Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature) .: File administrators Xudong Zhang

Supervised by

(position+printed name+signature) .: Project Engineer Zoey Cao

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Dec. 16, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Dongguan Langchen Technology Co.,Ltd.

Dongguan City, Guangdong Province, China

Test specification....:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Smart watch

Trade Mark N/A

Manufacturer Dongguan Langchen Technology Co.,Ltd.

Model/Type reference TB39

Listed Models N/A

Modulation GFSK, Π/4DQPSK, 8DPSK

Frequency From 2402MHz to 2480MHz

Rating DC 3.7V From battery and DC 5.0V From external circuit

Result PASS

Page 2 of 49 Report No.: CTA24121200701

TEST REPORT

Equipment under Test Smart watch

Model /Type **TB39**

Listed Models N/A

Dongguan Langchen Technology Co.,Ltd. Applicant

Address Room 704, No. 27 East, Wusha Xingfa South Road, Chang'an Town, CTA TESTING

Dongguan City, Guangdong Province, China

Dongguan Langchen Technology Co.,Ltd. Manufacturer

Room 704, No. 27 East, Wusha Xingfa South Road, Chang'an Town, Address

Dongguan City, Guangdong Province, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 49 Report No.: CTA24121200701

Contents

TEST STANDARDS	
STILL	
SUMMARY	5
O W W A C C C C C C C C C C C C C C C C C	
	CTATESTING 5 5 5 5 5
General Remarks	CTP 5
Product Description	5
Equipment Under Test	5
Short description of the Equipment under Test (EUT)	5
EUT configuration EUT operation mode	6
Block Diagram of Test Setup	6
Related Submittal(s) / Grant (s)	6
Modifications	6
Wodifications	
CIA	
TEST ENVIRONMENT	<u>7</u>
CTA,	
Address of the test laboratory	CTATESTING 7 7 8
Test Facility	TAIL 7
Environmental conditions	7
Summary of measurement results	8
Statement of the measurement uncertainty	8
Equipments Used during the Test	9
CTING	
TEST CONDITIONS AND DESILITS	4.4
TEST CONDITIONS AND RESULTS	
AC Power Conducted Emission	
Radiated Emission	14
Maximum Peak Output Power	20 21 25 27
20dB Bandwidth	21
Frequency Separation	25
Number of hopping frequency	-
Time of Occupancy (Dwell Time)	29
Out-of-band Emissions	33
Pseudorandom Frequency Hopping Sequence	42
Antenna Requirement	43
TEST SETUP PHOTOS OF THE EUT	
C	ETIN
BUOTOS OF THE FUT	4.5
PHOTOS OF THE EUT	45
	CTA TESTITE

Report No.: CTA24121200701 Page 4 of 49

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

CTATESTING

Page 5 of 49 Report No.: CTA24121200701

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Dec. 12, 2024
I to		
Testing commenced on	A STATE OF	Dec. 12, 2024
Testing concluded on	:	Dec. 16, 2024

2.2 Product Description

: Dec. 12, 2	2024	CIL		
: Dec. 16,	2024			CTI
tion				
Smart watch				
TB39				
DC 3.7V From batter	y and DC 5.0V	From external c	ircuit	
V1.0	CTAT	Ea		-ING
V1.0	(ETP)		-1	TEST
CTA241212007-1# (Engineer sample) CTA241212007-2# (Normal sample)				
Bluetooth BR/EDR				
GFSK, π/4DQPSK, 8	BDPSK			
2402MHz~2480MHz	STIN			
79			GTING	
1MHz		CTA	TES	
Internal antenna		CIN		7
0.62 dBi				COMP. CIVI
	EDEC. 16, tion Smart watch TB39 DC 3.7V From batter V1.0 V1.0 CTA241212007-1# (ICTA241212007-2# (ICTA241212007-2	Smart watch TB39 DC 3.7V From battery and DC 5.0V V1.0 V1.0 CTA241212007-1# (Engineer sample) CTA241212007-2# (Normal sample) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz Internal antenna	i Dec. 16, 2024 tion Smart watch TB39 DC 3.7V From battery and DC 5.0V From external control v1.0 V1.0 CTA241212007-1# (Engineer sample) CTA241212007-2# (Normal sample) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz Internal antenna	tion Smart watch TB39 DC 3.7V From battery and DC 5.0V From external circuit V1.0 V1.0 CTA241212007-1# (Engineer sample) CTA241212007-2# (Normal sample) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz Internal antenna

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
(21)		0	12V DC	0	24V DC	
		•	Other (specified in blank be	low)	ING
DC 3.7\	/ Fron	n ba	attery and DC 5.0V From ext	erna	al circuit	
2.4 Short description of the	ne Ed	iυρ	pment under Test (EU	T)		
This is a Smart watch						

DC 3.7V From battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a Smart watch.

For more details, refer to the user's manual of the EUT.

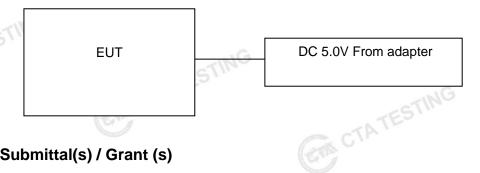
2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	- supplied by the lab	GARA C	ESTIN
0	Adapter		Model: EP-TA20CBC
			Input: AC 100-240V 50/60Hz
			Output: DC 5V 2A

Page 6 of 49 Report No.: CTA24121200701


EUT operation mode 2.6

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels CTATES' provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
, NG	÷
38	2440
39	2441
40	2442
	CTA
77	2479
78	2480

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

CTATESTING No modifications were implemented to meet testing criteria.

