

Test Report

Report No.: MTi241213015-02E2

Date of issue: 2024-12-25

Applicant: ShenZhen ZhiHaiHe Tech Co.,Ltd

Product name: Varmilo Mechanical Keyboard

Model(s): APV108, APV109, APV113

FCC ID: 2AF8O-APV108

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Descriptioneral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	
2	Sum	mary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	uation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	io Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4 6.5 6.6	Conducted Emission at AC power line Occupied Bandwidth Field strength of fundamental Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)	
Ph	otogra	aphs of the test setup	32
Ph	otoar	aphs of the EUT	33

	Test Result Certification					
Applicant:	ShenZhen ZhiHaiHe Tech Co.,Ltd					
Address:	5th Floor, Block 2, 10th Industrial Zone, Tian Liao Community, Yu Tang Area, Guang Ming District, Shenzhen, China					
Manufacturer:	ShenZhen ZhiHaiHe Tech Co.,Ltd					
Address:	5th Floor, Block 2, 10th Industrial Zone, Tian Liao Community, Yu Tang Area, Guang Ming District, Shenzhen, China					
Product description	1					
Product name:	Varmilo Mechanical Keyboard					
Trademark:	Varmilo					
Model name:	APV108					
Series Model(s):	APV109, APV113					
Standards:	47 CFR Part 15.249					
Test Method:	ANSI C63.10-2020					
Date of Test	·					
Date of test:	2024-12-19 to 2024-12-23					
Test result:	Pass					

Test Engineer	:	Modern Tony
		(Maleah Deng)
Reviewed By	•••	Dowid. Cel
		(David Lee)
Approved By		leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	Varmilo Mechanical Keyboard
Model name:	APV108
Series Model(s):	APV109, APV113
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: DC 5V, 500mA Battery: DC 3.7V, 2500mAh
Accessories:	Cable: USB-A to Type-C cable (1.8m)*1 Dongle*1
Hardware version:	APV108-V2.0(D)
Software version:	CAP_APV108_V20241116
Test sample(s) number:	MTi241213015-02S1001
RF specification	
Operating frequency range:	2404-2478MHz
Channel number:	38
Modulation type:	GFSK
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	2dBi
1.2 Description of test	and a

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	/	1
10	2422	20	2442	30	2462	1	1

Test Channel List

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2404	2440	2478

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Test Software:	RF Test Tool			
Mode	2404MHz	2440MHz	2478MHz	
GFSK	0*04	0*04	0*04	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	101 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list							
Description	Manufacturer						
HUAWEI CHARGE HW-050200C02		K95212KA103561	HUAWEI				
Support cable list							
Description	Length (m)	From	То				
/	1	1	1				

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.249	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.249	47 CFR 15.207(a)	Pass
3	Occupied Bandwidth	47 CFR Part 15.249	47 CFR 15.215(c)	Pass
4	Field strength of fundamental	47 CFR Part 15.249	47 CFR 15.249(a) 47 CFR 15.249(b)(1)	Pass
5	Band edge emissions (Radiated)	47 CFR Part 15.249	47 CFR 15.249(d)	Pass
6	Emissions in frequency bands (below 1GHz)	47 CFR Part 15.249	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass
7	Emissions in frequency bands (above 1GHz)	47 CFR Part 15.249	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

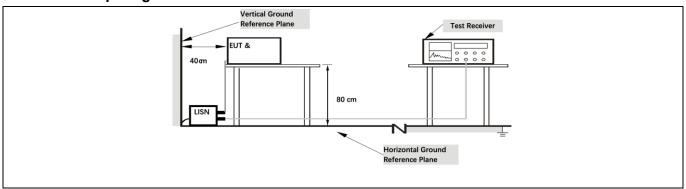
No.						
	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
		Conducted En	nission at AC po	wer line		
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19
			pied Bandwidth			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20
			ngth of fundamer emissions (Radi uency bands (ab	ated)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20
	-	Emissions in frequency		elow 1GHz)	1	1
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

