

PCTEST

18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.247 / ISED RSS-247 Bluetooth

Applicant Name:Date of Testing:Apple Inc.12/02/2021-01/17/2022One Apple Park WayTest Site/Location:Cupertino, CA 95014PCTEST Morgan Hill, CA, USAUnited StatesTest Report Serial No.:1C2111150079-12.BCG

FCC ID:	
IC:	
APPLICANT:	

BCGA2589

579C-A2589

Apple Inc.

Certification

Application Type: Model/HVIN: EUT Type: Max. RF Output Power: Frequency Range: Type of Modulation: FCC Classification: FCC Rule Part(s): ISED Specification: Test Procedure(s):

A2589 (A2591) Tablet Device 70.469 mW (18.48 dBm) Peak Conducted 2402 – 2480MHz GFSK, π /4-DQPSK, 8DPSK FCC Part 15 Spread Spectrum Transmitter (DSS) Part 15 Subpart C (15.247) RSS-247 Issue 2 ANSI C63.10-2013

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 1 01 95
© 2022 PCTEST			V 10.5 12/15/2021

TABLE OF CONTENTS

1.0	INTRODUCTION	
	1.1 Scope	
	1.2 PCTEST Test Location	3
	1.3 Test Facility / Accreditations	
2.0	PRODUCT INFORMATION	4
	2.1 Equipment Description	4
	2.2 Device Capabilities	4
	2.3 Antenna Description	6
	2.4 Test Support Equipment	6
	2.5 Test Configuration	7
	2.6 Software and Firmware	7
	2.7 EMI Suppression Device(s)/Modifications	7
3.0	DESCRIPTION OF TESTS	
	3.1 Evaluation Procedure	
	3.2 AC Line Conducted Emissions	
	3.3 Radiated Emissions	9
	3.4 Environmental Conditions	9
4.0	ANTENNA REQUIREMENTS	
5.0	MEASUREMENT UNCERTAINTY	
6.0	TEST EQUIPMENT CALIBRATION DATA	
7.0	TEST RESULTS	
	7.1 Summary	
	7.2 Bandwidth Measurement	
	7.3 Output Power Measurement	
	7.3.1 Peak Output Power Measurement	
	7.3.2 Average Output Power Measurement	
	7.4 Conducted Authorized Band Edge	
	7.5 Carrier Frequency Separation	
	7.6 Time of Occupancy	
	7.7 Number of Hopping Channels	
	7.8 Conducted Spurious Emissions	
	7.9 Radiated Spurious Emissions – Above 1GHz	
	7.9.1 Radiated Restricted Band Edge Measurements	74
	7.10 Radiated Spurious Emissions – Below 1GHz	
	7.11 AC Line-Conducted Emissions Measurement	
8.0	CONCLUSION	

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 2 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 2 of 95
© 2022 PCTEST V 10.5 12/15/2021			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Morgan Hill, CA 95037, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 5 01 95
© 2022 PCTEST			V 10.5 12/15/2021

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Tablet Device FCC ID: BCGA2589 and IC: 579C-A2589**. The test data contained in this report pertains only to the emissions due to the EUT's Bluetooth transmitter.

- This Bluetooth module has been tested by manufacturer and the following were confirmed:
 - A) The hopping sequence is pseudorandom
 - B) All channels are used equally on average
 - C) The receiver input bandwidth equals the transmit bandwidth
 - D) The receiver hops in sequence with the transmit signal
- 15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.
- 15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

Test Device Serial No.: V4MRX6207M, HCVMXQ057K, Q76G9F2X5F, H2QQT9962G

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, EDR, LE1M, LE2M, HDR4, HDR8), WPT

Ch.	Frequency (MHz)
00	2402
:	:
39	2441
:	:
78	2480

Table 2-1. Bluetooth Frequency/ Channel Operations

Note: This device is capable of operating in hopping and non-hopping mode. The EUT can hop between 79 different channels in the 2400 – 2483.5MHz band. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 D01 v05r02 and ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 4 of 95
© 2022 PCTEST	-		V 10.5 12/15/2021

Measured Duty Cycles					
PT Mode		Duty Cycle (%)			
BT Mode		Antenna 3A	Antenna 1A	TxBF	
050// (555	ePA	100.0	100.0	100.0	
GFSK / BDR	iPA	100.0	100.0	100.0	
8PSK / EDR	ePA	100.0	100.0	100.0	
8PSK/EDR	iPA	100.0	100.0	100.0	
	ePA	100.0	100.0	100.0	
π / 4 - DQPSK	iPA	100.0	100.0	100.0	

Table 2-2. Measured Duty Cycles

This device supports simultaneous transmission operations, which allows for multiple transmitters to transmit simultaneously on the same antenna. The table below shows all configurations possible.

	Simultaneous		Bluetooth	WCDMA / LTE / FR1 NR	LTE / F	R1 NR	UNII
Antenna	Tx Config	802.11 b/g/n/ax	BDR, EDR, HDR4/8, LE1/2M	Mid Band	High Band	Ultra High Band	802.11 a/n/ac/ax
3A	Config 1	×	✓	×	×	×	~
3A	Config 2	✓	×	×	✓	×	×
3A	Config 3	×	✓	×	✓	×	×
3A	Config 4	×	✓	×	✓	×	~
3A	Config 5	×	×	×	~	*	~
3A	Config 6	~	×	✓	×	×	×
3A	Config 7	×	\checkmark	✓	×	*	×
3A	Config 8	×	\checkmark	✓	×	×	\checkmark
3A	Config 9	×	×	✓	×	×	\checkmark
1A	Config 10	~	×	×	✓	*	×
1A	Config 11	×	~	×	✓	×	×
1A	Config 12	~	×	✓	×	×	×
1A	Config 13	×	\checkmark	\checkmark	×	×	×
1B	Config 14	×	×	×	×	\checkmark	\checkmark
2B	Config 15	×	×	×	×	\checkmark	\checkmark

Table 2-3. Simultaneous Transmission Configurations

✓ = Support; × = Not Support

FCC ID: BCGA2589 IC: 579C-A2589	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 5 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 5 of 95
© 2022 PCTEST	-		V 10.5 12/15/2021

Note:

Wi-Fi 2.4GHz and Bluetooth 2.4 GHz can transmit simultaneously on separate antennas. 2.4 GHz WLAN Antenna 3a can only transmit simultaneously with 2.4GHz Bluetooth Antenna 1a. In this scenario Wi-Fi max power will not exceed minimum of (13.5dBm, SAR max cap, Regulatory max cap) power.

2.3 Antenna Description

Following antenna gains provided by manufacturer were used for testing.

Frequency	Antenna Gain (dBi)			
[GHz]	Antenna 3A	Antenna 1A		
2.4	1.3	1.5		
Table 2.4. Highast Antonna Cain				

Table 2-4. Highest Antenna Gain

2.4 Test Support Equipment

1	Apple MacBook Pro	Model:	A2141	S/N:	C02DV7VKMD6T
	w/AC/DC Adapter	Model:	A2166	S/N:	N/A
2	Apple USB-C Cable	Model:	Chimp	S/N:	420A57
3	Apple USB-C Cable	Model:	Spartan	S/N:	000MKTR02U
4	USB-C Cable	Model:	A146	S/N:	N/A
	w/ AC Adapter	Model:	A2305	S/N:	N/A
5	Apple Pencil	Model:	N/A	S/N:	GQXGSXBJKM9
6	DC Power Supply	Model:	KPS3010D	S/N:	N/A
-	T - 1.				

Table 2-5. Test Support Equipment List

FCC ID: BCGA2589 IC: 579C-A2589	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 6 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was also used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8 for antenna port conducted emissions test setups.

