

Global United Technology Services Co., Ltd.

Report No.: GTSL202101000016F02

TEST Report

Applicant: Guangdong Unis Technology, Co., Ltd

Address of Applicant: Zheng An Road 1, West Disrtict, Zhongshan, Guangdong

Manufacturer: Guangdong Unis Technology, Co., Ltd

Address of Zheng An Road 1, West Disrtict, Zhongshan, Guangdong

Manufacturer:

Equipment Under Test (EUT)

Product Name: Smart Box

Model No.: A-453

Trade Mark: N/A

FCC ID: 2AQKM-A-453

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jan.14,2021

Date of Test: Jan.14,2021- Mar.02,2021

Date of report issued: Mar.02,2021

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Mar.02,2021	Original

Tested/ Prepared By	Joseph Cly	Date:	Mar.02,2021
-	Project Engineer		
Check By:	Johnson Lux	Date:	Mar.02,2021
	Poviowor		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
	CONTENTS	
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
5.1	1 GENERAL DESCRIPTION OF EUT	5
5.2	2 Test Mode	7
5.3	3 DESCRIPTION OF SUPPORT UNITS	7
5.4		
5.5	5 ABNORMALITIES FROM STANDARD CONDITIONS	7
5.6	6 Test Facility	7
5.7		
5.8	8 ADDITIONAL INSTRUCTIONS	7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
7.1	1 ANTENNA REQUIREMENT	10
7.2	2 CONDUCTED EMISSIONS	11
7.3	3 CONDUCTED PEAK OUTPUT POWER	14
7.4	4 20DB EMISSION BANDWIDTH	15
7.5		
7.6		
7.7		
7.8		
7.9		
	7.9.1 Conducted Emission Method	
	7.9.2 Radiated Emission Method	
7.1		
	7.10.1 Conducted Emission Method	
	7.10.2 Radiated Emission Method	
8	TEST SETUP PHOTO	49
a	ELIT CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of 9	5%.

5 General Information

5.1 General Description of EUT

Product Name:	Smart Box
Model No.:	A-453
Test sample(s) ID:	GTSL202101000016-1(Normal sample) GTSL202101000016-2(Engineer sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	FPC ANT
Antenna gain:	2.04dBi
Power supply:	DC 12V From External Circuit
Adapter Information:	Input: AC100-240V, 50/60Hz, 1.5A Output: DC 12V, 5A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Cond	ucted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021		
9	Power Sensor	Agilent	E9300A	GTS589	June. 25 2020	June. 24 2021		
10	Spectrum analyzer	Agilent	N9020A	GTS591	June. 25 2020	June. 24 2021		

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021			
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

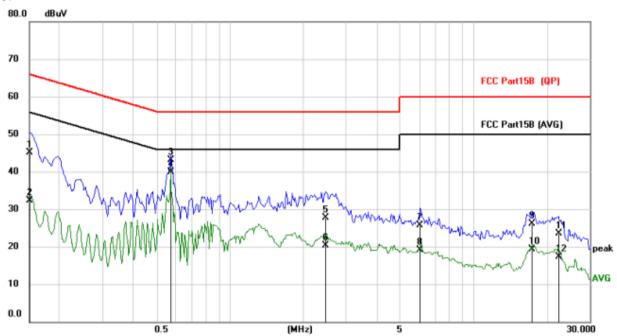
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is FPC ANT, the best case gain of the is 2.04dBi, reference to the appendix II for details

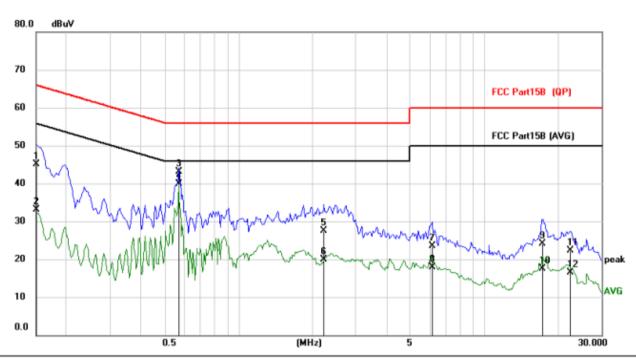
7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	7		
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto		
Limit:	Frequency range (MHz)		(dBuV)	
	0.15-0.5	Quasi-peak 66 to 56*		rage o 46*
	0.5-5	56	+	6
	5-30	60		0
	* Decreases with the logarithr	n of the frequency.	1	<u>,</u>
Test setup:	Reference Plane	;		
Test procedure:	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators in line impedance stabilization 500hm/50uH coupling impedance are in the participle of the participant of the particip	Filter — AC p EMI Receiver are connected to the n network (L.I.S.N.).	main power This provides uring equipm	s a ent.
	 The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: 	m/50uH coupling impose the block diagram of checked for maximum dishe maximum emishall of the interface cannot be seen to the coupling in the coupling in the interface cannot be seen to the coupling in the coupling impose the coupling in the coupling impose the coupling imp	edance with of the test se m conducted sion, the related by the solution of the conducted sion, the related by the solution of the conducted by the conducted b	50ohm tup and ative e changed
Test Instruments:	Refer to section 6.0 for details	3		_
Test mode:	Refer to section 5.2 for details	3		
Test environment:	Temp.: 25 °C Hur	mid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz	1	1	
Test results:	Pass			