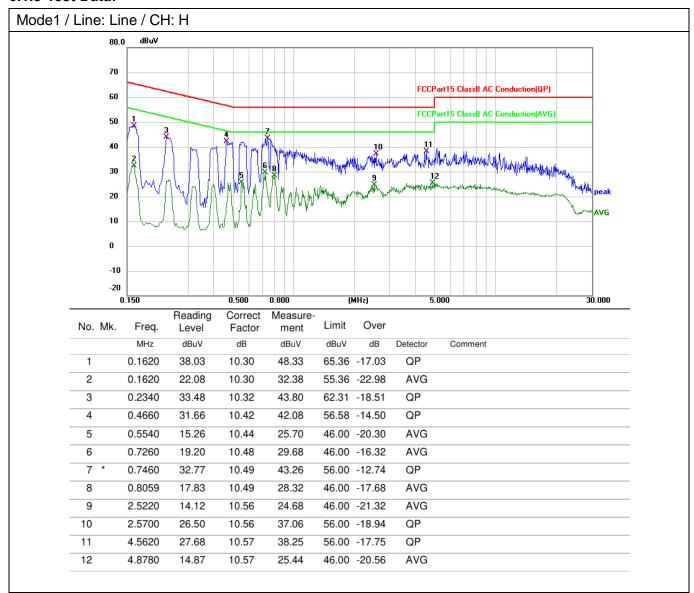
Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	radiator that is designed to be co the radio frequency voltage that i any frequency or frequencies, wi exceed the limits in the following	ccept as shown in paragraphs (b)and (c)of this section, for an intentional diator that is designed to be connected to the public utility (AC) power line, a radio frequency voltage that is conducted back onto the AC power line on the frequency or frequencies, within the band 150 kHz to 30 MHz, shall not ceed the limits in the following table, as measured using a 50 µH/50 ohms a impedance stabilization network (LISN).				
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV	')			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of	the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	Refer to ANSI C63.10-2020 secti line conducted emissions from un			er-		

6.1.1 E.U.T. Operation:


Operating Envi	ironment:					
Temperature:	21.3 °C		Humidity:	33 %	Atmospheric Pressure	101 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

2.5180

2.7340

3.7380

5.1979

10

11

12

14.36

25.45

15.15

27.02

10.56

10.56

10.56

10.58

24.92

36.01

25.71

37.60

Page 13 of 33 Report No.: MTi241213015-02E2 Mode1 / Line: Neutral / CH: H dBu∀ 80.0 70 FCCPart15 ClassB AC Conduction(QP) 60 FCCPart15 ClassB AC Conduction(AVG) 50 40 30 20 AVG 10 0 -10 -20 0.150 0.500 n snn (MHz) 5.000 30 000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1580 38.48 10.30 48.78 65.57 -16.79 QP 2 0.1620 20.96 10.30 31.26 55.36 -24.10 AVG QP 3 0.2380 33.59 10.32 62.17 -18.26 43.91 4 0.2380 15.86 10.32 26.18 52.17 -25.99 AVG 5 0.7140 17.87 10.48 28.35 46.00 -17.65 AVG 6 0.7260 34.39 10.48 44.87 56.00 -11.13 QP 7 0.8059 15.54 10.49 26.03 46.00 -19.97 AVG 56.00 -16.21 0.8580 29.28 10.51 QP 8 39.79