Page 7 of 49 Report No.: CTA24121200701

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C		
TES!			
Humidity:	46 %		
Atmospheric pressure:	950-1050mbar		

Conducted testing:

Page 8 of 49 Report No.: CTA24121200701

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK		Compliant

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density		0.57 dB	(1)

Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

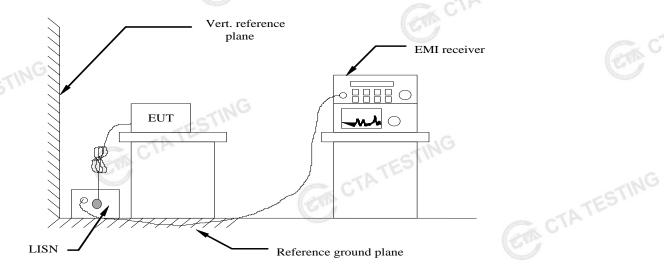
⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment	Calibration	Calibration
LISN	R&S	ENV216	No. CTA-308	Date 2024/08/03	Due Date 2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	0		TES!		
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	G R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JRUQI-MH8R06- F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02

Report No.: CTA24121200701 Page 10 of 49

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A


CTATESTING

Report No.: CTA24121200701 Page 11 of 49

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

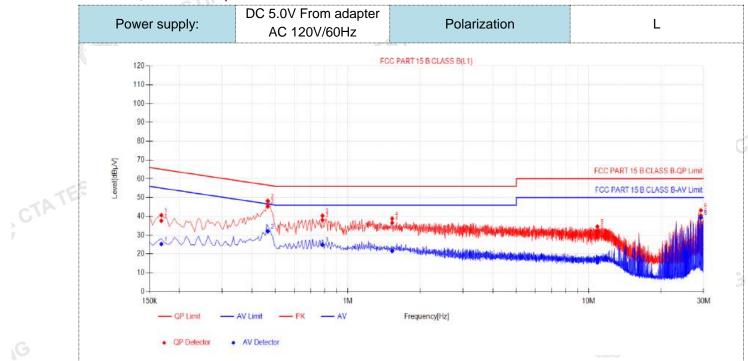
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)					
Frequency range (IVII 12)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequer	ncy.					

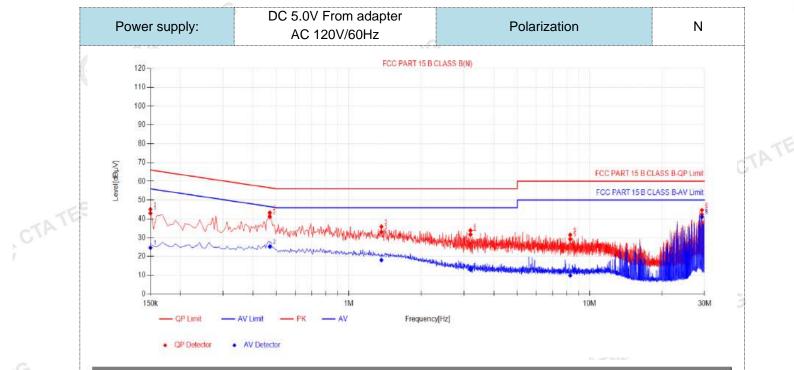
TEST RESULTS


Remark:

1. All modes of GFSK, $\Pi/4$ DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA24121200701

Page 12 of 49

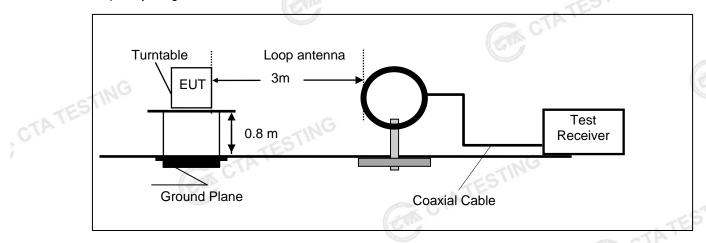

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

NO.	Freq [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [d8µV]	AV Margin [dB]	Verdict
11	0.168	9.95	27.70	37.65	65.06	27.41	15.31	25.26	55.06	29.80	PASS
2	0.465	9.97	35.29	45.26	56.60	11.34	22.10	32.07	46.60	14.53	PASS
3	0.7845	9.96	28.10	38.06	56.00	17.94	14.95	24.91	46.00	21.09	PASS
4	1.527	9.90	26.67	36.57	56.00	19.43	11.67	21.57	46.00	24.43	PASS
5	10.8645	10.26	21.84	32.10	60.00	27.90	5.22	15.48	50.00	34.52	PASS
6	29.238	10.60	29.79	40.39	60.00	19.61	28.71	39.31	50.00	10.69	PASS

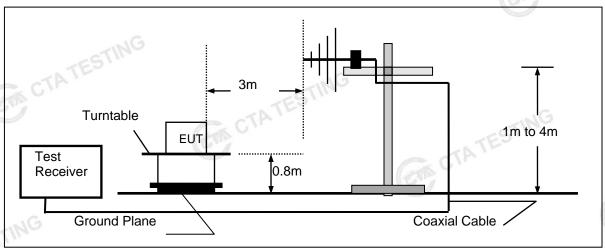
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

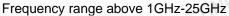
Page 13 of 49 Report No.: CTA24121200701

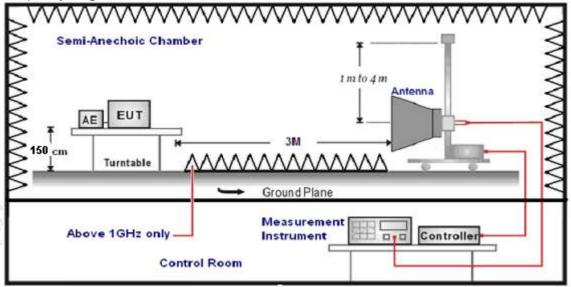
NO.	Freq [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.15	9.98	33.01	42.99	66.00	23.01	14.64	24.62	56.00	31.38	PASS
2	0.4695	9.99	31.16	41.15	56.52	15.37	15.25	25.24	46.52	21.28	PASS
3	1.365	10.15	22.91	33.06	56.00	22.94	7.91	18.06	46.00	27.94	PASS
4	3.1965	10.22	21.45	31.67	56.00	24.33	2.80	13.02	46.00	32.98	PASS
5	8.304	10.41	18.79	29.20	60.00	30.80	-0.52	9.89	50.00	40.11	PASS
6	29.238	10.82	31.52	42.34	60.00	17.66	30.21	41.03	50.00	8.97	PASS


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTINI

Page 14 of 49 Report No.: CTA24121200701


Radiated Emission 4.2


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Page 15 of 49 Report No.: CTA24121200701

