V/m

Example:

Radiated spurious emissions limit at 3metres of 90pW/cm².

90pW/cm² x 100² = 0.9 µW/m² = (EIRP Linear)

Equation 25 transposed: $0.9 \times 10^{-6} \times 4 \times \pi \times 3^2 = 0.0001017876$ W And Equation 26 transposed: $E_{Spec \ limit} = \sqrt{(0.9 \times 10^{-6} \times 377)} = 0.01842$ V/m. And Equation 21 transposed: $E_{Log} = 20Log(0.01842) + 120 = 85.3 dB\mu$ V/m @ 3m. ©2023 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

8 Photographs

No photos included due to confidentiality requested by client towards FCC certification.

8.1 Radiated emission diagrams

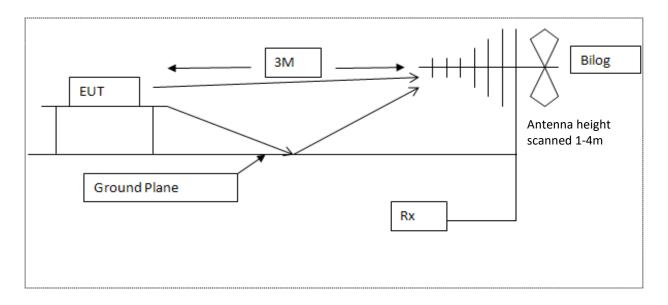
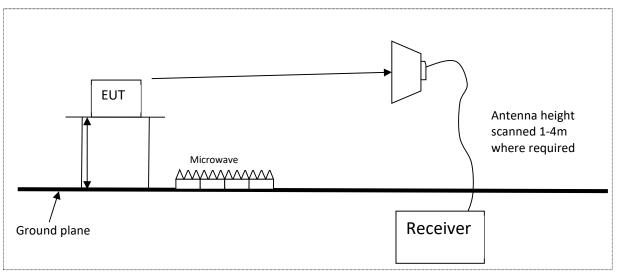



Diagram of the radiated emissions test setup 30 - 1000 MHz

Diagram of the radiated emissions test setup above 1GHz

8.2 AC powerline conducted emission diagram

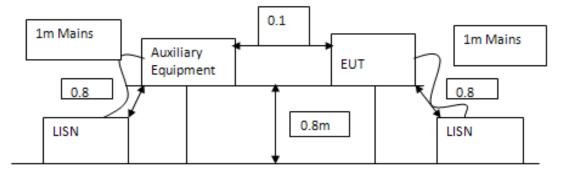


Diagram of the AC conducted emissions test setup

ALL RIGHTS RESERVED

9 Test equipment calibration list

The following is a list of the test equipment used by R.N. Electronics Ltd to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

RN No.	Model No.	Description	Manufacturer	Calibration date	Cal period
E035	11947A	Transient Limiter 9kHz - 200MHz	Hewlett Packard	16-Dec-2022	12 months
E136	3105	Horn Antenna 1 - 12.5 GHz	EMCO	02-Apr-2022	12 months
E150	MN2050	LISN 13A	Chase	25-Apr-2022	12 months
E253	6810.19.A	Attenuator 10dB 18GHz	Suhner	08-Jul-2022	12 months
E266	2032	Signal Generator 10kHz - 5.4GHz	Marconi Instruments	24-Jan-2022	12 months
E296-2	11970A	Harmonic Mixer 26.5-40GHz	Hewlett Packard	27-Jun-2022	12 months
E330	2224-20	Horn Antenna 26.5-40GHz	Flann (FMI)	22-Apr-2022	12 months
E411	N9039A	9 kHz - 1 GHz RF Filter Section	Agilent Technologies	07-Jul-2022	12 months
E412	E4440A	PSA 3 Hz - 26.5 GHz	Agilent Technologies	21-Jun-2022	24 months
E428	HF906	Horn Antenna 1 - 18 GHz	Rohde & Schwarz	02-Apr-2022	12 months
E429	-	Filter Box 5 Switch Filters 0.91 GHz - 16.3 GHz	RN Electronics	23-Aug-2022	12 months
E624	E4440A	PSA 3 Hz - 26.5 GHz	Agilent Technologies	06-Jul-2022	24 months
E743	2017 4/2dB	Attenuator 4/2dB 30-1000MHz	RN Electronics	10-Mar-2022	12 months
E755	N9030B	PXA Signal Analyser 3 Hz to 50 GHz	Keysight Technologies	03-Aug-2022	12 months
E904	5086-7805	Pre-Amplifier 1GHz - 26.5GHz	Hewlett Packard	04-Mar-2022	12 months
E927	BW-S6- 2W263+	Attenuator SMA 6dB 26GHz	Mini-Circuits	29-Nov-2022	12 months
F128	AA18-10H	Attenuator SMA 10dB 18GHz	AtlanTecRF	13-Dec-2022	12 months
LPE364	CBL6112A	Antenna BiLog 30MHz - 2GHz	Chase Electronics Ltd	28-Mar-2022	24 months
NSA-M	NSA - M	NSA - Site M	RN Electronics	29-Nov-2021	36 months
TMS78	3160-08	Horn Std Gain 12.4 - 18 GHz	ETS Systems	30-Sep-2022	12 months
TMS79	3160-09	Horn Std Gain 18 - 26.5 GHz	ETS Systems	25-May-2022	12 months
TMS81	6502	Antenna Active Loop	EMCO	22-Jul-2021	24 months
TMS82	8449B	Pre-Amplifier 1GHz - 26.5GHz	Agilent Technologies	16-Dec-2022	12 months
ZSW1	V2.5.2	Measurement Software Suite	RN Electronics	Not appl	icable