46.00 -21.08

56.00 -19.99

46.00 -20.29

60.00 -22.40

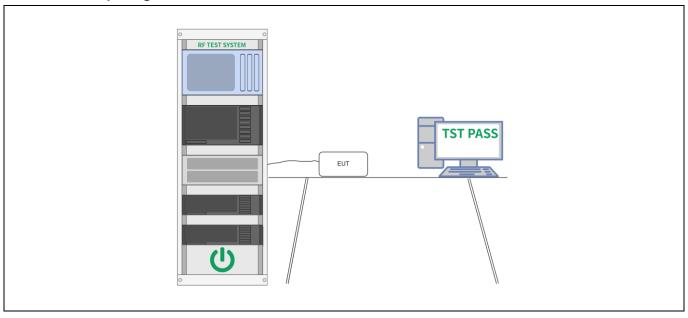
AVG

AVG

QP

QP

6.2 Occupied Bandwidth


Test Limit: Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipmen operates, is contained within the frequency band designated in the rule section under which the equipment is operated. ANSI C63.10-2020, section 6.9.2 Procedure: a) The spectrum analyzer center frequency is set to the nominal EUT chann center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF flitter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2 d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "—xx dB down" requirement; that is, if the requirement calls for measuring the ~20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "~xx dB down amplitude" using [(reference value) — xx]. Alternatively, this cal	Test Requirement:	47 CFR 15.215(c)
a) The spectrum analyzer center frequency is set to the nominal EUT chann-center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2 d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "~xx dB down" requirement; that is, if the requirement calls for measuring the ~20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "~xx dB down amplitude" using [(reference value) ~ xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. l) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).)) Place two markers, one at the lowest frequency and the other at the highe frequency of the envelope of the spectral display, such that each marker is at or slightly below the "~xx dB down am	Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2 d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highe frequency of the envelope of the spectral display, such that each marker is a or slightly below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The o		ANSI C63.10-2020, section 6.9.2
plot(s).		a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB do

6.2.1 E.U.T. Operation:

Operating Envi	ironment:	1				
Temperature:	23.4 °C		Humidity:	44 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			

6.2.2 Test Setup Diagram:

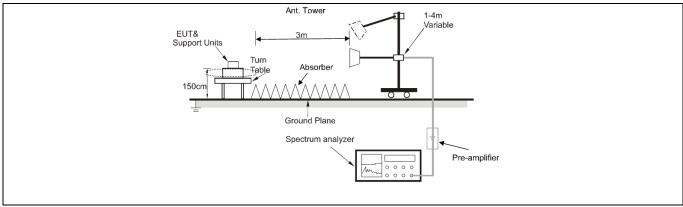
6.2.3 Test Data:

Test channel	Frequency (MHz)	20dB Bandwidth (MHz)	99% Bandwidth (MHz)
CH1	2404	1.209	1.0625
CH19	2440	1.203	1.0638
CH38	2478	1.225	1.0608

CH₁

CH19

CH38


6.3 Field strength of fundamental

		nal radiators operated v	tion, the field strength of within these frequency bands
	Fundamental	Field strength of	Field strength of
	frequency	fundamental	harmonics
To at Danishana anti		(millivolts/meter)	(microvolts/meter)
Test Requirement:	902-928 MHz	50	500
	2400-2483.5 MHz	50	500
	5725-5875 MHz	50	500
	24.0-24.25 GHz	24.0-24.25 GHz 250	
	The field strength of en millivolts/meter.	nissions in this band sha	all not exceed 2500
Test Method:	ANSI C63.10-2020 sec	tion 6.6	
Procedure:	ANSI C63.10-2020 sec	tion 6.6	

6.3.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	24.1 °C		Humidity:	32.2 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

No.	No. Mk.	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1		2404.000	68.70	-4.27	64.43	114.00	-49.57	peak	
2	*	2404.000	67.61	-4.27	63.34	94.00	-30.66	AVG	

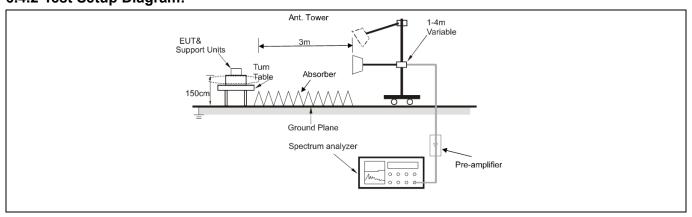
No.	No. Mk.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1		2404.000	69.90	-4.27	65.63	114.00	-48.37	peak	
2	*	2404.000	68.86	-4.27	64.59	94.00	-29.41	AVG	