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	(E.
9KHz-30MHz	Active Loop Antenna	3	-
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
	Peak Value: RBW=1MHz/VBW=3MHz,			
1GHz-40GHz	Sweep time=Auto	Peak		
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,			
~	Sweep time=Auto			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(-CIP)

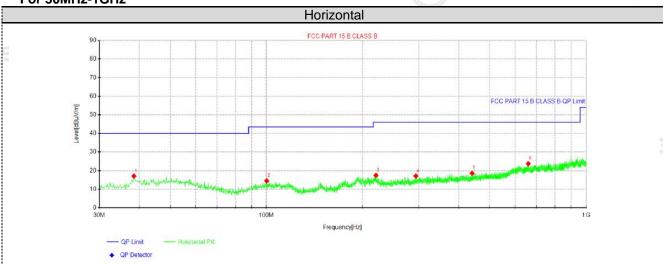
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

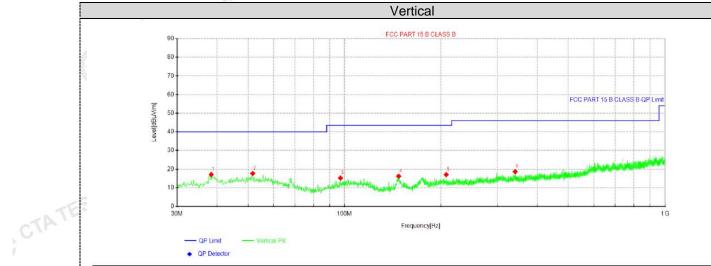

Page 16 of 49 Report No.: CTA24121200701

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



Susp	ected Data	List	100				50			
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevite	
NO.	[MHz]	[MHz] [dBµV]	BμV] [dBμV/m]		[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	38.4875	29.53	17.05	-12.48	40.00	22.95	100	223	Horizontal	
2	100.203	27.41	14.47	-12.94	43.50	29.03	100	338	Horizontal	
3	220.362	29.90	17.43	-12.47	46.00	28.57	100	175	Horizontal	
4	293.718	28.21	17.09	-11.12	46.00	28.91	100	187	Horizontal	
5	440.31	28.41	18.60	-9.81	46.00	27.40	100	357	Horizontal	
6	660.5	29.18	23.70	-5.48	46.00	22.30	100	223	Horizontal	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTATESTING

Report No.: CTA24121200701 Page 17 of 49

TATE

Susp	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalavitu
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	38.3662	29.62	17.09	-12.53	40.00	22.91	100	360	Vertical
2	51.7038	28.98	17.70	-11.28	40.00	22.30	100	139	Vertical
3	97.1725	28.73	15.26	-13.47	43.50	28.24	100	198	Vertical
4	147.612	31.68	16.21	-15.47	43.50	27.29	100	289	Vertical
5	207.873	29.79	17.04	-12.75	43.50	26.46	100	127	Vertical
6	341.127	29.41	18.66	-10.75	46.00	27.34	100	360	Vertical

CTATE CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA24121200701 Page 18 of 49

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	Frequency(MHz):			02	Pola	arity:	HORIZONTAL			
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	62.14	PK	74	11.86	66.41	32.33	5.12	41.72	-4.27	
4804.00	44.85	AV	54	9.15	49.12	32.33	5.12	41.72	-4.27	
7206.00	53.88	PK	74	20.12	54.40	36.6	6.49	43.61	-0.52	
7206.00	43.26	AV	54	10.74	43.78	36.6	6.49	43.61	-0.52	

	Freque	ncy(MHz)):	24	02	Pola	arity:		VERTICAL	/ERTICAL		
À	Frequency (MHz)	1 7 1 1 2 7 2 1		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m) -4.27		
Ī	4804.00	60.20	PK	74	13.80	64.47	32.33	5.12	41.72	-4.27		
	4804.00	43.19	AV	54	10.81	47.46	32.33	5.12	41.72	-4.27		
Ī	7206.00	51.56	PK	74	22.44	52.08	36.6	6.49	43.61	-0.52		
Ī	7206.00	41.57	AV	54	12.43	42.09	36.6	6.49	43.61	-0.52		

Frequency(MHz):			24	41	Pola	arity:	Н	ORIZONTA	\L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.62	PK	74	12.38	65.50	32.6	5.34	41.82	-3.88
4882.00	44.12	AV	54	9.88	48.00	32.6	5.34	41.82	-3.88
7323.00	53.00	PK	74	21.00	53.11	36.8	6.81	43.72	-0.11
7323.00	42.58	AV	54	11.42	42.69	36.8	6.81	43.72	-0.11

			H AMERICA							
Freque	Frequency(MHz):		24	41	Pola	arity:		VERTICAL	-	
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	59.53	PK	74	14.47	63.41	32.6	5.34	41.82	-3.88	
4882.00	42.12	AV	54	11.88	46.00	32.6	5.34	41.82	-3.88	
7323.00	50.95	PK	74	23.05	51.06	36.8	6.81	43.72	-0.11	
7323.00	40.82	AV	54	13.18	40.93	36.8	6.81	43.72	-0.11	

Frequency(MHz):		24	80	Pola	rity:	Н	IORIZONTA	۱L	
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.05	PK	74	12.95	64.13	32.73	5.66	41.47	-3.08
4960.00	43.23	AV	54	10.77	46.31	32.73	5.66	41.47	-3.08
7440.00	52.47	PK	74	21.53	52.02	37.04	7.25	43.84	0.45
7440.00	41.82	PK	54	12.18	41.37	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):			80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Antenna Cable Pre- Value Factor Factor amplific (dBuV) (dB/m) (dB) (dB)		amplifier	Correction Factor (dB/m)	
4960.00	59.00	PK	74	15.00	62.08	32.73	5.66	41.47	-3.08
4960.00	41.58	AV	54	12.42	44.66	32.73	5.66	41.47	-3.08
7440.00	50.77	PK	74	23.23	50.32	37.04	7.25	43.84	0.45
7440.00	40.20	PK	54	13.80	39.75	37.04	7.25	43.84	0.45