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:


Line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	34.13	10.92	45.05	66.00	-20.95	QP	
2		0.1500	21.36	10.92	32.28	56.00	-23.72	AVG	
3		0.5712	32.22	10.92	43.14	56.00	-12.86	QP	
4	*	0.5712	29.06	10.92	39.98	46.00	-6.02	AVG	
5		2.4627	16.63	10.98	27.61	56.00	-28.39	QP	
6		2.4627	9.26	10.98	20.24	46.00	-25.76	AVG	
7		6.0537	14.59	11.15	25.74	60.00	-34.26	QP	
8		6.0537	7.89	11.15	19.04	50.00	-30.96	AVG	
9		17.3754	14.63	11.56	26.19	60.00	-33.81	QP	
10		17.3754	7.68	11.56	19.24	50.00	-30.76	AVG	
11		22.3283	11.73	11.77	23.50	60.00	-36.50	QP	
12		22.3283	5.51	11.77	17.28	50.00	-32.72	AVG	

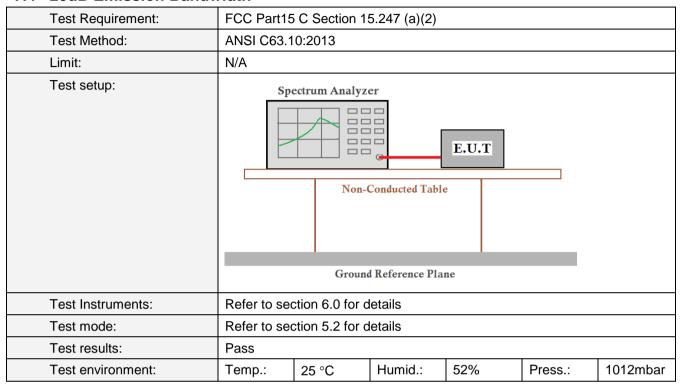
Neutral:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	34.09	10.92	45.01	66.00	-20.99	QP	
2		0.1500	22.26	10.92	33.18	56.00	-22.82	AVG	
3		0.5712	32.26	10.92	43.18	56.00	-12.82	QP	
4	*	0.5712	28.99	10.92	39.91	46.00	-6.09	AVG	
5		2.2325	16.46	10.98	27.44	56.00	-28.56	QP	
6		2.2325	8.89	10.98	19.87	46.00	-26.13	AVG	
7		6.1239	12.35	11.15	23.50	60.00	-36.50	QP	
8		6.1239	6.68	11.15	17.83	50.00	-32.17	AVG	
9		17.2545	12.59	11.56	24.15	60.00	-35.85	QP	
10		17.2545	5.86	11.56	17.42	50.00	-32.58	AVG	
11		22.5195	10.56	11.78	22.34	60.00	-37.66	QP	
12		22.5195	4.73	11.78	16.51	50.00	-33.49	AVG	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

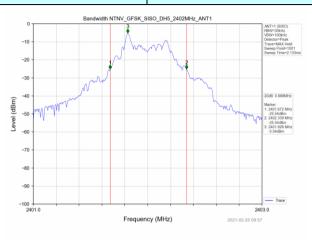
7.3 Conducted Peak Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Limit:	30dBm(for	30dBm(for GFSK),20.97dBm(for EDR)						
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table							
		Ground Reference Pla	ane					
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	-4.92			
GFSK	Middle	-3.51	30.00	Pass	
	Highest	-4.03			
	Lowest	-3.18			
π/4-DQPSK	Middle	-1.76	20.97	Pass	
	Highest	-2.25			
	Lowest	-3.41			
8-DPSK	Middle	-2.00	20.97	Pass	
	Highest	-2.48			

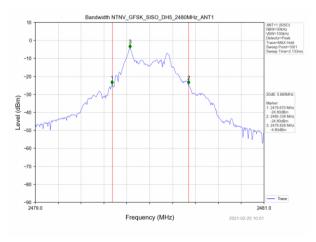
7.4 20dB Emission Bandwidth


Measurement Data

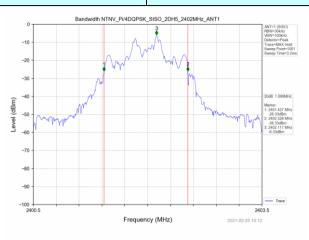
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
	Lowest	0.668		
GFSK	Middle	0.619	Pass	
	Highest	0.669		
	Lowest	1.099		
π/4-DQPSK	Middle	1.115	Pass	
	Highest	1.119		
	Lowest	1.172		
8-DPSK	Middle	1.174	Pass	
	Highest	1.170		