No	No. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
-	1	2440.000	73.38	-4.38	69.00	114.00	-45.00	peak
	2 *	2440.000	72.61	-4.38	68.23	94.00	-25.77	AVG

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2440.000	74.25	-4.38	69.87	114.00	-44.13	peak
2	*	2440.000	73.57	-4.38	69.19	94.00	-24.81	AVG

Mode1 / Polarization: Horizontal / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector 2478.000 78.36 -4.24 74.12 114.00 -39.88 1 peak 2 2478.000 77.78 -4.24 73.54 94.00 -20.46 AVG

N	o. I	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2478.000	78.58	-4.24	74.34	114.00	-39.66	peak
	2	*	2478.000	78.01	-4.24	73.77	94.00	-20.23	AVG


6.4 Band edge emissions (Radiated)

Test Requirement:	harmonics, shall be atte	side of the specified frequency enuated by at least 50 dB belo eneral radiated emission limits n.	w the level of the				
Test Limit:	harmonics, shall be atte	side of the specified frequency enuated by at least 50 dB belo eneral radiated emission limits n.	w the level of the				
	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216 150 ** 3						
	216-960	200 **	3				
	Above 960	500	3				
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020 sec	tion 6.6.4					
Procedure:	ANSI C63.10-2020 sec	tion 6.6.4					

6.4.1 E.U.T. Operation:

Operating Environment:									
Temperature:	25 °C		°C Humidity: 5		Atmospheric Pressure:	101 kPa			
Pre test mode:	Pre test mode: Mod								
Final test mode	e:	Mode	e1						

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Mode1 /	' Polari	zatio	n: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	48.14	-4.83	43.31	74.00	-30.69	peak
	2		2310.000	37.60	-4.83	32.77	54.00	-21.23	AVG
	3		2390.000	47.14	-4.31	42.83	74.00	-31.17	peak
	4		2390.000	37.57	-4.31	33.26	54.00	-20.74	AVG
	5		2400.000	47.02	-4.25	42.77	74.00	-31.23	peak
	6	*	2400.000	37.59	-4.25	33.34	54.00	-20.66	AVG

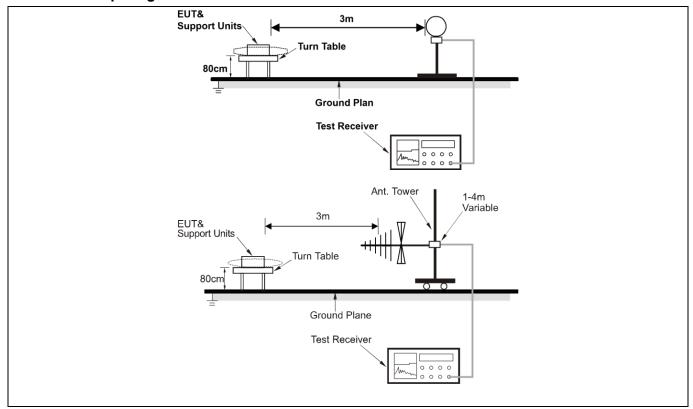
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	47.87	-4.83	43.04	74.00	-30.96	peak
2		2310.000	37.57	-4.83	32.74	54.00	-21.26	AVG
3		2390.000	47.29	-4.31	42.98	74.00	-31.02	peak
4		2390.000	37.76	-4.31	33.45	54.00	-20.55	AVG
5		2400.000	48.32	-4.25	44.07	74.00	-29.93	peak
6	*	2400.000	37.75	-4.25	33.50	54.00	-20.50	AVG