Page 19 of 49 Report No.: CTA24121200701

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	Frequency(MHz):		24	02	Pola	rity:	Н	ORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	62.20	PK	74	11.80	72.62	27.42	4.31	42.15	-10.42
2390.00	44.06	AV	54	9.94	54.48	27.42	4.31	42.15	-10.42
Freque	Frequency(MHz):		24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.97	PK	74	14.03	70.39	27.42	4.31	42.15	-10.42
2390.00	42.10	AV	54	11.90	52.52	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	rity:	Н	ORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.55	PK	74	12.45	71.66	27.7	4.47	42.28	-10.11
2483.50									
2400.00	43.32	AV	54	10.68	53.43	27.7	4.47	42.28	-10.11
U-Cap-o and	43.32 ncy(MHz)		54 24		53.43			42.28 VERTICAL	
U-Cap-o and		: sion vel			53.43	27.7			
Freque Frequency	ncy(MHz) Emis Le	: sion vel	24 Limit	80 Margin	53.43 Pola Raw Value	27.7 arity: Antenna Factor	Cable Factor	VERTICAL Pre- amplifier	Correction Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- CTA TESTING 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 20 of 49 Report No.: CTA24121200701

Maximum Peak Output Power

Limit (P

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-1.51		TEST
GFSK	39	0.11	20.97	Pass
	78	0.49		
-18/	G 00	-2.37		
π/4DQPSK	39	-0.73	20.97	Pass
	78	-0.34		
1	00	-2.38	-ING	
8DPSK	39	-0.81	20.97	Pass
	78	-0.36	CIA	

Page 21 of 49 Report No.: CTA24121200701

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

<u>Test Results</u>			CTAT
Modulation	Channel	20dB bandwidth (MHz)	Resul
TING	CH00	0.951	
GFSK	CH39	0.948	
CTA.	CH78	0.957	
	CH00	1.323	NG
π/4DQPSK	CH39	1.332	Pass
	CH78	1.338	
	CH00	1.287	
8DPSK	CH39	1.323	
ING	CH78	1.284	

CTATESTING Test plot as follows:

Page 22 of 49 Report No.: CTA24121200701

Page 23 of 49 Report No.: CTA24121200701

Page 24 of 49 Report No.: CTA24121200701

Page 25 of 49 Report No.: CTA24121200701

Frequency Separation

LIMIT

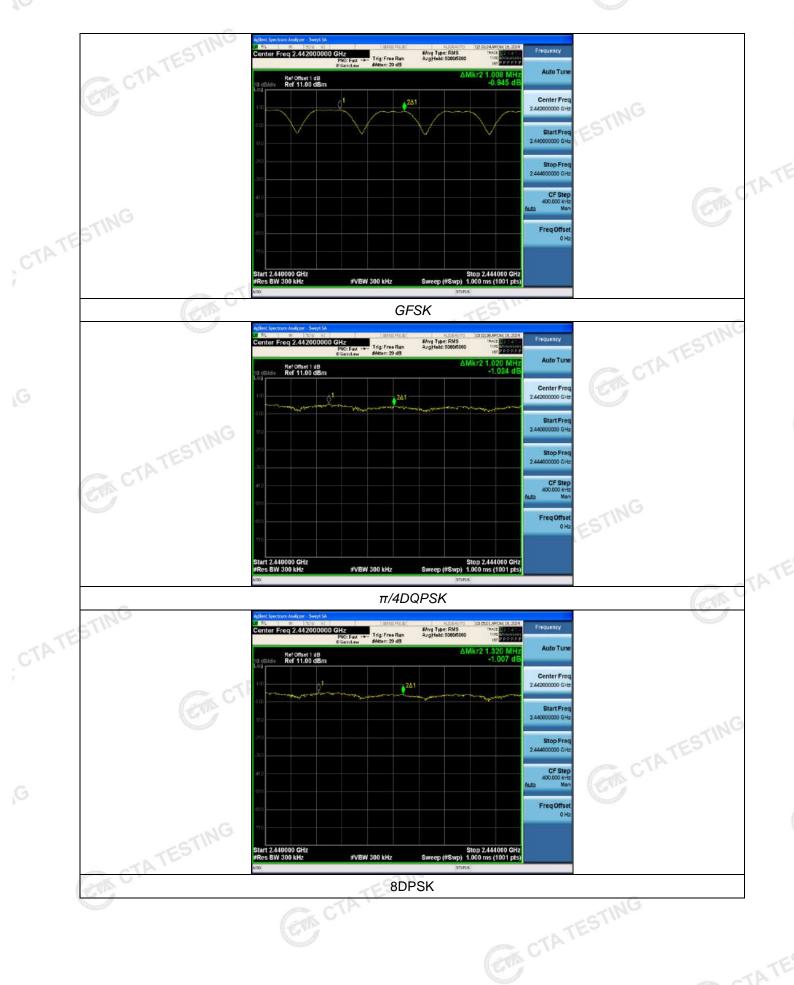
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.008	25KHz or 2/3*20dB	Pass	
Grak	CH39	1.006	bandwidth	Fd55	
π/4DQPSK	CH38	1.020	25KHz or 2/3*20dB	Pass	
II/4DQF3K	CH39	1.020	bandwidth	Fa55	
8DPSK	CH38	1 220	25KHz or 2/3*20dB	Pass	
ODPSK	CH39 1.320 23KH2 GF 2			F d 5 5	
Note:	C.		-A TES		