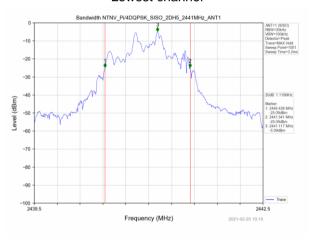


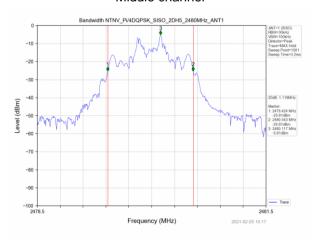
Test plot as follows:


Test mode: GFSK mode

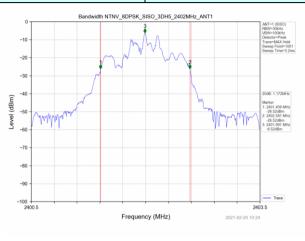
Lowest channel


Middle channel

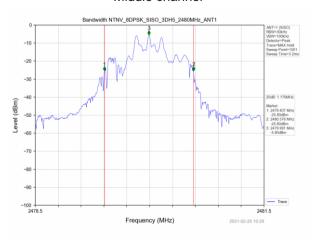

Highest channel


Test mode: π/4-DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

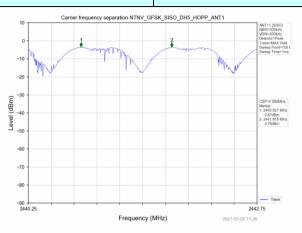
Middle channel

Highest channel

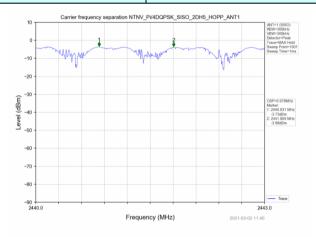
7.5 Frequencies Separation

Test Requirement:	FCC Part18	5 C Section 1	5.247 (a)(1)						
Test Method:	ANSI C63.	10:2013							
Receiver setup:	RBW=100h	RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth π/4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sp								
Test Instruments:	Refer to se	ction 6.0 for o	details						
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data


Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	0.990	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.978	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	0.999	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

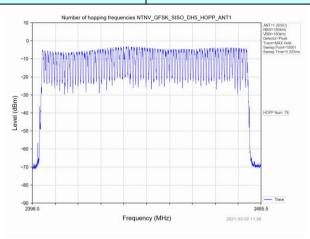
Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

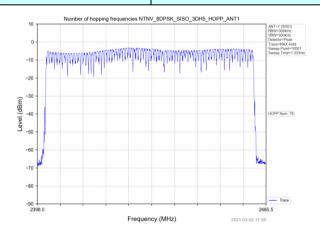
7.6 Hopping Channel Number

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak						
Limit:	15 channel	S						
Test setup:	Spe			E.U.T				
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Measurement Data:

Mode	Hopping channel numbers	Limit	Result	
GFSK	79	≥15	Pass	
π/4-DQPSK	79		Pass	
8-DPSK	79		Pass	

Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

7.7 Dwell Time

Test Requirement:	FCC Part15	C Section 15	5.247 (a)(1)					
Test Method:	ANSI C63.1	0:2013						
Receiver setup:	RBW=1MH	z, VBW=1MH	Iz, Span=0Hz	z, Detector=P	eak			
Limit:	0.4 Second	0.4 Second						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to sec	ction 6.0 for d	etails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	0.393	125.760	400	Pass
2441MHz	DH3	1.647	273.402	400	Pass
2441MHz	DH5	2.896	321.456	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5

$\pi/4$ -DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	0.385	123.200	400	Pass
2441MHz	2DH3	1.639	267.157	400	Pass
2441MHz	2DH5	2.885	311.580	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5

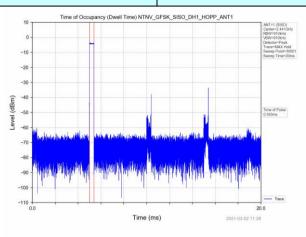
8-DPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	0.384	122.880	400	Pass
2441MHz	3DH3	1.633	241.684	400	Pass
2441MHz	3DH5	2.885	271.190	400	Pass

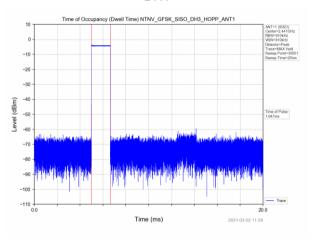
Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

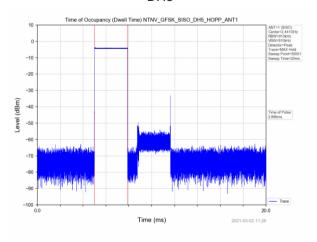
Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5, 3-DH5

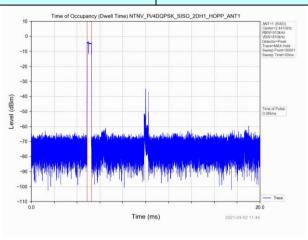
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