Mode1 / Polarization: Horizontal / CH: H Reading Correct Measure-Limit No. Mk. Over Freq. Level Factor ment dBuV dΒ dBuV/m dBuV/m dΒ MHz Detector 1 2483.500 50.48 -4.21 46.27 74.00 -27.73 peak 2 -4.212483.500 37.79 33.58 54.00 -20.42AVG 3 2500.000 46.89 -4.1042.79 74.00 -31.21 peak 4 * 2500.000 37.79 -4.1033.69 54.00 -20.31 AVG

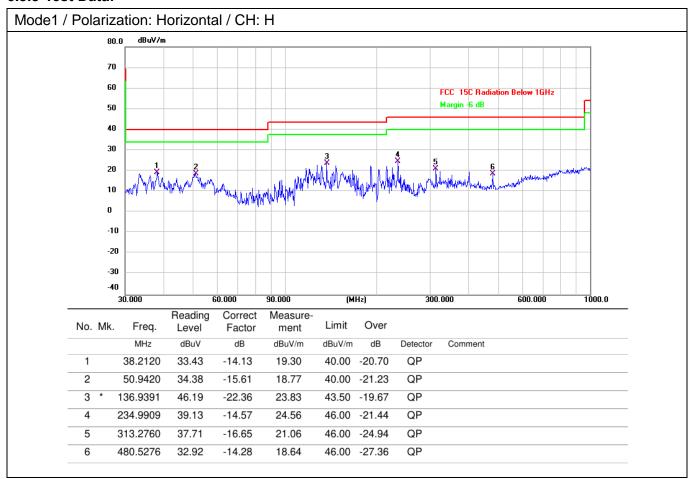
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	50.17	-4.21	45.96	74.00	-28.04	peak
2		2483.500	37.68	-4.21	33.47	54.00	-20.53	AVG
3		2500.000	47.54	-4.10	43.44	74.00	-30.56	peak
4	k	2500.000	37.87	-4.10	33.77	54.00	-20.23	AVG

6.5 Emissions in frequency bands (below 1GHz)

Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)							
Test Limit:		nal radiators operated w	ion, the field strength of vithin these frequency bands					
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)					
	902-928 MHz	50	500					
	2400-2483.5 MHz	50	500					
	5725-5875 MHz	50	500					
	24.0-24.25 GHz	250	2500					
	Emissions radiated outside of the specified frequency bands, except for							
	harmonics, shall be atte	enuated by at least 50 d leneral radiated emissions.						
	Frequency (MHz)	(microvolts/meter)						
	0.009-0.490 2400/F(kHz)		300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	F00	3					
		500 n naragraph (g) fundam						
	** Except as provided intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e.g. In the emission limits should be also as the control of the emission limits should be also be	n paragraph (g), fundamerating under this section MHz, 76-88 MHz, 174-2 hin these frequency bang., §§ 15.231 and 15.24 bove, the tighter limit appown in the above table a	nental emissions from n shall not be located in the 216 MHz or 470-806 MHz. ds is permitted under other 1. plies at the band edges. re based on measurements					
	** Except as provided in intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e.g. In the emission table at The emission limits shown the employing a CISPR quenched the bands are based As shown in § 15.35(b)	n paragraph (g), fundamerating under this section MHz, 76-88 MHz, 174-2 hin these frequency bang., §§ 15.231 and 15.24 bove, the tighter limit apown in the above table a asi-peak detector excepabove 1000 MHz. Radia on measurements emply, for frequencies above	nental emissions from n shall not be located in the 216 MHz or 470-806 MHz. ds is permitted under other 1. plies at the band edges. re based on measurements t for the frequency bands 9–90 ated emission limits in these oying an average detector. 1000 MHz, the field strength					
	** Except as provided in intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e.g. In the emission table all The emission limits show the employing a CISPR quency kHz, 110–490 kHz and three bands are based As shown in § 15.35(b) limits in paragraphs (a) However, the peak field maximum permitted avany condition of modula (b) of this section, the p	n paragraph (g), fundamerating under this section MHz, 76-88 MHz, 174-2 hin these frequency bang., §§ 15.231 and 15.24 bove, the tighter limit apown in the above table a asi-peak detector excepabove 1000 MHz. Radia on measurements emplor, for frequencies above and (b)of this section and strength of any emission erage limits specified above as the section and the section are strength of any emission are section and the section are section and strength of any emission are section and strength of any emission are section at section are section	nental emissions from n shall not be located in the 216 MHz or 470-806 MHz. ds is permitted under other 1. plies at the band edges. The based on measurements at for the frequency bands 9–90 ated emission limits in these oying an average detector. 1000 MHz, the field strength a based on average limits. On shall not exceed the pove by more than 20 dB under operation under paragraph not exceed 2500					
Test Method:	** Except as provided in intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e.g. In the emission table all The emission limits show the employing a CISPR quency kHz, 110–490 kHz and three bands are based As shown in § 15.35(b) limits in paragraphs (a) However, the peak field maximum permitted avany condition of modula (b) of this section, the p	n paragraph (g), fundamerating under this section MHz, 76-88 MHz, 174-2 hin these frequency bang., §§ 15.231 and 15.24 bove, the tighter limit apown in the above table a asi-peak detector excepabove 1000 MHz. Radia on measurements emplor, for frequencies above and (b)of this section and strength of any emission erage limits specified about the section and the section are section. For point-to-point eak field strength shall reters along the antenna and the section and the section are section.	nental emissions from n shall not be located in the 216 MHz or 470-806 MHz. ds is permitted under other 1. plies at the band edges. The based on measurements at for the frequency bands 9–90 ated emission limits in these oying an average detector. 1000 MHz, the field strength a based on average limits. On shall not exceed the pove by more than 20 dB under operation under paragraph not exceed 2500					