There are two vendors of the WiFi/Bluetooth radio modules, variant 1 and variant 2. Both radio modules have the same mechanical outline, same on-board antenna matching circuit, identical antenna structure, and are built and tested to conform to the same specifications and to operate within the same tolerances. The worst case configuration was found between the two variants. The EUT was also investigated with and without charger.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

For AC line conducted and radiated test below 1GHz, following configuration were investigated and the worst case was reported.

- EUT powered by AC/DC adaptor via USB-C cable with wire charger
- EUT powered by host PC via USB-C cable with wire charger

 π /4-DQPSK has been investigated and confirmed as not the worst case.

All possible simultaneous transmission configurations have been investigated and the worst case config has been reported.

Description	LTE (Band 41)	Bluetooth	U-NII
Antenna	Antenna 3A	Antenna 3A	Antenna 3A
Channel	40640	78	36
Operating Frequency (MHz)	2595	2480	5180
Mode/Modulation	QPSK/1RB/20MHz	GFSK ePA	802.11n

Table 2-6. Worst Case Simultaneous Transmission Configuration

2.6 Software and Firmware

The test was conducted with firmware version 19E11500Q installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: BCGA2589 IC: 579C-A2589	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 7 of 05	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 7 of 95	
© 2022 PCTEST	•		V 10.5 12/15/2021	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOS 2X48A filters (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that the cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.12. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.50.40.

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 8 of 95
© 2022 PCTEST	-		V 10.5 12/15/2021

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was rotated about its vertical axis while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 0 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 9 of 95
© 2022 PCTEST			V 10.5 12/15/2021

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 95	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 10 01 95	
© 2022 PCTEST			V 10.5 12/15/2021	

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.65
Line Conducted Disturbance	2.75
Radiated Disturbance (<30MHz)	4.06
Radiated Disturbance (30MHz - 1GHz)	4.30
Radiated Disturbance (1 - 18GHz)	4.78
Radiated Disturbance (>18GHz)	4.79

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 11 01 95
© 2022 PCTEST			V 10.5 12/15/2021

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	3/31/2021	Annual	3/31/2022	MY49430244
Anritsu	ML2496A	Power Meter	11/29/2021	Annual	11/29/2022	184005
Anritsu	MA2411B	Pulse Power Sensor	11/30/2021	Annual	11/30/2022	1726261
Anritsu	MA2411B	Pulse Power Sensor	11/30/2021	Annual	11/30/2022	1726262
ATM	180-442A-KF	20dB Nominal Gain Horn Antenna	8/13/2021	Annual	8/13/2022	T058701-01
Com-Power Corporation	LIN-120A	Line Impedance Stabilization Network (LISN)	3/29/2021	Annual	3/29/2022	241297
ETS-Lindgren	3142E	Biconilog Antenna (26-6000MHz)	10/21/2021	Annual	10/21/2022	208204
ETS-Lindgren	3117	Double Ridged Guide Horn Antenna (1-18GHz)	10/25/2021	Annual	10/25/2022	227597
Rohde & Schwarz	TS-PR8	Pre-Amplifier (30MHz-6GHz)	1/6/2022	Annual	1/6/2023	102328
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz-18GHz)	1/6/2022	Annual	1/6/2023	101639
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz-40GHz)	4/29/2021	Annual	4/29/2022	100051
Rohde & Schwarz	ESW26	EMI Test Receiver	6/11/2021	Annual	6/11/2022	101299
Rohde & Schwarz	ESW44	EMI Test Receiver	12/2/2021	Annual	12/2/2022	101570
Rohde & Schwarz	HFH2-Z2	Loop Antenna	4/5/2021	Annual	4/5/2022	100519
Rohde & Schwarz	FSV40	Signal Analyzer (10Hz-40GHz)	3/16/2021	Annual	3/16/2022	101619
Rohde & Schwarz	FSVA3044	Signal Analyzer (up to 44 GHz)	4/26/2021	Annual	4/26/2022	101098

Table 6-1. Test Equipment List

Notes:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 12 of 95
© 2022 PCTEST	÷		V 10.5 12/15/2021

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	BCGA2589
IC:	<u>579C-A2589</u>
Method/System:	Frequency Hopping Spread Spectrum (FHSS)

79

Number of Channels:

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(1)	RSS-247 [5.1(a)]	20dB Bandwidth	N/A		N/A	Section 7.2
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	N/A		N/A	Section 7.2
15.247(b)(1)	RSS-247 [5.4(b)]	Peak Transmitter Output Power	< 1 Watt if <u>></u> 75 non- overlapping channels used		PASS	Section 7.3
15.247(a)(1)	RSS-247 [5.1(b)]	Channel Separation	> 2/3 of 20 dB BW for systems with Output Power < 125mW	CONDUCTED	PASS	Section 7.5
15.247(a)(1)(iii)	RSS-247 [5.1(d)]	Time of Occupancy	< 0.4 sec in 31.6 sec period		PASS	Section 7.7
15.247(a)(1)(iii)	RSS-247 [5.1(d)]	Number of Channels	> 15 Channels		PASS	Section 7.6
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	> 20dBc		PASS	Section 7.4 Section 7.8
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-247 limits)	RADIATED	PASS	Section 7.9, Section 7.9.1, Section 7.10
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen [8.8] limits)	LINE CONDUCTED	PASS	Section 7.11

Table 7-1. Summary of Test Results

Notes:

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "BT Auto," Version 4.0.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.2.

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 12 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 13 of 95
© 2022 PCTEST V 10.5 12/15/2021			

7.2 Bandwidth Measurement §2.1049; §15.247 (a.1); RSS-247 [5.1(a)]; RSS-Gen [6.7]

Test Overview and Limit

The bandwidth at 20dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.10-2013 – Subclause 6.9.2 RSS-Gen [6.7]

Test Settings

- The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 99% occupied bandwidth and the 20dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 20. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% OBW
- 3. VBW \geq 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation.
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep = auto couple
- 8. The trace was allowed to stabilize
- If necessary, steps 2 7 were repeated after changing the RBW such that it would be within 1 5% of the 99% occupied bandwidth observed in Step 7

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ eliment	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 14 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

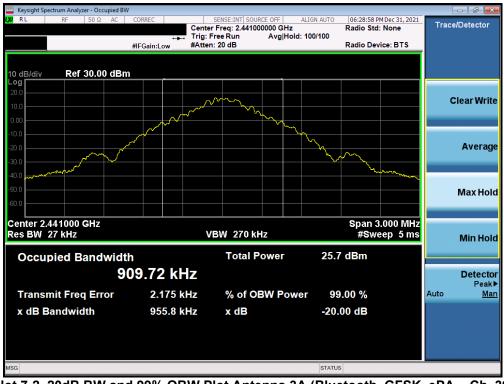
Test Notes

All supported modulation, antenna and power schemes have been tested on the unit and only worst case configuration is reported.