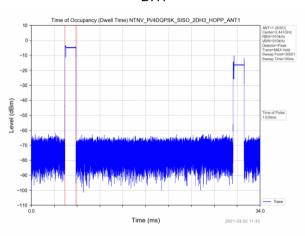


Test plot as follows: GFSK mode:

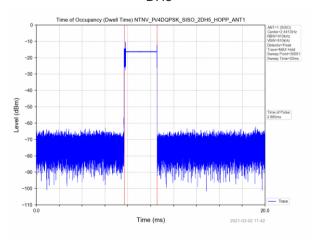

Test channel: 2441MHz

DH1


DH3

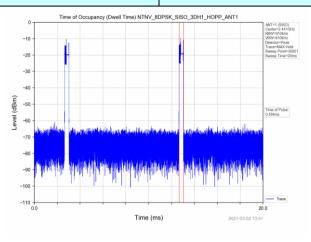


π/4-DQPSK mode:

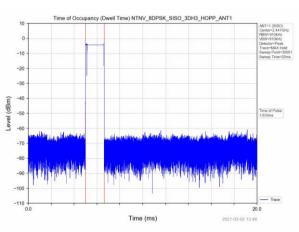

Test channel: 2441MHz

DH1

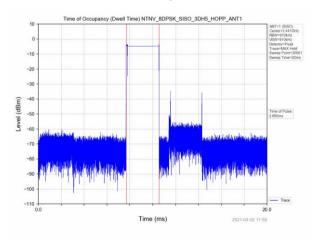
DH3



DH5



8-DPSK mode:


Test channel: 2441MHz

DH1

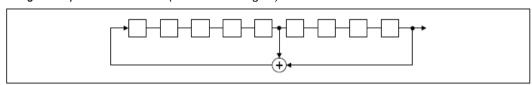
DH3

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1)/g/h requirement:

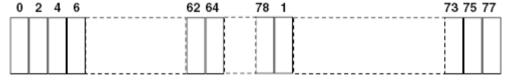
a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

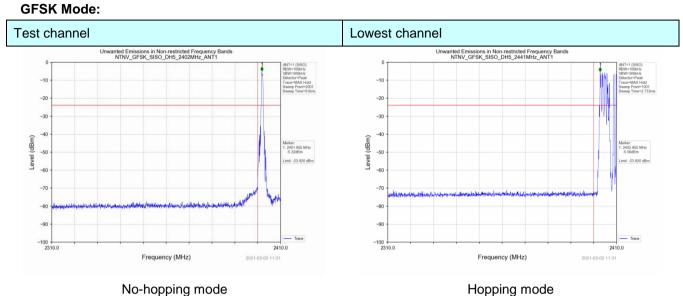
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

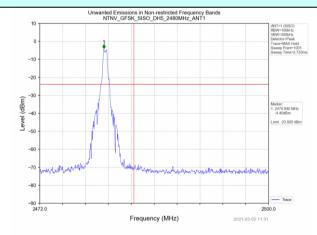
it permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

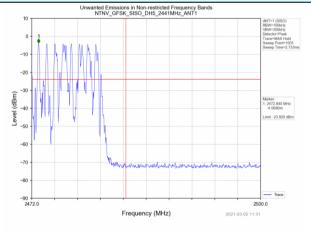
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


7.9 Band Edge

7.9.1 Conducted Emission Method

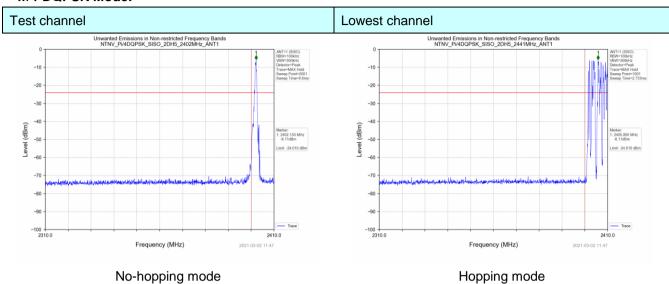
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					



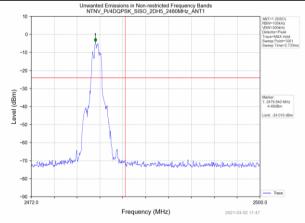

Test plot as follows:

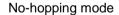
Test channel:

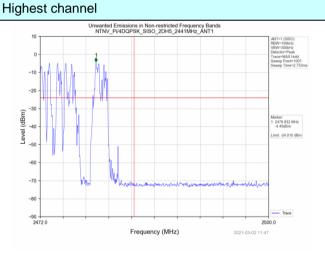
Highest channel



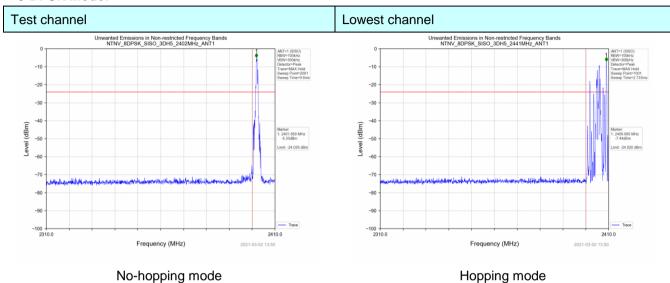
No-hopping mode


Hopping mode

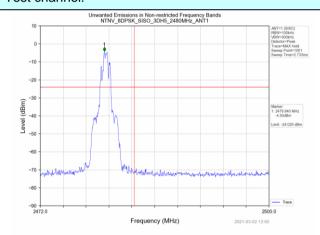


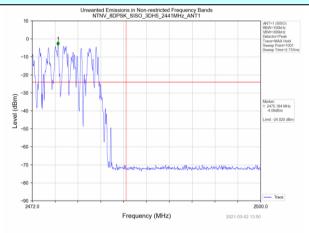

π/4-DQPSK Mode:

Test channel:



Hopping mode




8-DPSK Mode:

Test channel:

Highest channel

No-hopping mode

Hopping mode

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measureme	ent Distance:	3m				
Receiver setup:	Frequenc	y Dete	ctor	RBW	VBV	V Re	emark
·	Above 1GI	Hz Pea		1MHz 1MHz	3MH 10H:		k Value ge Value
Limit:	Fre	equency	L	₋imit (dBu\	//m @3n	n) Re	emark
	Abo	ve 1GHz		54. 74.			ge Value k Value
Test setup:	Test Antenna+ < 1m 4m >v < 150 cm >+ < 150 cm >+ < 2 m 4m >v < 3 m > < 1 m 4m >v < 1 m						
Test Procedure:	1. The EUT	was placed			Preamplifier+ tating tak		s above the
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test Instruments:	Refer to sec	ction 6.0 for c	letails				
Test mode:		ction 5.2 for c	letails				
Test results:	Pass		1	Г		1	1
Test environment:	Temp.:	25 °C	Humi	d.: 52	%	Press.:	1012mbar

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Tionzontar	110101 0000)					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	59.23	-5.68	53.55	74	-20.45	peak
2390	43.16	-5.68	37.48	54	-16.52	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

v ortioai.						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	62.47	-5.68	56.79	74	-17.21	peak
2390	45.83	-5.68	40.15	54	-13.85	AVG
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.						

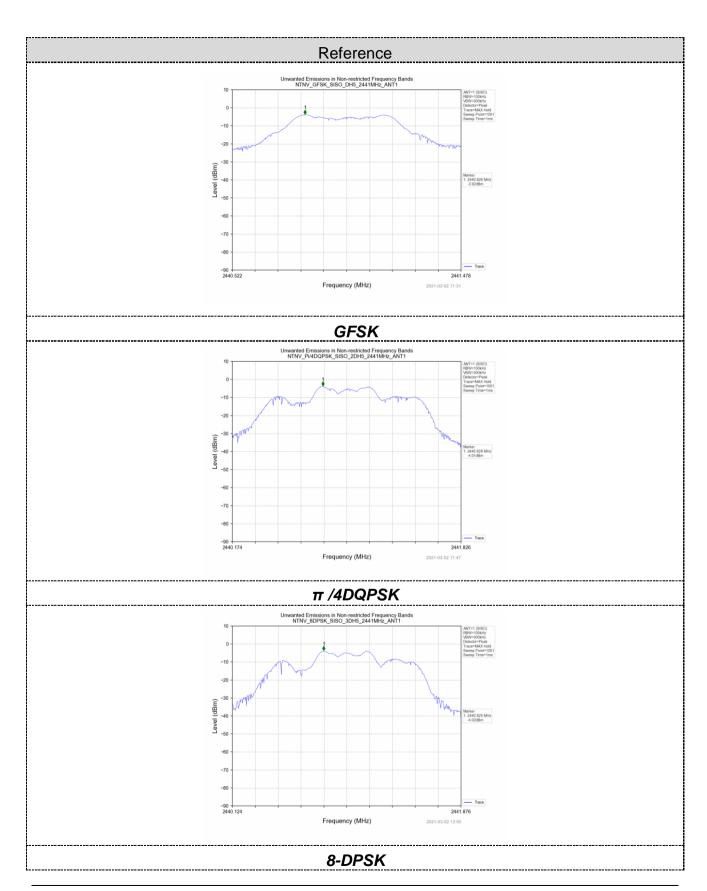
Operation Mode: GFSK TX High channel (2480MHz)