6.5.1 E.U.T. Operation:

Operating Envi	ronment:				
Temperature:	25 °C	Humidity:	56 %	Atmospheric Pressure:	101 kPa


Pre test mode: Mode1
Final test mode: Mode1

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

245.0900

323.3204

636.1340

4 5

6

43.94

37.37

31.13

-18.62

-14.25

-11.53

25.32

23.12

19.60

Report No.: MTi241213015-02E2 Mode1 / Polarization: Vertical / CH: H dBuV/m 80.0 70 60 Margin -6 dB 50 40 30 20 10 0 -10 -20 -30 -40 600.000 30.000 60.000 90.000 (MHz) 300.000 1000.0 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 38.2120 45.91 -25.28 20.63 40.00 -19.37 QP 2 49.7068 42.89 -22.29 20.60 40.00 -19.40 QP QP 146.8877 37.25 3 -15.68 21.57 43.50 -21.93

46.00 -20.68

46.00 -22.88

46.00 -26.40

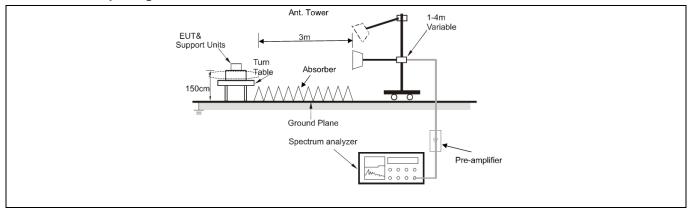
QP

QP

QP

6.6 Emissions in frequency bands (above 1GHz)

6.6 Emissions in fr	equency bands (above 10	SHz)					
Test Requirement:	47 CFR 15.249(a) 47 CFR 15.249(d) 47 CFR 15.249(e)						
Test Limit:	Except as provided in pemissions from intentions shall comply with the fo	nal radiators operated v					
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	harmor	trength of nics /olts/meter)			
	002 028 MH=			/OILS/ITTELET)			
	902-928 MHz	50	500				
	2400-2483.5 MHz 5725-5875 MHz	50 50	500				
			500				
	24.0-24.25 GHZ	24.0-24.25 GHz 250 2500					
	fundamental or to the g is the lesser attenuation Frequency (MHz)		on limits in	§ 15.209, whicheve			
	Frequency (MH2)	(microvolts/meter)		t distance (meters)			
	0.009-0.490	2400/F(kHz)		300			
	0.490-1.705	24000/F(kHz)		30			
	1.705-30.0	30		30			
	30-88	100 **		3			
	88-216	150 **		3			
	216-960	200 **		3			
	Above 960	500		3			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a)and (b)of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b)of this section, the peak field strength shall not exceed 2500						
	millivolts/meter at 3 me		azimuth.				
Test Method:	ANSI C63.10-2020 sec						
Procedure:	ANSI C63.10-2020 sec	tion 6.6					


6.6.1 E.U.T. Operation:

Operating Envi	ronment:				
Temperature:	25 °C	Humidity:	56 %	Atmospheric Pressure:	101 kPa

Pre test mode:	Mode1
Final test mode:	Mode1