10 Auxiliary and peripheral equipment

10.1 Customer supplied equipment

Item No.	Model No.	Description	Manufacturer	Serial No.
1	XT2173-3	Smartphone	Motorola	ZY22FCH44T
2	1801A-ELC-6L	Battery charger	Salunda	3
3	GST120A24	Battery charger PSU	Mean Well	ECO51A6911

10.2 RN Electronics supplied equipment

RN No.	Model No.	Description	Manufacturer	Serial No
P260	36V5	PSU 36V 5A	Kingshill	205

ALL RIGHTS RESERVED

11 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

11.1 Modifications before test

Test	Modification	Time of modification
TX ERP FCC15_247	Power setting reduced on high channel from 13 to 10	Before testing

11.2 Modifications during test

No modifications were made during test by RN Electronics Ltd.

12 Description of test sites

- Site A Radio Laboratory and Anechoic Chamber
- Site B Semi-Anechoic Chamber and Control Room FCC Registration No. 293246, ISED Registration No. 5612A-4
- Site C Transient Laboratory
- Site D Screened Room (Conducted Immunity)
- Site E Screened Room (Control Room for Site D)
- Site F Screened Room (Conducted Emissions)
- Site G Screened Room (Control Room for Site H)
- Site H 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 293246, ISED Registration No. 5612A-2, VCCI Registration No. 4065
- Site J Transient Laboratory
- Site K Screened Room (Control Room for Site M)
- Site M 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 293246, ISED Registration No. 5612A-3
- Site N Radio Laboratory
- Site Q Fully-Anechoic Chamber
- Site OATS 3m and 10m Open Area Test Site FCC Registration No. 293246, ISED Registration No. 5612A-1
- Site R Screened Room (Conducted Immunity)
- Site S Safety Laboratory
- Site T Transient Laboratory

RN Electronics CAB identifier as issued by Innovation, Science and Economic Development Canada is UK0002 RN Electronics CAB identifier as issued by FCC is UK0015