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTA TESTING

Page 26 of 49 Report No.: CTA24121200701

Page 27 of 49 Report No.: CTA24121200701

Number of hopping frequency

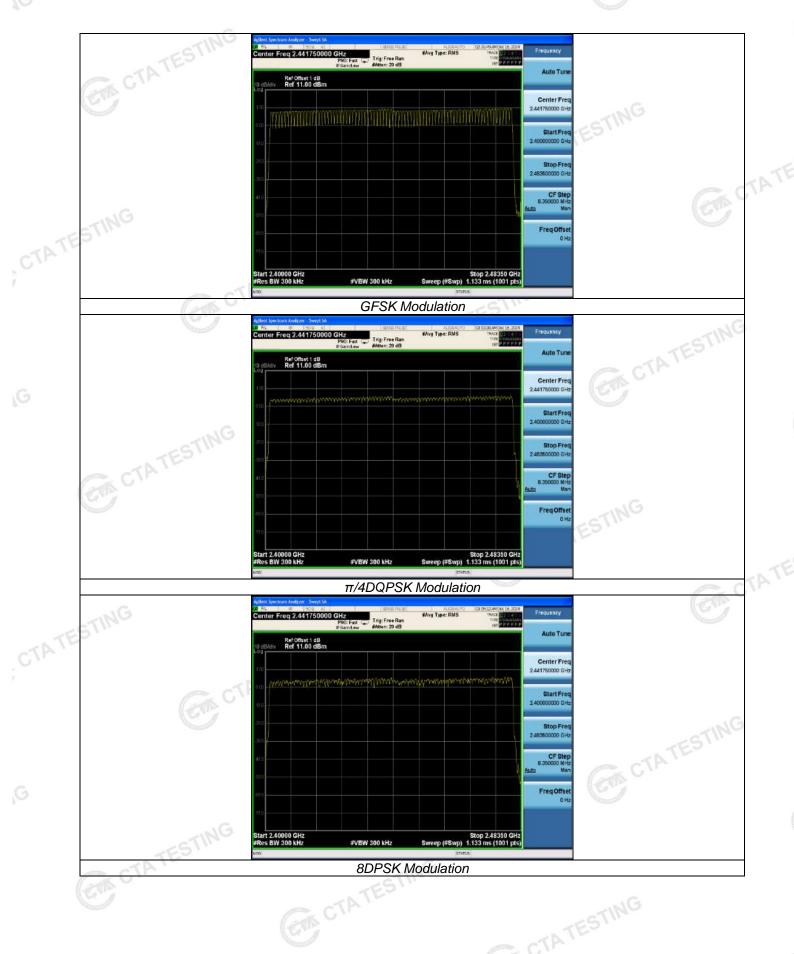
Limit CAP

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	(21	6
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Report No.: CTA24121200701 Page 28 of 49

Page 29 of 49 Report No.: CTA24121200701

Time of Occupancy (Dwell Time)

Limit

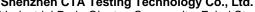
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