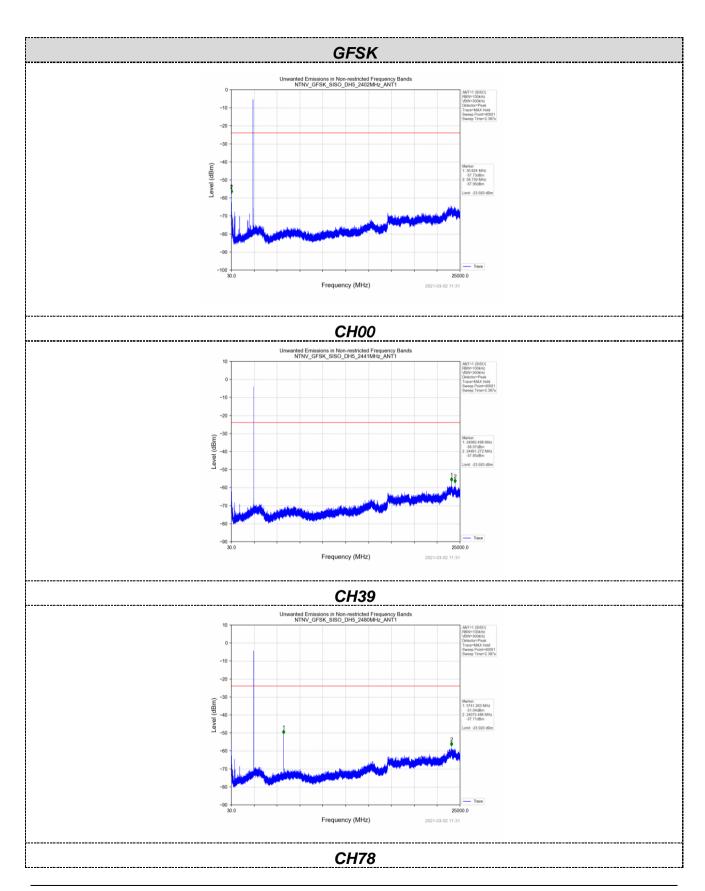
Horizontal (Worst case)

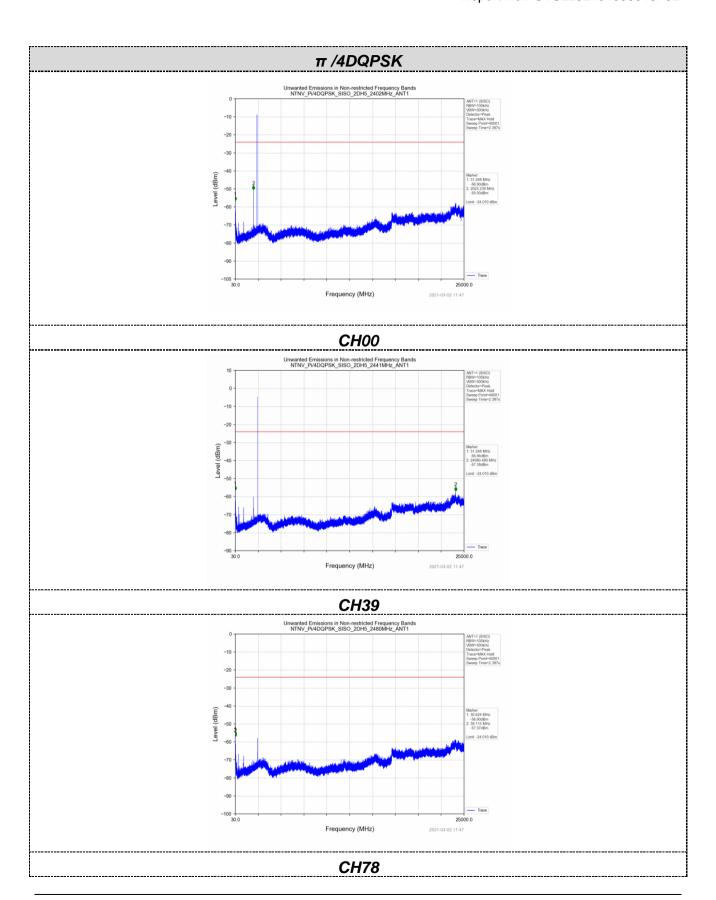
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	60.55	-5.85	54.7	74	-19.3	peak
2483.5	43.16	-5.85	37.31	54	-16.69	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