13 Abbreviations and units

%	Percent	dBµV	deciBels relative to 1µV
λ	Wavelength	dBµV/m	deciBels relative to 1µV/m
µA/m	microAmps per metre	dBc	deciBels relative to Carrier
μV	microVolts	dBd	deciBels relative to dipole gain
μW	microWatts	dBi	deciBels relative to isotropic gain
AC	Alternating Current	dBm	deciBels relative to 1mW
ACK	ACKnowledgement	dBr	deciBels relative to a maximum value
ACP	Adjacent Channel Power	dBW	deciBels relative to 1W
AFA	Adaptive Frequency Agility	DC	Direct Current
ALSE	Absorber Lined Screened Enclosure	DFS	Dynamic Frequency Selection
AM	Amplitude Modulation	DMO	Dynamic Modulation Order
Amb	Ambient	DSSS	Direct Sequence Spread Spectrum
ANSI	American National Standards	DTA	Digital Transmission Analyser
ATPC	Automatic Transmit Power Control	EIRP	Equivalent Isotropic Radiated Power
AVG	Average	emf	electromotive force
AWGN	Additive White Gaussian Noise	ERC	European Radiocommunications Committee
BER	Bit Error Rate	ERP	Effective Radiated Power
BPSK	Binary Phase Shift Keying	ETSI	European Telecommunications Standards Institute
BT	BlueTooth	EU	European Union
BLE	BlueTooth Low Energy	EUT	Equipment Under Test
BW	Bandwidth	FCC	Federal Communications Commission
°C	Degrees Celsius	FER	Frame Error Rate
C/I	Carrier / Interferer	FHSS	Frequency Hopping Spread Spectrum
CAC	Channel Availability Check	FM	Frequency Modulation
CCA	Clear Channel Assessment	FSK	Frequency Shift Keying
CEPT	European Conference of Postal and Telecommunications Administrations	FSS	Fixed Satellite Service
CFR	Code of Federal Regulations	g	Grams
CISPR	Comité International Spécial des Perturbations Radioélectriques	GHz	GigaHertz
cm	centimetre	GNSS	Global Navigation Satellite System
COFDM	Coherent OFDM	GPS	Global Positioning System
СОТ	Channel Occupancy Time	Hz	Hertz
CS	Channel Spacing	IEEE	Institute of Electrical and Electronics Engineers
CW	Continuous Wave	IF	Intermediate Frequency
DAA	Detect And Avoid	ISED	Innovation Science and Economic Development
dB	deciBels	ITU	International Telecommunications Union
dBµA/m	deciBels relative to 1µA/m	KDB	Knowledge DataBase

		1	
kg	kilogram	Wq	picoWatts
kHz	kiloHertz	QAM	Quadrature Amplitude Modulation
kPa	Kilopascal	QP	Quasi Peak
LBT	Listen Before Talk	QPSK	Quadrature Phase Shift Keying
LISN	Line Impedance Stabilisation Network	RBW	Resoution Band Width
LNA	Low Noise Amplifier	RED	Radio Equipment Directive
LNB	Low Noise Block	R&TTE	Radio and Telecommunication Terminal Equipment
LO	Local Oscillator	Ref	Reference
m	metre	RF	Radio Frequency
mA	milliAmps	RFC	Remote Frequency Control
max	maximum	RFID	Radio Frequency IDentification
Mbit/s	MegaBits per second	RLAN	Radio Local Area Network
MCS	Modulation and Coding Scheme	RMS	Root Mean Square
MHz	MegaHertz	RNSS	Radio Navigation Satellite Service
mic	Microphone	RSL	Received Signal Level
	Multiple Input, Multiple	DOOL	Received Signal Strength Indicator
MIMO	Output	RSSI	
min	minimum	RTP	Room Temperature and Pressure
mm	millimetres	RTPC	Remote Transmit Power Control
ms	milliseconds	Rx	Receiver
mW	milliWatts	s	Seconds
NA	Not Applicable	SINAD	Signal to Noise And Distortion
NFC	Near Field Communications	SRD	Short Range Device
nom	Nominal	Тх	Transmitter
nW	nanoWatt	UKAS	United Kingdom Accreditation Service
OATS	Open Area Test Site	UKCA	United Kingdom Conformity Assessed
OBW	Occupied Band Width	UKRER	United Kingdom Radio Equipment Regulations
OCW	Occupied Channel Width	UHF	Ultra High Frequency
OFDM	Orthogonal Frequency Division Multiplexing	U-NII	Unlicensed National Information Infrastructure
OOB	Out Of Band	USB	Universal Serial Bus
ppm	Parts per million	UWB	Ultra Wide Band
PER	Packet Error Rate	V	Volts
PK	Peak	V/m	Volts per metre
PMR	Private Mobile Radio	VBW	Video Band Width
PRBS	Pseudo Random Bit Sequence	VHF	Very High Frequency
PRF	Pulse Repitition Frequency	VSAT	Very Small Aperture Terminal
PSD	Power Spectral Density	W	Watts
PSU	Power Supply Unit		

===== END OF TEST REPORT ======