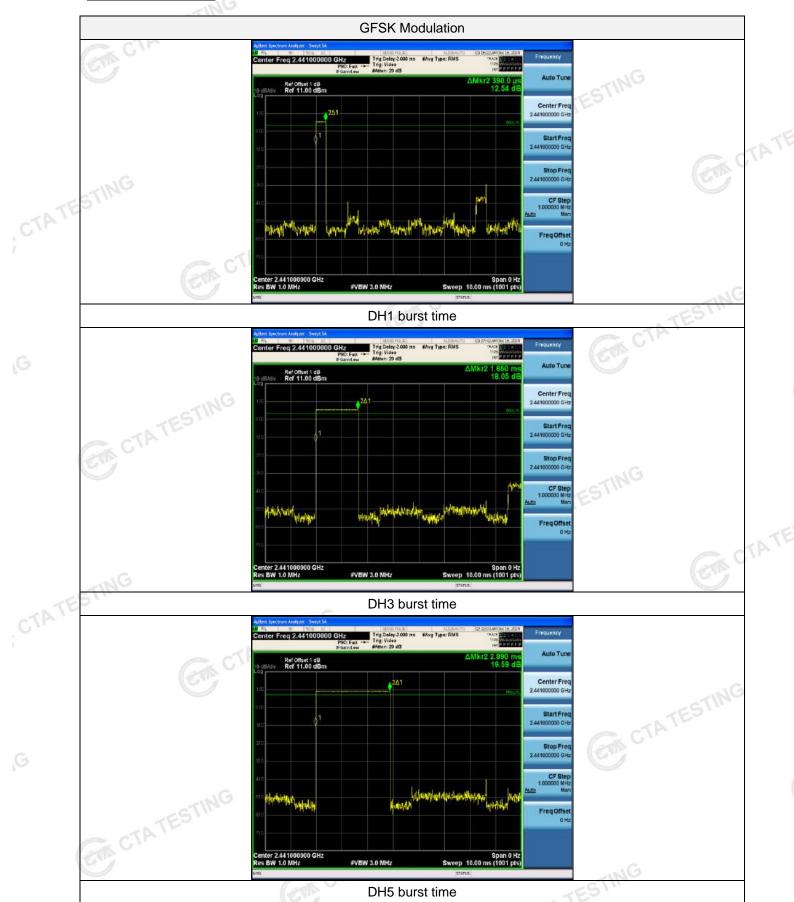
Test Configuration

Test Results

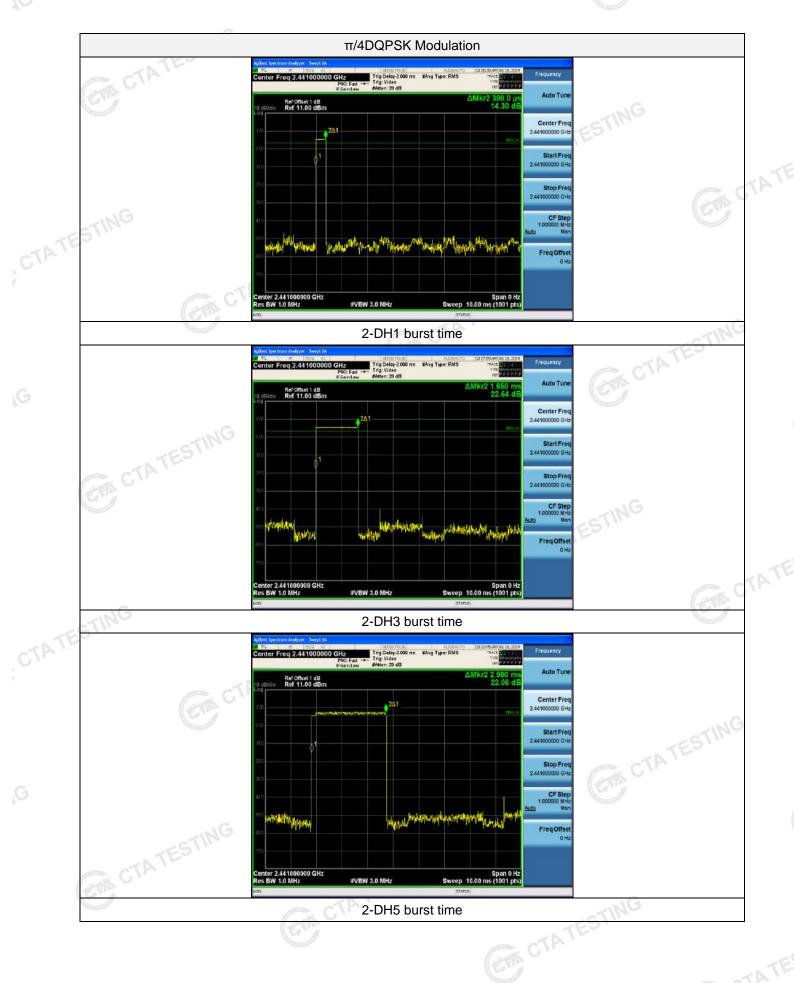

Test Results			CTATES		
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.390	0.125		
GFSK	DH3	1.650	0.264	0.40	Pass
TATES	DH5	2.890	0.308		
CIT	2-DH1	0.390	0.125		
π/4DQPSK	2-DH3	1.650	0.264	0.40	Pass
	2-DH5	2.900	0.309	TES!"	
	3-DH1	0.390	0.125	CTIA	
8DPSK	3-DH3	1.640	0.262	0.40	Pass
	3-DH5	2.900	0.309		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

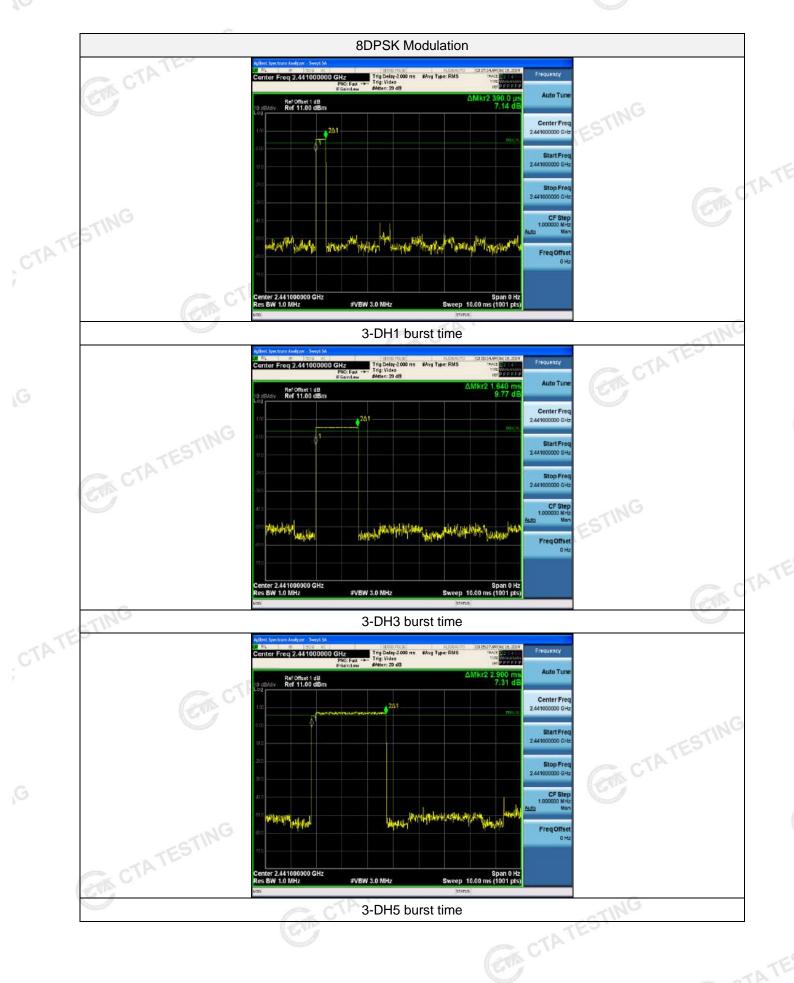
Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5 CTA TESTING



Page 30 of 49 Report No.: CTA24121200701

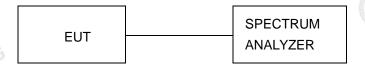

Test plot as follows:

Page 31 of 49 Report No.: CTA24121200701

Page 32 of 49 Report No.: CTA24121200701

Page 33 of 49 Report No.: CTA24121200701

Out-of-band Emissions

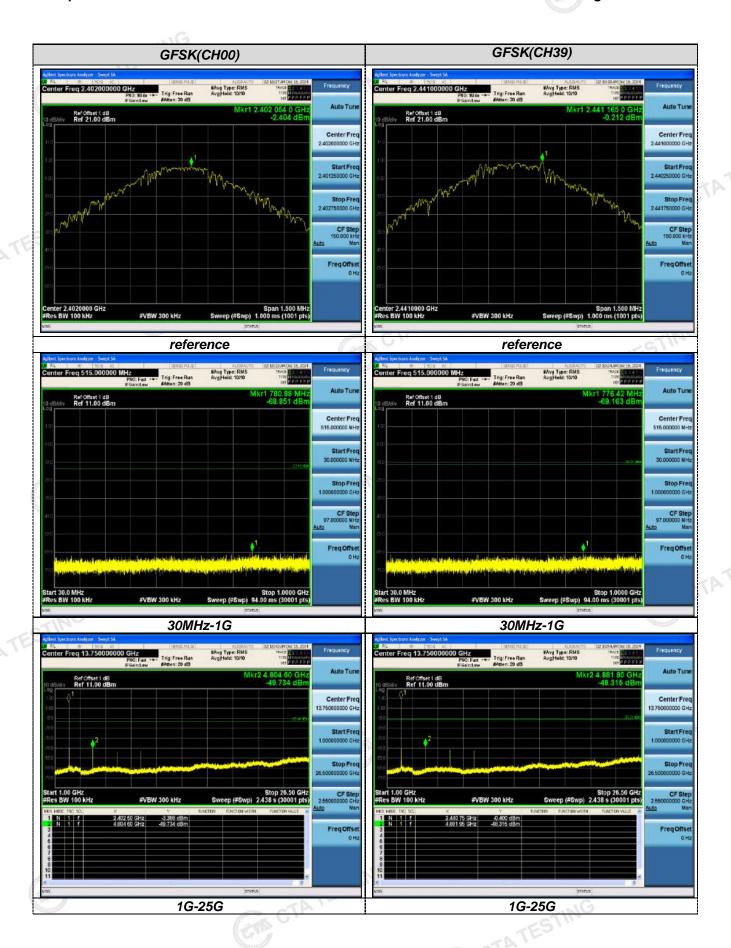

Limit C

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

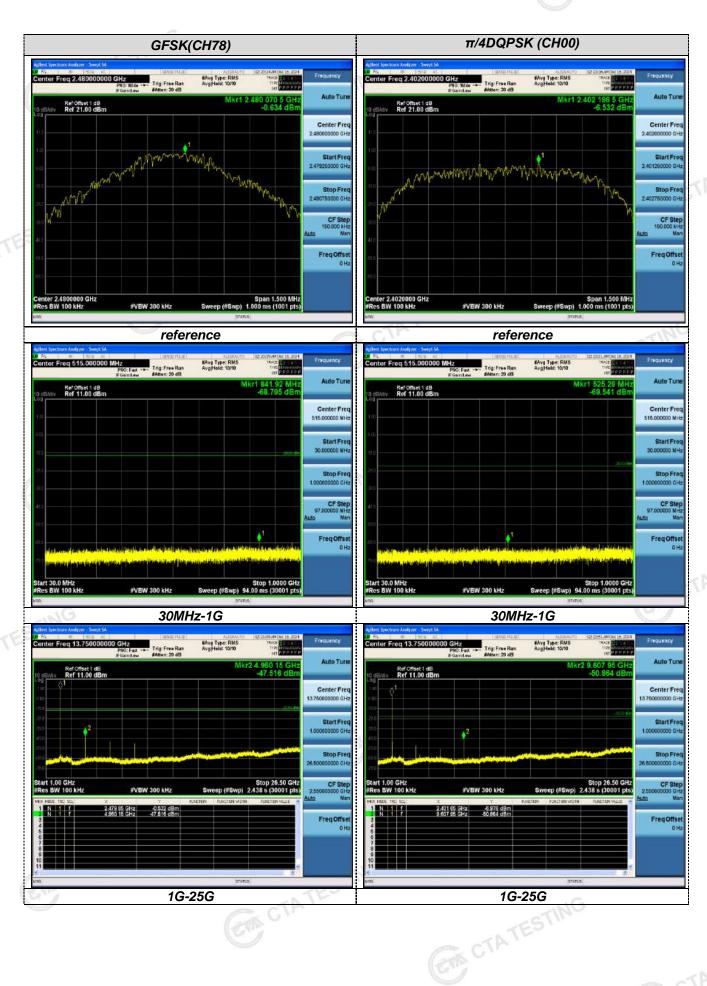
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

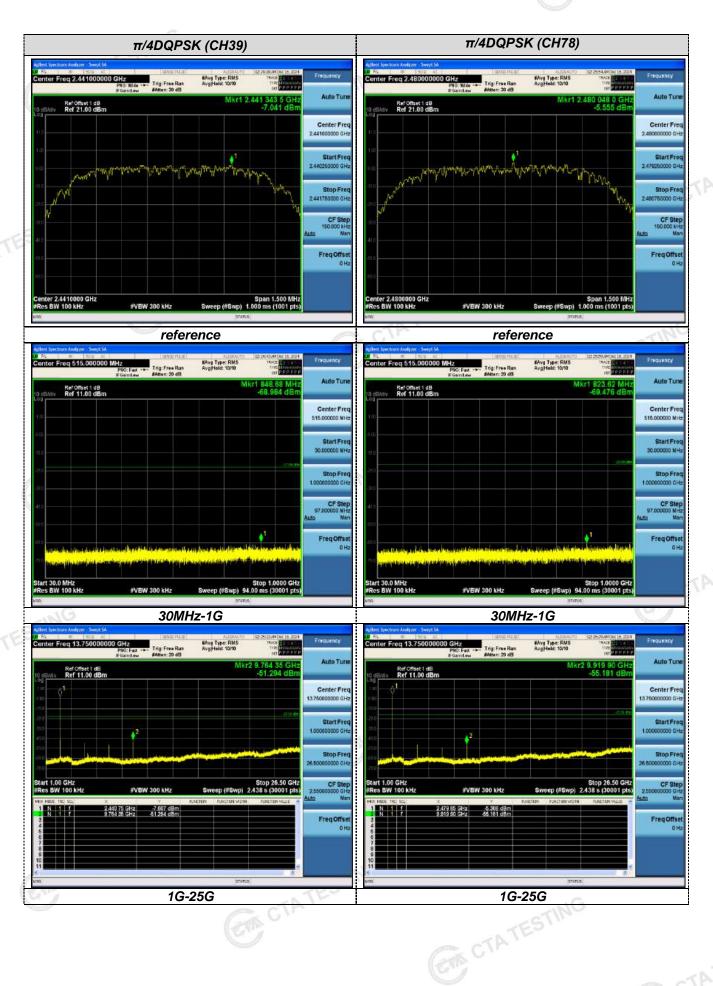
Test Configuration



Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5


Test plot as follows:


Page 35 of 49 Report No.: CTA24121200701

Page 36 of 49 Report No.: CTA24121200701

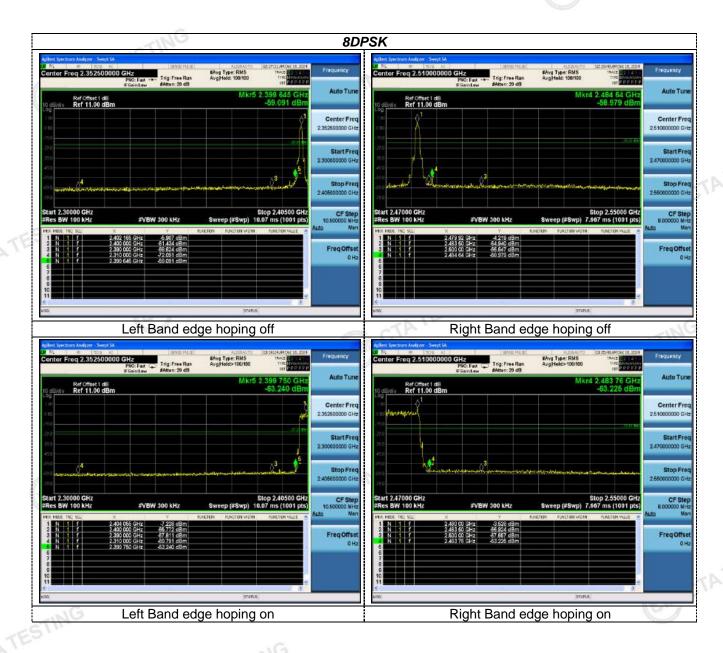
Page 37 of 49 Report No.: CTA24121200701