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Mode1 /	Polariz	zatio	n: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4808.000	42.95	0.53	43.48	74.00	-30.52	peak
	2		4808.000	37.03	0.53	37.56	54.00	-16.44	AVG
	3		7212.000	44.99	7.84	52.83	74.00	-21.17	peak
	4		7212.000	38.73	7.84	46.57	54.00	-7.43	AVG
	5		9616.000	45.06	8.88	53.94	74.00	-20.06	peak
	6	*	9616.000	38.71	8.88	47.59	54.00	-6.41	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4808.000	43.04	0.53	43.57	74.00	-30.43	peak
2		4808.000	36.73	0.53	37.26	54.00	-16.74	AVG
3		7212.000	45.05	7.84	52.89	74.00	-21.11	peak
4		7212.000	38.70	7.84	46.54	54.00	-7.46	AVG
5		9616.000	44.90	8.88	53.78	74.00	-20.22	peak
6	*	9616.000	38.81	8.88	47.69	54.00	-6.31	AVG

Mode1 / Polarization: Horizontal / CH: M Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dB dBuV/m dΒ MHz dBuV/m Detector 4880.000 43.60 0.56 44.16 74.00 -29.84 1 peak 2 38.06 0.56 38.62 -15.38 AVG 4880.000 54.00 3 7320.000 46.52 7.54 54.06 -19.94 74.00 peak 4 7320.000 40.58 7.54 48.12 54.00 -5.88AVG 5 9760.000 44.86 9.33 54.19 74.00 -19.81 peak 9760.000 39.05 9.33 48.38 54.00 -5.62AVG 6

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	44.42	0.56	44.98	74.00	-29.02	peak
2		4880.000	38.00	0.56	38.56	54.00	-15.44	AVG
3		7320.000	44.70	7.54	52.24	74.00	-21.76	peak
4		7320.000	39.03	7.54	46.57	54.00	-7.43	AVG
5		9760.000	45.18	9.33	54.51	74.00	-19.49	peak
6	*	9760.000	39.16	9.33	48.49	54.00	-5.51	AVG

Mode1 / Polarization: Horizontal / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector 1 peak -29.334956.0000 44.04 0.63 44.67 74 2 AVG 4956.0000 37.6 0.63 38.23 54 -15.773 peak 45.54 7434.0000 7.95 53.49 74 -20.514 AVG 7.95 7434.0000 39.74 47.69 54 -6.315 peak 9912.0000 44.23 9.67 53.9 74 -20.16 AVG 54 9912.0000 38.15 9.67 47.82 -6.18

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto
1	4956.0000	44.22	0.63	44.85	74	-29.15	peak
2	4956.0000	37.91	0.63	38.54	54	-15.46	AVG
3	7434.0000	44.73	7.95	52.68	74	-21.32	peak
4	7434.0000	38.65	7.95	46.6	54	-7.4	AVG
5	9912.0000	44.42	9.67	54.09	74	-19.91	peak
6	9912.0000	38.54	9.67	48.21	54	-5.79	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----