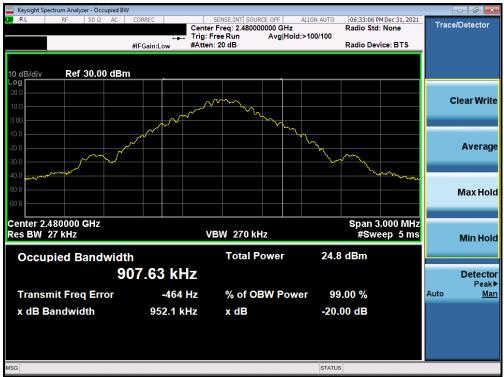
FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 15 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Antenna 3A

Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	Measured 99% Occupied Bandwidth [kHz]	Measured 20dB Bandwidth [kHz]
2402	1.0	GFSK	ePA	0	903.15	953.10
2441	1.0	GFSK	ePA	39	909.72	955.80
2480	1.0	GFSK	ePA	78	907.63	952.10
2402	3.0	8DPSK	ePA	0	1222.10	1364.00
2441	3.0	8DPSK	ePA	39	1234.50	1372.00
2480	3.0	8DPSK	ePA	78	1227.60	1374.00


Table 7-2. 20dB BW and 99% OBW Measurements Antenna 3A

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 16 of 95
© 2022 PCTEST			V 10.5 12/15/2021


Plot 7-1. 20dB BW and 99% OBW Plot Antenna 3A (Bluetooth, GFSK, ePA - Ch. 0)

Plot 7-2. 20dB BW and 99% OBW Plot Antenna 3A (Bluetooth, GFSK, ePA – Ch. 39)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 17 of 95
© 2022 PCTEST V 10.5 12/15/2021			

Plot 7-3. 20dB BW and 99% OBW Plot Antenna 3A (Bluetooth, GFSK, ePA – Ch. 78)

Plot 7-4. 20dB BW and 99% OBW Plot Antenna 3A (Bluetooth, 8DPSK, ePA - Ch. 0)

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 18 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021

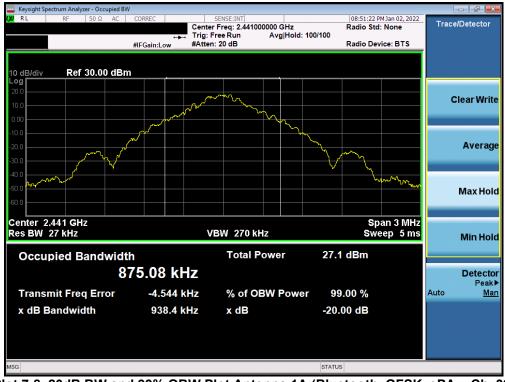
Plot 7-5. 20dB BW and 99% OBW Plot Antenna 3A (Bluetooth, 8DPSK, ePA – Ch. 39)

Plot 7-6. 20dB BW and 99% OBW Plot Antenna 3A (Bluetooth, 8DPSK, ePA – Ch. 78)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 19 of 95
© 2022 PCTEST			V 10.5 12/15/2021

Antenna 1A

Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	Measured 99% Occupied Bandwidth [kHz]	Measured 20dB Bandwidth [kHz]
2402	1.0	GFSK	ePA	0	876.69	942.10
2441	1.0	GFSK	ePA	39	875.08	938.40
2480	1.0	GFSK	ePA	78	871.54	942.90
2402	3.0	8DPSK	ePA	0	1223.30	1364.00
2441	3.0	8DPSK	ePA	39	1229.00	1374.00
2480	3.0	8DPSK	ePA	78	1229.90	1368.00

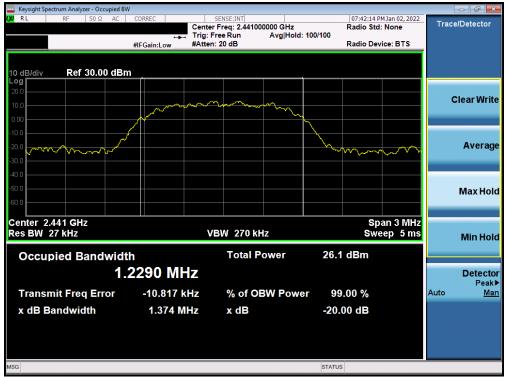

Table 7-3. 20dB BW and 99% OBW Bandwidth Measurements Antenna 1A

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 20 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Plot 7-7. 20dB BW and 99% OBW Plot Antenna 1A (Bluetooth, GFSK, ePA - Ch. 0)

Plot 7-8. 20dB BW and 99% OBW Plot Antenna 1A (Bluetooth, GFSK, ePA – Ch. 39)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 21 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 21 of 95
© 2022 PCTEST			V 10.5 12/15/2021


Plot 7-9. 20dB BW and 99% OBW Plot Antenna 1A (Bluetooth, GFSK, ePA – Ch. 78)


Plot 7-10. 20dB BW and 99% OBW Plot Antenna 1A (Bluetooth, 8DPSK, ePA – Ch. 0)

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 22 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

Plot 7-11. 20dB BW and 99% OBW Plot Antenna 1A (Bluetooth, 8DPSK, ePA – Ch. 39)

Plot 7-12. 20dB BW and 99% OBW Plot Antenna 1A (Bluetooth, 8DPSK, ePA – Ch. 78)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 23 of 95
© 2022 PCTEST			V 10.5 12/15/2021

7.3 Output Power Measurement §15.247 (b.1); RSS-247 [5.4(b)]

Test Overview and Limits

Measurement is made while the EUT is operating in non-hopping transmission mode. Peak and Average power measurements are performed using a broadband power meter with a pulse sensor.

The maximum peak conducted output power of frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels is 1 watt

The conducted output power limit on paragraph above is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For FHSS operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels. The e.i.r.p. shall not exceed 4 W.

Test Procedure Used

ANSI C63.10-2013 – Section 7.8.5 ANSI C63.10-2013 – Section 11.9.2.3.2 method AVGPM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Peak Power Measurement

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than the occupied bandwidth.


Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

<u>Note</u>

All supported modulations have been tested and π /4-DQPSK was found not as the worst case modulation so only GFSK and 8DPSK is reported.

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 24 01 95
© 2022 PCTEST			V 10.5 12/15/2021

7.3.1 Peak Output Power Measurement

Frequency [MHz]			Power Scheme	Channel No.		nducted wer	Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	EIRP [dBm]	EIRP Limit [dBm]	EIRP Margin
[ואוו וא]	[wiph3]		Scheine	NO.	[dBm]	[mW]	[dBm]	Margin [dB]	[abi]	[ubiii]	[abiii]	[dB]
2402	1.0	GFSK	ePA	0	12.90	19.498	30.00	-17.10	1.30	14.20	36.02	-21.82
2441	1.0	GFSK	ePA	39	13.04	20.137	30.00	-16.96	1.30	14.34	36.02	-21.68
2480	1.0	GFSK	ePA	78	12.91	19.543	30.00	-17.09	1.30	14.21	36.02	-21.81
2402	1.0	GFSK	iPA	0	11.75	14.962	30.00	-18.25	1.30	13.05	36.02	-22.97
2441	1.0	GFSK	iPA	39	11.75	14.962	30.00	-18.25	1.30	13.05	36.02	-22.97
2480	1.0	GFSK	iPA	78	12.04	15.996	30.00	-17.96	1.30	13.34	36.02	-22.68
2402	3.0	8DPSK	ePA	0	15.73	37.411	30.00	-14.27	1.30	17.03	36.02	-18.99
2441	3.0	8DPSK	ePA	39	15.72	37.325	30.00	-14.28	1.30	17.02	36.02	-19.00
2480	3.0	8DPSK	ePA	78	15.98	39.628	30.00	-14.02	1.30	17.28	36.02	-18.74
2402	3.0	8DPSK	iPA	0	10.33	10.789	30.00	-19.67	1.30	11.63	36.02	-24.39
2441	3.0	8DPSK	iPA	39	10.05	10.116	30.00	-19.95	1.30	11.35	36.02	-24.67
2480	3.0	8DPSK	iPA	78	10.28	10.666	30.00	-19.72	1.30	11.58	36.02	-24.44