Page 38 of 49 Report No.: CTA24121200701

Page 39 of 49 Report No.: CTA24121200701

Band-edge Measurements for RF Conducted Emissions: **GFSK** enter Freq 2.352500000 GHz
PNO: Fax --- Trig: Fre- Rus
Alten: 20 dB May Type: RMS Aug Hole: 100/100 May Type: RMS Avg Hole: 100/100 Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Center Free Stop 2.40500 GHz ep (#Swp) 10.07 ms (1001 pts Stop 2.55000 GHz Sweep (#Swp) 7.667 ms (1001 pts) start 2.47000 GHz Res BW 100 kHz FreqOffs Left Band edge hoping off Right Band edge hoping off May Type: RMS Avg Holds 100/100 Auto Tur Auto Tun Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Center Free #VBW 300 kHz Freq Offset 0 Hz

Left Band edge hoping on


CTATESTING

Right Band edge hoping on

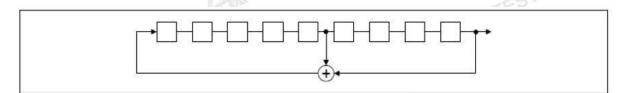
Page 40 of 49 Report No.: CTA24121200701

Page 41 of 49 Report No.: CTA24121200701

Page 42 of 49 Report No.: CTA24121200701

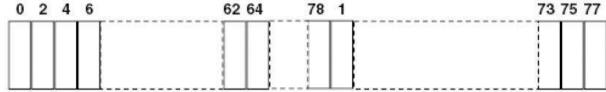
Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 43 of 49 Report No.: CTA24121200701

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

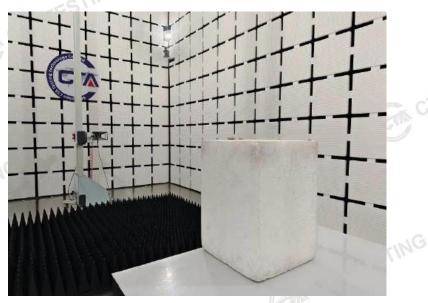
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. CTATESTING

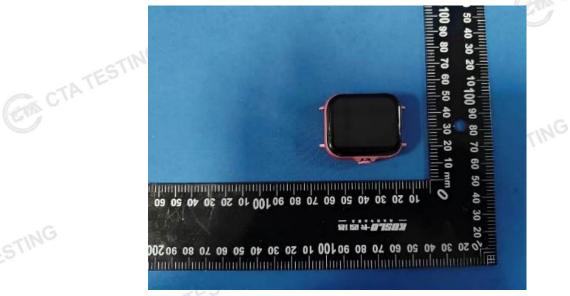
Antenna Connected Construction

The maximum gain of antenna was 0.62 dBi


Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

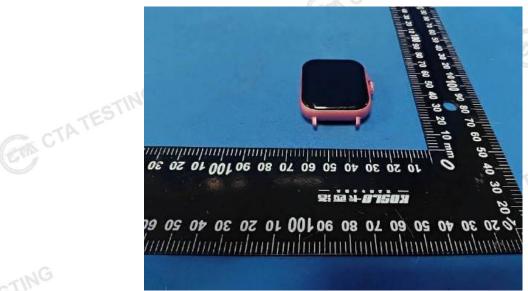
Report No.: CTA24121200701 Page 44 of 49

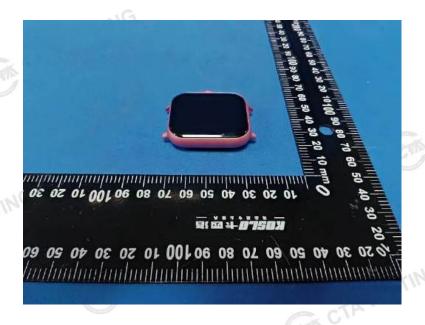
5 Test Setup Photos of the EUT



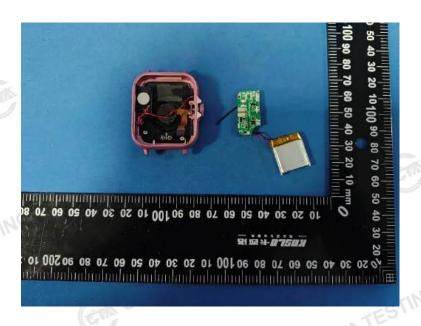
Page 45 of 49 Report No.: CTA24121200701

Photos of the EUT

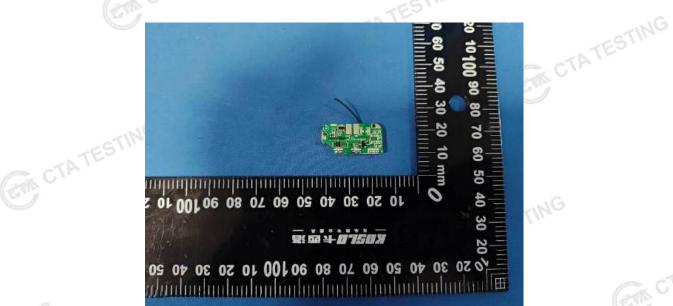




Page 46 of 49 Report No.: CTA24121200701



Page 47 of 49 Report No.: CTA24121200701



Page 48 of 49 Report No.: CTA24121200701

Report No.: CTA24121200701 Page 49 of 49

CTATESTINGEnd of Report.....