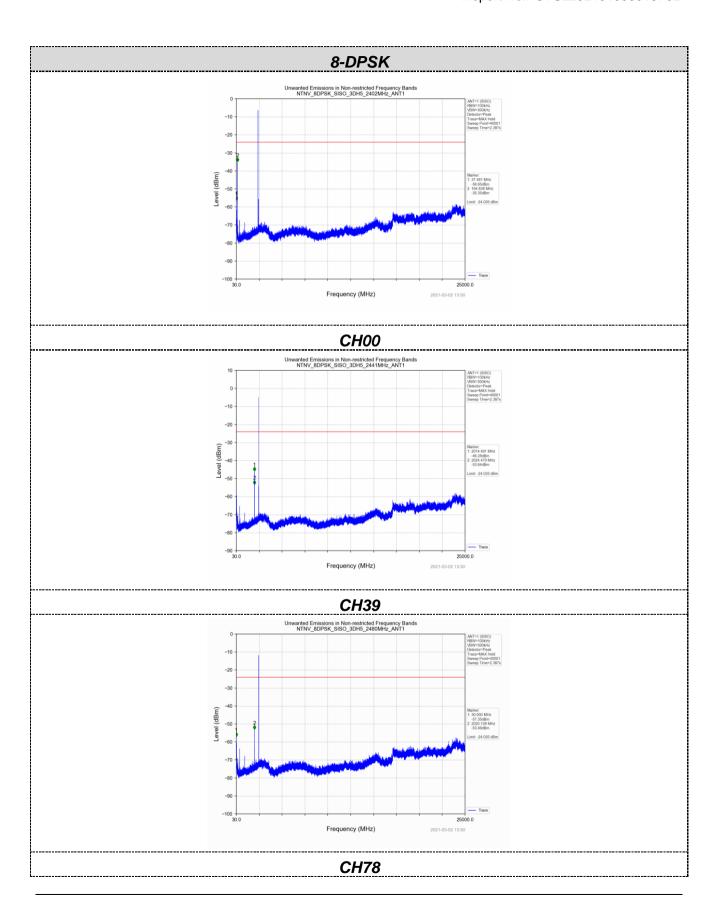
Vertical:

	Detector
(MHz) (dBµV) (dB) (dB	V/m) (dBµV/m) (dB) Type
2483.5 62.49 -5.85 5	.64 74 -17.36 peak
2483.5 45.78 -5.85 3	.93 54 -14.07 AVG

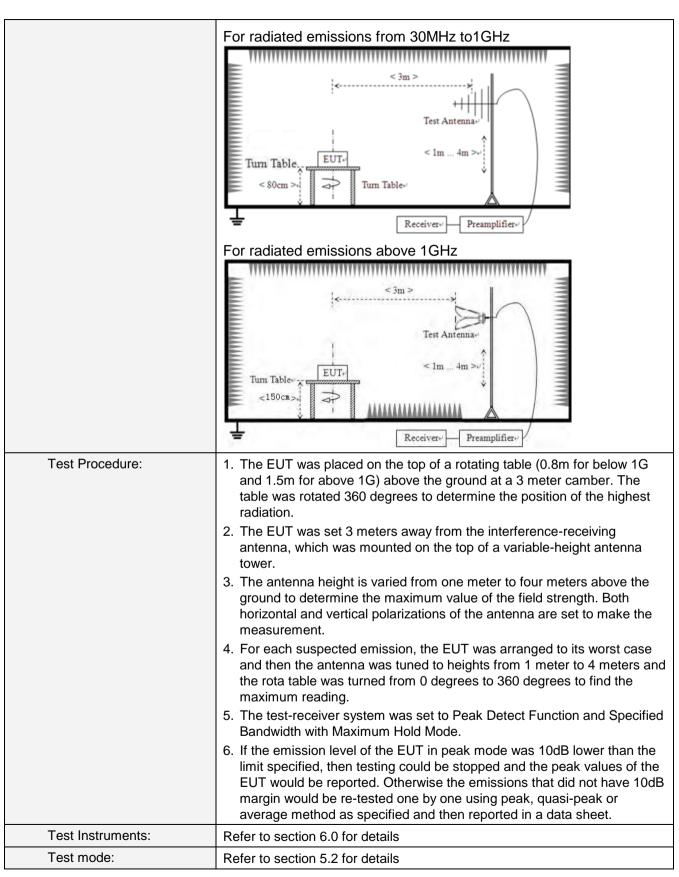

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.




7.10 Spurious Emission


7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					



7.10.2 Radiated Emission Method

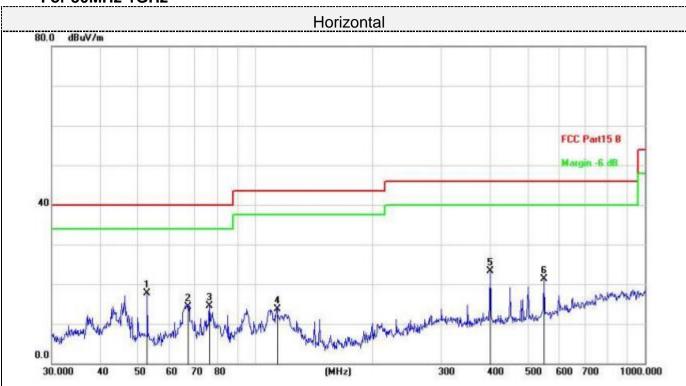
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	ice: 3	3m					
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	,	Value
	9KHz-150KHz	Qι	ıasi-peak	2001	Ηz	600H	z	Quasi-peak
	150KHz-30MHz	Qι	ıasi-peak	9KF	łz	30KH	z	Quasi-peak
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KF	lz	Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u>z</u>	Peak
	Above 1GHz		Peak	1MF	Ηz	10Hz	<u>-</u>	Average
Limit:	Frequency	Limit (u\	//m)	٧	'alue	M	leasurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m
	1.705MHz-30MH	30			QP		30m	
	30MHz-88MHz	100			QP			
	88MHz-216MHz	<u>'</u>	150			QP		
	216MHz-960MH	Z	200			QP		3m
	960MHz-1GHz		500		QP			Sili
	Above 1GHz		500		Average			
	Above Toriz		5000		Peak			
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MH	Z		
	Turn Table EUT Im Table Im Receiver							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