Table 7-4. Peak Conducted Output Power Measurements Antenna 3A

Frequency	Data Rate	te Mod Power Channel Power Power Limit Pow		Conducted Power	Ant. Gain	EIRP	EIRP Limit	EIRP Margin				
[MHz]	[Mbps]		Scheme	No.	[dBm]	[mW]	[dBm]	Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]
2402	1.0	GFSK	ePA	0	14.00	25.119	30.00	-16.00	1.50	15.50	36.02	-20.52
2441	1.0	GFSK	ePA	39	14.07	25.527	30.00	-15.93	1.50	15.57	36.02	-20.45
2480	1.0	GFSK	ePA	78	14.04	25.351	30.00	-15.96	1.50	15.54	36.02	-20.48
2402	1.0	GFSK	iPA	0	11.30	13.490	30.00	-18.70	1.50	12.80	36.02	-23.22
2441	1.0	GFSK	iPA	39	11.43	13.900	30.00	-18.57	1.50	12.93	36.02	-23.09
2480	1.0	GFSK	iPA	78	11.49	14.093	30.00	-18.51	1.50	12.99	36.02	-23.03
2402	3.0	8DPSK	ePA	0	16.94	49.431	30.00	-13.06	1.50	18.44	36.02	-17.58
2441	3.0	8DPSK	ePA	39	16.92	49.204	30.00	-13.08	1.50	18.42	36.02	-17.60
2480	3.0	8DPSK	ePA	78	16.88	48.753	30.00	-13.12	1.50	18.38	36.02	-17.64
2402	3.0	8DPSK	iPA	0	10.29	10.691	30.00	-19.71	1.50	11.79	36.02	-24.23
2441	3.0	8DPSK	iPA	39	10.34	10.814	30.00	-19.66	1.50	11.84	36.02	-24.18
2480	3.0	8DPSK	iPA	78	10.04	10.093	30.00	-19.96	1.50	11.54	36.02	-24.48

Table 7-5. Peak Conducted Output Power Measurements Antenna 1A

							Peak Condu	ucted Power			Conducted	Conducted				
Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	Anten	ina 3A	Anten	ina 1A	Sum	imed	Power Limit	Power Margin	Directional Ant. Gain [dBi]	EIRP [dBm]	EIRP Limit [dBm]	EIRP Margin [dB]
					[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[dB]	[cipi]			
2402	1.0	GFSK	ePA	0	12.70	18.621	13.69	23.388	16.23	41.976	30.00	-13.77	4.41	20.64	36.02	-15.38
2441	1.0	GFSK	ePA	39	12.76	18.880	13.75	23.714	16.29	42.560	30.00	-13.71	4.41	20.70	36.02	-15.32
2480	1.0	GFSK	ePA	78	12.71	18.664	14.20	26.303	16.53	44.978	30.00	-13.47	4.41	20.94	36.02	-15.08
2402	1.0	GFSK	iPA	0	11.58	14.388	11.34	13.614	14.47	27.990	30.00	-15.53	4.41	18.88	36.02	-17.14
2441	1.0	GFSK	iPA	39	11.85	15.311	11.51	14.158	14.69	29.444	30.00	-15.31	4.41	19.10	36.02	-16.92
2480	1.0	GFSK	iPA	78	11.65	14.622	11.41	13.836	14.54	28.445	30.00	-15.46	4.41	18.95	36.02	-17.07
2402	3.0	8DPSK	ePA	0	15.26	33.574	15.42	34.834	18.35	68.391	30.00	-11.65	4.41	22.76	36.02	-13.26
2441	3.0	8DPSK	ePA	39	15.08	32.211	15.77	37.757	18.45	69.984	30.00	-11.55	4.41	22.86	36.02	-13.16
2480	3.0	8DPSK	ePA	78	14.83	30.409	16.03	40.087	18.48	70.469	30.00	-11.52	4.41	22.89	36.02	-13.13
2402	3.0	8DPSK	iPA	0	9.88	9.727	9.26	8.433	12.59	18.155	30.00	-17.41	4.41	17.00	36.02	-19.02
2441	3.0	8DPSK	iPA	39	10.02	10.046	9.61	9.141	12.83	19.187	30.00	-17.17	4.41	17.24	36.02	-18.78
2480	3.0	8DPSK	iPA	78	9.86	9.683	9.70	9.333	12.79	19.011	30.00	-17.21	4.41	17.20	36.02	-18.82

Table 7-6. Peak Conducted Output Power Measurements TxBF

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 25 of 95
© 2022 PCTEST	·		V 10.5 12/15/2021

7.3.2 Average Output Power Measurement

Frequency	uency Data Rate		Power	Channel	Avg Condu	cted Power	Conducted Power Limit	Conducted Power	Ant. Gain	EIRP	EIRP Limit	EIRP
[MHz]	[Mbps]	Mod.	Scheme	No.	[dBm]	[mW]	[dBm]	Margin [dB]	[dBi]	[dBm]	[dBm]	Margin [dB]
2402	1.0	GFSK	ePA	0	12.48	17.701	30.00	-17.52	1.30	13.78	36.02	-22.24
2441	1.0	GFSK	ePA	39	12.50	17.783	30.00	-17.50	1.30	13.80	36.02	-22.22
2480	1.0	GFSK	ePA	78	12.32	17.061	30.00	-17.68	1.30	13.62	36.02	-22.40
2402	1.0	GFSK	iPA	0	11.20	13.183	30.00	-18.80	1.30	12.50	36.02	-23.52
2441	1.0	GFSK	iPA	39	11.21	13.213	30.00	-18.79	1.30	12.51	36.02	-23.51
2480	1.0	GFSK	iPA	78	11.42	13.868	30.00	-18.58	1.30	12.72	36.02	-23.30
2402	3.0	8DPSK	ePA	0	12.26	16.827	30.00	-17.74	1.30	13.56	36.02	-22.46
2441	3.0	8DPSK	ePA	39	12.30	16.982	30.00	-17.70	1.30	13.60	36.02	-22.42
2480	3.0	8DPSK	ePA	78	12.50	17.783	30.00	-17.50	1.30	13.80	36.02	-22.22
2402	3.0	8DPSK	iPA	0	7.41	5.508	30.00	-22.59	1.30	8.71	36.02	-27.31
2441	3.0	8DPSK	iPA	39	7.02	5.035	30.00	-22.98	1.30	8.32	36.02	-27.70
2480	3.0	8DPSK	iPA	78	7.49	5.610	30.00	-22.51	1.30	8.79	36.02	-27.23

Table 7-7. Average Conducted Output Power Measurements Antenna 3A

Frequency	Data Rate	Mod.	Power	Channel	Avg Condu	cted Power	Conducted Power Limit	Conducted Power	Ant. Gain	EIRP	EIRP Limit	EIRP
[MHz]	[Mbps]	wou.	Scheme	No.	[dBm]	[mW]	[dBm]	Margin [dB]	[dBi]	[dBm]	[dBm]	Margin [dB]
2402	1.0	GFSK	ePA	0	13.70	23.442	30.00	-16.30	1.50	15.20	36.02	-20.82
2441	1.0	GFSK	ePA	39	13.77	23.823	30.00	-16.23	1.50	15.27	36.02	-20.75
2480	1.0	GFSK	ePA	78	13.73	23.605	30.00	-16.27	1.50	15.23	36.02	-20.79
2402	1.0	GFSK	iPA	0	11.10	12.882	30.00	-18.90	1.50	12.60	36.02	-23.42
2441	1.0	GFSK	iPA	39	11.23	13.274	30.00	-18.77	1.50	12.73	36.02	-23.29
2480	1.0	GFSK	iPA	78	11.33	13.583	30.00	-18.67	1.50	12.83	36.02	-23.19
2402	3.0	8DPSK	ePA	0	13.50	22.387	30.00	-16.50	1.50	15.00	36.02	-21.02
2441	3.0	8DPSK	ePA	39	13.46	22.182	30.00	-16.54	1.50	14.96	36.02	-21.06
2480	3.0	8DPSK	ePA	78	13.45	22.131	30.00	-16.55	1.50	14.95	36.02	-21.07
2402	3.0	8DPSK	iPA	0	7.31	5.383	30.00	-22.69	1.50	8.81	36.02	-27.21
2441	3.0	8DPSK	iPA	39	7.33	5.408	30.00	-22.67	1.50	8.83	36.02	-27.19
2480	3.0	8DPSK	iPA	78	7.18	5.224	30.00	-22.82	1.50	8.68	36.02	-27.34
	Table 7-8 Average Conducted Output Power Measurements Antenna 1A											

Table 7-8. Average Conducted Output Power Measurements Antenna 1A

						Average Conducted Power				Conducted		Directional			EIRP	
Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	Anten	ina 3A	Anten	ina 1A	Sum	imed	Power Limit	Power Margin	Ant. Gain	EIRP [dBm]	EIRP Limit [dBm]	Margin [dB]
[]	[bo]		Contonio		[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	[dBm] [dB]		[dBi]	[up.ii]	[0.5]	
2402	1.0	GFSK	ePA	0	12.37	17.258	13.34	21.577	15.89	38.815	30.00	-14.11	4.41	20.30	36.02	-15.72
2441	1.0	GFSK	ePA	39	12.40	17.378	13.51	22.439	16.00	39.811	30.00	-14.00	4.41	20.41	36.02	-15.61
2480	1.0	GFSK	ePA	78	12.15	16.406	13.80	23.988	16.06	40.365	30.00	-13.94	4.41	20.47	36.02	-15.55
2402	1.0	GFSK	iPA	0	11.33	13.583	11.05	12.735	14.20	26.303	30.00	-15.80	4.41	18.61	36.02	-17.41
2441	1.0	GFSK	iPA	39	11.47	14.028	11.12	12.942	14.31	26.977	30.00	-15.69	4.41	18.72	36.02	-17.30
2480	1.0	GFSK	iPA	78	11.15	13.032	11.01	12.618	14.09	25.645	30.00	-15.91	4.41	18.50	36.02	-17.52
2402	3.0	8DPSK	ePA	0	12.42	17.458	12.70	18.621	15.57	36.058	30.00	-14.43	4.41	19.98	36.02	-16.04
2441	3.0	8DPSK	ePA	39	12.26	16.827	13.04	20.137	15.68	36.983	30.00	-14.32	4.41	20.09	36.02	-15.93
2480	3.0	8DPSK	ePA	78	12.04	15.996	13.31	21.429	15.73	37.411	30.00	-14.27	4.41	20.14	36.02	-15.88
2402	3.0	8DPSK	iPA	0	7.44	5.546	7.03	5.047	10.25	10.593	30.00	-19.75	4.41	14.66	36.02	-21.36
2441	3.0	8DPSK	iPA	39	7.45	5.559	7.01	5.023	10.25	10.593	30.00	-19.75	4.41	14.66	36.02	-21.36
2480	3.0	8DPSK	iPA	78	7.50	5.623	7.33	5.408	10.43	11.041	30.00	-19.57	4.41	14.84	36.02	-21.18

Table 7-9. Average Conducted Output Power Measurements TxBF

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 20 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Note:

Per ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)1), the conducted powers at Antenna 3A and Antenna 1A were first measured separately during TxBF transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where G_N is the gain of the nth antenna and N_{ANT} , the total number of antennas used.

Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² / N_{ANT}] dBi

Sample TxBF Calculation:

At 2402MHz, the average conducted output power was measured to be 12.37 dBm for Antenna 3A and 13.34 dBm for Antenna 1A.

Antenna 3A + Antenna 1A = TxBF

(12.37dBm + 13.34 dBm) = (17.258 mW + 21.577 mW) = 38.815 mW = 15.89 dBm

Sample e.i.r.p. Calculation:

At 2402MHz, the average conducted output power was calculated to be 15.89 dBm with directional gain of 4.41 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

15.89 dBm + 4.41 dBi = 20.30 dBm

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 27 01 95
© 2022 PCTEST	·		V 10.5 12/15/2021

7.4 Conducted Authorized Band Edge §15.247 (d); RSS-247 [5.5]

Test Overview and Limits

EUT operates in hopping and non-hopping transmission mode. Measurement is taken at the highest point located outside of the emission bandwidth. *The maximum permissible out-of-band emission level is 20 dBc.*

Test Procedure Used

ANSI C63.10-2013 – Section 6.10.4

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

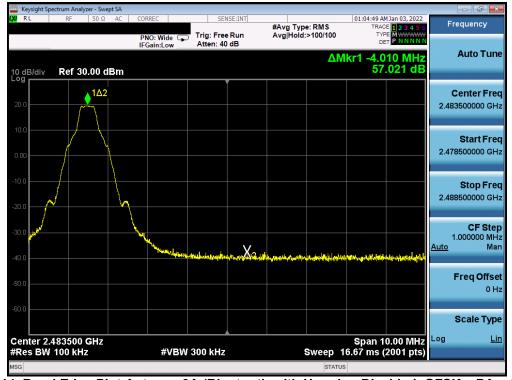
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: BCGA2589 IC: 579C-A2589	Postest Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 28 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021

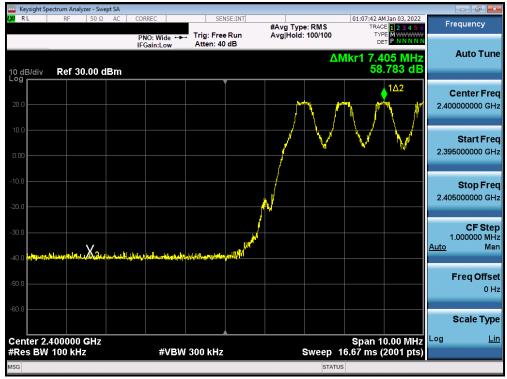
Test Notes

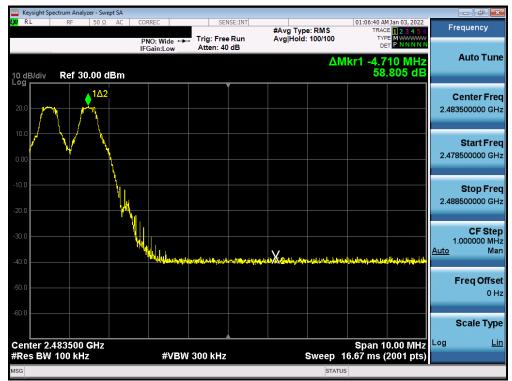
- 1. Out of band conducted spurious emissions at the band edge were investigated for all data rates in hopping and non-hopping modes. The worst case emissions were found with the EUT transmitting at 3 Mbps. Band edge emissions were also investigated with the EUT transmitting in all data rates. Plots of the worst case emissions are shown below.
- 2. All supported modulation, antenna and power schemes have been tested on the unit and only worst case configuration is reported.


FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 05	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 29 of 95	
© 2022 PCTEST			V 10.5 12/15/2021	