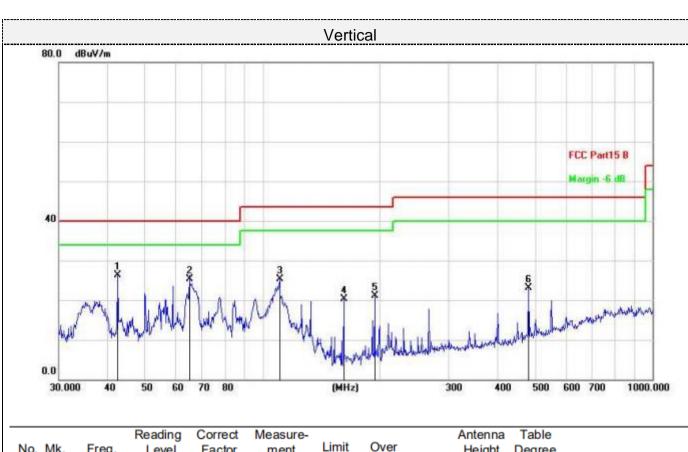
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
-	*	52.7600	36.27	-18.54	17.73	40.00	-22.27	QP			
2	2	67.2022	33.94	-19.60	14.34	40.00	-25.66	QP			
3	}	76.2442	35.03	-20.48	14.55	40.00	-25.45	QP			
4		113.7142	33.89	-20.10	13.79	43.50	-29.71	QP			
	,	400.4318	39.42	-16.17	23.25	46.00	-22.75	QP			
(5	550.9479	35.33	-13.99	21.34	46.00	-24.66	QP			

Final Level =Receiver Read level + Correct Factor

1	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
	1	*	42.4508	44.35	-18.13	26.22	40.00	-13.78	QP			
	2		64.8865	44.66	-19.33	25.33	40.00	-14.67	QP			
	3		110.5687	45.52	-20.19	25.33	43.50	-18.17	QP			
	4		161.4742	36.87	-16.56	20.31	43.50	-23.19	QP			
	5		193.7728	41.01	-20.00	21.01	43.50	-22.49	QP			
	6		480.5276	38.76	-15.67	23.09	46.00	-22.91	QP			

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
(IVII IZ)	(αΒμν)	(ub)	(αΒμν/ιιι)	(αδμν/π)	(ub)	Туре			
4804	61.79	-3.61	58.18	74	-15.82	peak			
4804	46.88	-3.61	43.27	54	-10.73	AVG			
7206	57.86	-0.85	57.01	74	-16.99	peak			
7206	44.54	-0.85	43.69	54	-10.31	AVG			
	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4804	60.16	-3.61	56.55	74	-17.45	peak			
4804	47.02	-3.61	43.41	54	-10.59	AVG			
7206	56.35	-0.85	55.5	74	-18.5	peak			
7206	45.47	-0.85	44.62	54	-9.38	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

CH Middle (2441MHz)

Horizontal:

Fraguenay	Meter Reading	Factor	Emission Level	Limits	Morgin	
Frequency	ivieter Reading	Factor	Emission Level	Limits	Margin	Dotootor
(8.41.1)	(15.10)	(15)	(15.)(/.)	(15.) (1.)	(15)	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	61.36	-3.49	57.87	74	-16.13	peak
4882	46.48	-3.49	42.99	54	-11.01	AVG
7326	59.59	-0.8	58.79	74	-15.21	peak
7326	44.34	-0.8	43.54	54	-10.46	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	ss – Pre-amplifier.			

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4882	61.11	-3.49	57.62	74	-16.38	peak			
4882	45.23	-3.49	41.74	54	-12.26	AVG			
7326	55.09	-0.80	54.29	74	-19.71	peak			
7326	43.06	-0.8	42.26	54	-11.74	AVG			
Remark: Facto	or = Antenna Fac	tor + Cable Los	ss – Pre-amplifier.						

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4960	61.37	-3.41	57.96	74	-16.04	peak			
4960	46.47	-3.41	43.06	54	-10.94	AVG			
7440	57.59	-0.72	56.87	74	-17.13	peak			
7440	44.06	-0.8	43.26	54	-10.74	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(NALL=)	(-ID3-0)	(4D)	(dD:)//)	(-ID)//)		Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	62.12	-3.41	58.71	74	-15.29	peak
4960	46.31	-3.41	42.9	54	-11.1	AVG
7440	56.05	-0.72	55.33	74	-18.67	peak
7440	43.85	-0.8	43.05	54	-10.95	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960