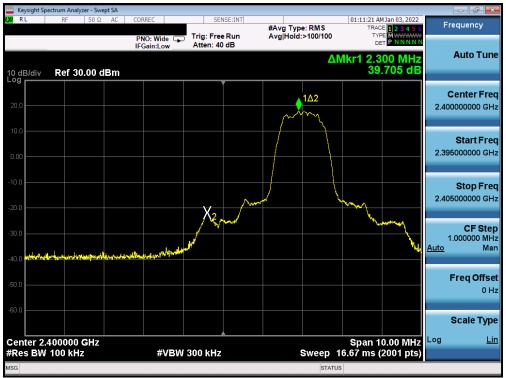
Antenna 3A

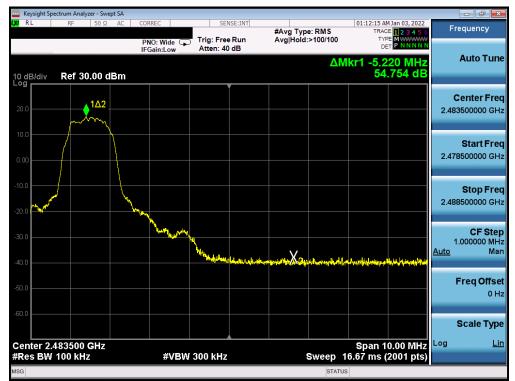
	pectrum Analy.	zer - Swej	ot SA										- 6 ×
X/RL	RF	50 Ω	AC	CORREC			ENSE:INT	#Avg Typ		TRA	AM Jan 03, 2022 ACE 1 2 3 4 5 6	Fr	equency
	_			PNO: V IFGain	Vide 🖵 Low	Trig: Fr Atten: 4		Avg Hold	:>100/100	1			
10 dB/div	Ref 30	.00 d	Bm						Δ	Mkr1 6. 5	700 MHz 7.743 dB		Auto Tune
									1∆2			c	enter Fre
20.0									1			2.40	0000000 GH
10.0													Start Free
0.00												2.39	5000000 GH
10.0								+					Stop Fre
20.0								$\overline{\mathbf{N}}$		h		2.40	5000000 GH
30.0								<u> </u>					CF Ste
40.0	Benchismunal	معوسالموار	at dinasi di	han the state	industry date	Usaliyi tire	and more and			Sing Shinness	nonational distances	1 <u>Auto</u>	.000000 MH Ma
													Freq Offse
50.0													0 H
60.0													Scale Typ
	.400000 / 100 kHz				#\/B\4	300 kH			Swoon	Span	10.00 MHz (2001 pts)	Log	Li
					#VDVV	300 KH	2		Sweep		(2001 pts)		


Plot 7-13. Band Edge Plot Antenna 3A (Bluetooth with Hopping Disabled, GFSK, ePA – Ch. 0)


Plot 7-14. Band Edge Plot Antenna 3A (Bluetooth with Hopping Disabled, GFSK, ePA – Ch. 78)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 50 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021


Plot 7-15. Band Edge Plot Antenna 3A (Bluetooth with Hopping Enabled, GFSK, ePA)


Plot 7-16. Band Edge Plot Antenna 3A (Bluetooth with Hopping Enabled, GFSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage ST 01 95
© 2022 PCTEST	-		V 10.5 12/15/2021

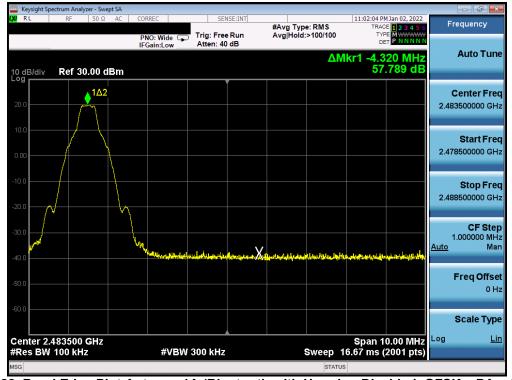
Plot 7-17. Band Edge Plot Antenna 3A (Bluetooth with Hopping Disabled, 8DPSK, ePA – Ch. 0)

Plot 7-18. Band Edge Plot Antenna 3A (Bluetooth with Hopping Disabled, 8DPSK, ePA – Ch. 78)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 05		
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 32 of 95		
© 2022 PCTEST V 10.5 12/15/2021					

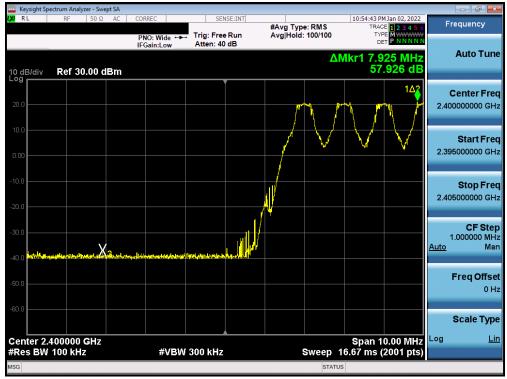
Plot 7-19. Band Edge Plot Antenna 3A (Bluetooth with Hopping Enabled, 8DPSK, ePA)

Plot 7-20. Band Edge Plot Antenna 3A (Bluetooth with Hopping Enabled, 8DPSK, ePA)


FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 05			
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 33 of 95			
© 2022 PCTEST V 10.5 12/15/2021						

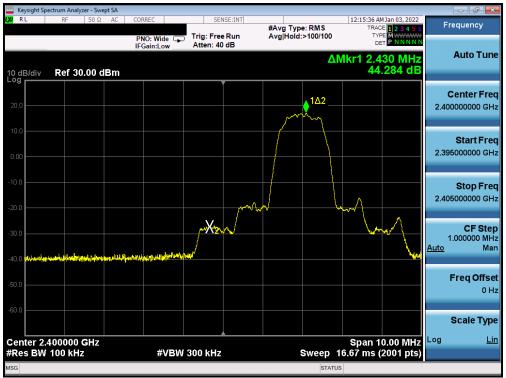
Antenna 1A

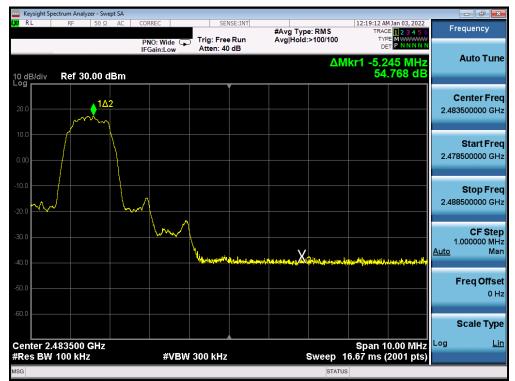
	pectrum Analy.	zer - Swep	t SA										
LXU RL	RF	50 Ω	AC	CORREC			NSE:INT	#Avg Typ		TRA	M Jan 02, 2022 DE 1 2 3 4 5 6	F	requency
				PNO: W IFGain:L	/ide ⊂⊃ ∟ow	Trig: Fre Atten: 4		Avg Hold	>100/100	TY D			
10 dB/div Log	Ref 30	.00 dE	3m						Δ	Mkr1 4.9 56	90 MHz .009 dB		Auto Tune
									1Δ2				Center Fred
20.0									η			2.40	0000000 GH:
10.0													Start Free
0.00												2.39	5000000 GH:
-10.0													Stop Free
-20.0												2.40	5000000 GH
								M)	\uparrow			CF Ster
-30.0	نماي <i>د مايد.</i>	X	21	والعرب م	hi a beath	a Mar ala ana at	al a formation of the second	/		here americal	and reached	<u>Auto</u>	1.000000 MH Mai
-40.0													Freq Offse
-50.0													0 H
-60.0													Coole Turn
												1.00	Scale Type
	.400000 100 kHz			;	#VBW	300 kHz			Sweep	Span 1 16.67 ms	0.00 MHz (2001 pts)	Log	<u>Lir</u>
//SG									STATU				


Plot 7-21. Band Edge Plot Antenna 1A (Bluetooth with Hopping Disabled, GFSK, ePA – Ch. 0)

Plot 7-22. Band Edge Plot Antenna 1A (Bluetooth with Hopping Disabled, GFSK, ePA – Ch. 78)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 34 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021


Plot 7-23. Band Edge Plot Antenna 1A (Bluetooth with Hopping Enabled, GFSK, ePA)


Plot 7-24. Band Edge Plot Antenna 1A (Bluetooth with Hopping Enabled, GFSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 55 01 95
© 2022 PCTEST	-		V 10.5 12/15/2021

Plot 7-25. Band Edge Plot Antenna 1A (Bluetooth with Hopping Disabled, 8DPSK, ePA - Ch. 0)

Plot 7-26. Band Edge Plot Antenna 1A (Bluetooth with Hopping Disabled, 8DPSK, ePA – Ch. 78)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 05		
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 36 of 95		
© 2022 PCTEST V 10.5 12/15/2021					

Plot 7-27. Band Edge Plot Antenna 1A (Bluetooth with Hopping Enabled, 8DPSK, ePA)

Plot 7-28. Band Edge Plot Antenna 1A (Bluetooth with Hopping Enabled, 8DPSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 37 of 05	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 37 of 95	
© 2022 PCTEST V 10.5 12/15/2021				

7.5 Carrier Frequency Separation §15.247 (a.1); RSS-247 [5.1(b)]

Test Overview and Limit

Measurement is made with EUT operating in hopping mode. The minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.2

Test Settings

- 1. Span = Wide enough to capture peaks of two adjacent channels
- 2. RBW = 30% of channel spacing. Adjust as necessary to best identify center of each individual channel
- 3. VBW ≥ RBW
- 4. Sweep = Auto
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize.
- 8. Marker-delta function used to determine separation between peaks of the adjacent channels

Test Setup

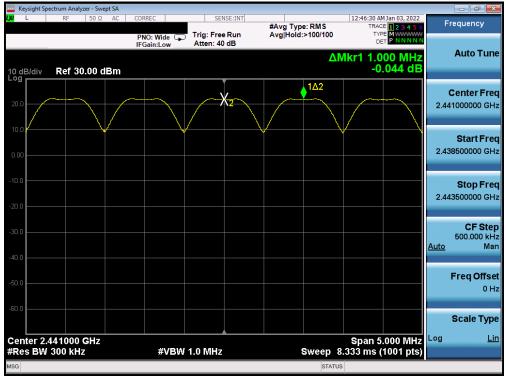
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

- 1. The EUT complies with the minimum channel separation requirement when it is operating in 1x/EDR mode using 79 channels.
- 2. All supported modulation, antenna and power schemes have been tested on the unit and only worst case configuration is reported.

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 28 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 38 of 95
© 2022 PCTEST			V 10.5 12/15/2021


Antenna 3A

Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	Measured Channel Separation [MHz]	Min. Channel Separation [MHz]	Pass / Fail
2441	1.0	GFSK	ePA	39	1.000	0.64	Pass
2441	3.0	8DPSK	ePA	39	1.000	0.91	Pass

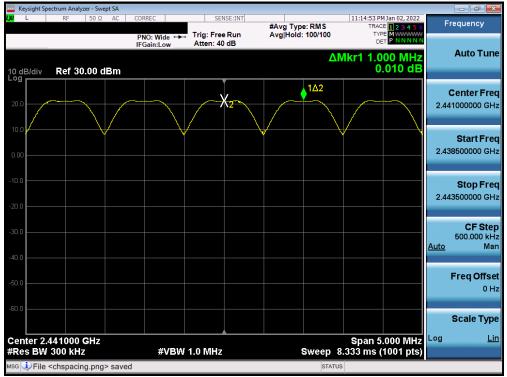
Table 7-10. Minimum Channel Separation Antenna 3A

FCC ID: BCGA2589 IC: 579C-A2589	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 39 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Plot 7-29. Channel Spacing Plot Antenna 3A (Bluetooth, GFSK, ePA)

Plot 7-30. Channel Spacing Plot Antenna 3A (Bluetooth, 8DPSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 40 of 95
© 2022 PCTEST			V 10.5 12/15/2021


Antenna 1A

Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	Measured Channel Separation [MHz]	Min. Channel Separation [MHz]	Pass / Fail
2441	1.0	GFSK	ePA	39	1.000	0.63	Pass
2441	3.0	8DPSK	ePA	39	1.000	0.92	Pass

Table 7-11. Minimum Channel Separation Antenna 1A

FCC ID: BCGA2589 IC: 579C-A2589	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 41 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Plot 7-31. Channel Spacing Plot Antenna 1A (Bluetooth, GFSK, ePA)

Plot 7-32. Channel Spacing Plot Antenna 1A (Bluetooth, 8DPSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 42 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021

7.6 Time of Occupancy §15.247 (a.1.iii); RSS-247 [5.1(d)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode with the spectrum analyzer set to zero span. *The maximum permissible time of occupancy is 400 ms within a period of 400ms multiplied by the number of hopping channels employed.*

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.4

Test Settings

- 1. Span = zero span, centered on a hopping channel
- 2. RBW \leq channel spacing and >> 1/T, where T is expected dwell time per channel
- 3. Sweep = as necessary to capture entire dwell time. Second plot may be required to demonstrate two successive hops on a channel
- 4. Trigger is set with appropriate trigger delay to place pulse near the center of the plot
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Marker-delta function used to determine transmit time per hop

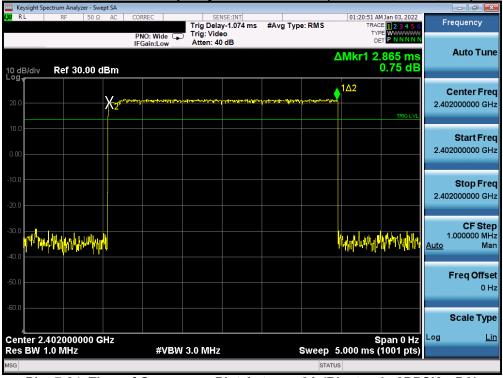
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes

All supported modulation, antenna (including TxBF mode) and power schemes have been tested on the unit and only worst case configuration is reported.

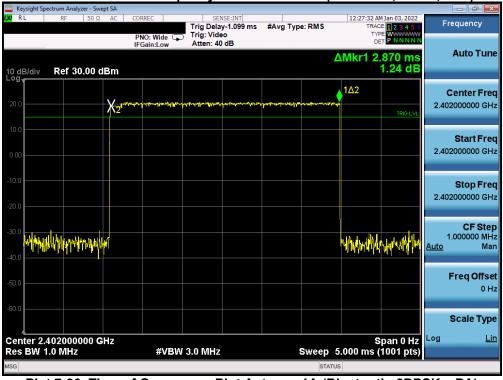

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 43 01 93
© 2022 PCTEST	•		V 10.5 12/15/2021

Antenna 3A

	ectrum Analyzer - Swept SA						
XV RL	RF 50 Ω AC	CORREC	SENSE:INT Trig Delay-1.079 ms Trig: Video Atten: 40 dB	#Avg Type: RMS	TYPE	an 03, 2022 1 2 3 4 5 6 WWWWWW P N N N N N	Frequency
10 dB/div	Ref 30.00 dBm	IFGain:Low	Atten: 40 dB		ΔMkr1 2.8		Auto Tune
20.0	Xz				1Δ2	TRIG LVL	Center Free 2.402000000 GH
0.00							Start Fre 2.402000000 GH
-10.0							Stop Fre 2.402000000 GH
-30.0	herd drawdin				pal ang ing a layout	-llugilli dag	CF Ste 1.000000 MH <u>Auto</u> Ma
-50.0							Freq Offse 0 H
-60.0							Scale Type
Center 2.4 Res BW 1	402000000 GHz .0 MHz	#VBW	3.0 MHz	Sweep	Sp: 5.000 ms (10	an 0 Hz)01 pts)	Log <u>Li</u>
MSG				STA	TUS		

Plot 7-33. Time of Occupancy Plot Antenna 3A (Bluetooth, GFSK, ePA)

Plot 7-34. Time of Occupancy Plot Antenna 3A (Bluetooth, 8DPSK, ePA)


FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 44 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Antenna 1A

Keysight Spectrum Analyzer - Swept SA						
XX RL RF 50Ω AC	CORREC PNO: Wide	SENSE:INT Trig Delay-1.319 ms Trig: Video Atten: 40 dB	#Avg Type: RMS	TRAC TYP	1 Jan 02, 2022 E <mark>1 2 3 4 5 6</mark> E WWWWWWW T P N N N N N	Frequency
10 dB/div Ref 30.00 dBm	Guilleow			ΔMkr1 2.	875 ms 0.54 dB	Auto Tune
	ζ <u>2</u>			1∆2		Center Fred 2.402000000 GH;
	V 2				TRIG LVL	
0.00						Start Fred 2.402000000 GH:
-10.0						Stop Free 2.402000000 GH
30.0 รายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป็นสายเป				Healthy Mark	hu nghin	CF Stej 1.000000 MH <u>Auto</u> Ma
-50.0						Freq Offse 0 H
-60.0						Scale Type
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep	S 5.000 ms (pan 0 Hz 1001 pts)	Log <u>Lir</u>
MSG			STA	TUS		

Plot 7-35. Time of Occupancy Plot Antenna 1A (Bluetooth, GFSK, ePA)

Plot 7-36. Time of Occupancy Plot Antenna 1A (Bluetooth, 8DPSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 45 01 95
© 2022 PCTEST	<u>.</u>		V 10.5 12/15/2021

Bluetooth Time of Occupancy Calculation

Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s. Since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600 / 6 = 266.67 hops/s/slot

- 400ms x 79 hopping channels = 31.6 sec (Time of Occupancy Limit)
- Worst case BT has 266.67 hops/second (for 1x/EDR modes with DH5 operation)
- 266.67 hops/second / 79 channels = 3.38 hops/second (# of hops/second on one channel)
- o 3.38 hops/second/channel x 31.6 seconds = 106.67 hops (# hops over a 31.6 second period)
- 106.67 hops x 2.875 ms/channel = 306.68 ms (worst case dwell time for one channel in 1x/EDR modes)

With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800 hops/s. AFH mode also uses 6 total slots so the Bluetooth transmitter hops at a rate of 800 / 6 = 133.3 hops/s/slot

- 400ms x 20 hopping channels = 8 sec (Time of Occupancy Limit)
- Worst case BT has 133.3 hops/second/slot (for AFH mode with DH5 operation)
- 133.3 hops/s / 20 channels = 6.67 hops/second (# of hops/second on one channel)
- 6.67 hops/s / channel x 8 seconds = 53.34 hops (# hops over a 8 second period)
- o 53.34 hops x 2.875 ms/channel = 153.35 ms (worst case dwell time for one channel in AFH mode)

Test Result

The measured worst case dwell time is below the limit of 0.4s.

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 40 01 95
© 2022 PCTEST			V 10.5 12/15/2021

7.7 Number of Hopping Channels §15.247 (a.1.iii); RSS-247 [5.1(d)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode. *This frequency hopping system must employ a minimum of 15 hopping channels.*

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.3

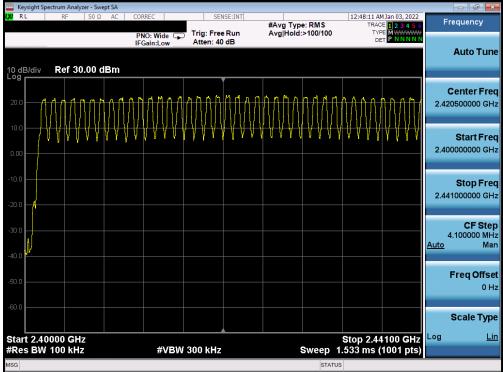
Test Settings

- 1. Span = frequency of band of operation (divided into two plots)
- 2. RBW < 30% of channel spacing or 20dB bandwidth, whichever is smaller.
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

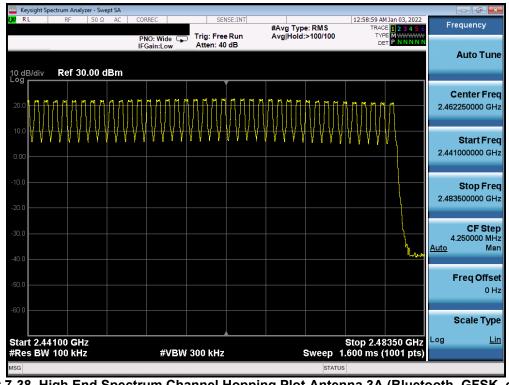
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

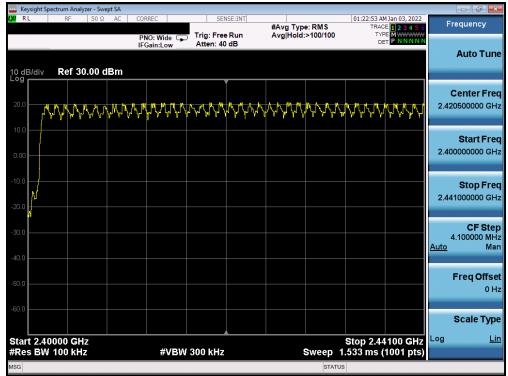
Figure 7-6. Test Instrument & Measurement Setup

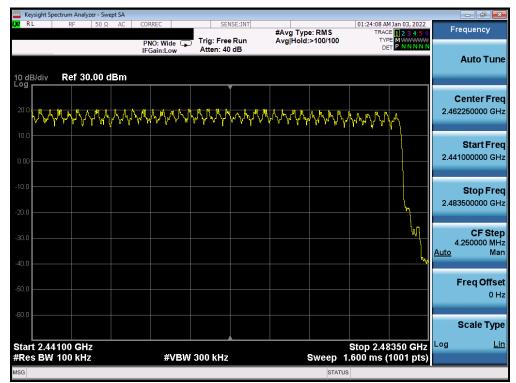

Test Notes

- 1. The frequency spectrum was broken up into two sub-ranges to clearly show all of the hopping frequencies. In AFH mode, this device operates using 20 channels so the requirement for minimum number of hopping channels is satisfied.
- 2. All supported modulation, antenna and power schemes have been tested on the unit and only worst case configuration is reported.


FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 47 01 95
© 2022 PCTEST			V 10.5 12/15/2021

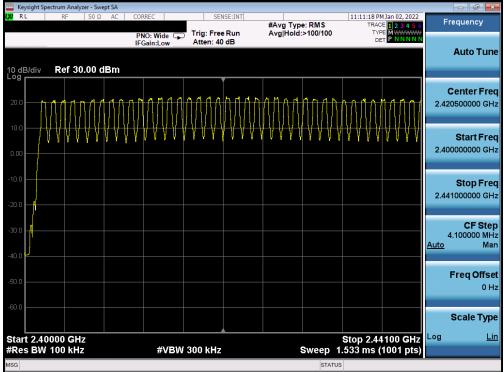
Antenna 3A


Plot 7-37. Low End Spectrum Channel Hopping Plot Antenna 3A (Bluetooth, GFSK, ePA)

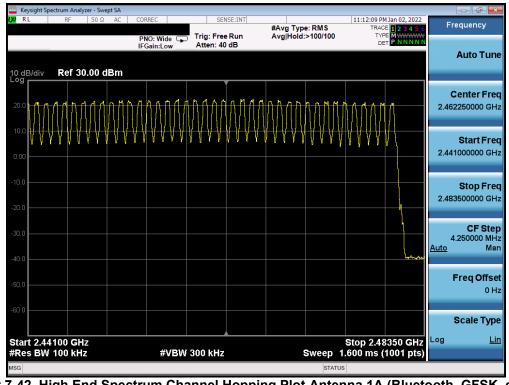

Plot 7-38. High End Spectrum Channel Hopping Plot Antenna 3A (Bluetooth, GFSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	raye 40 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

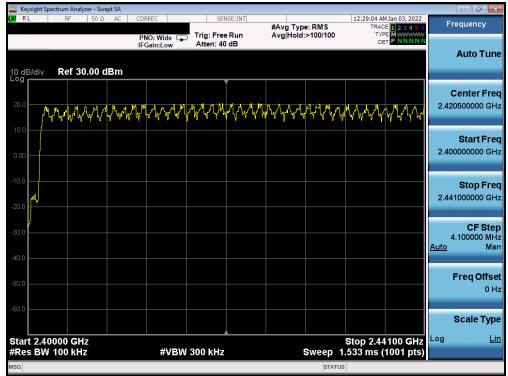
Plot 7-39. Low End Spectrum Channel Hopping Plot Antenna 3A (Bluetooth, 8DPSK, ePA)

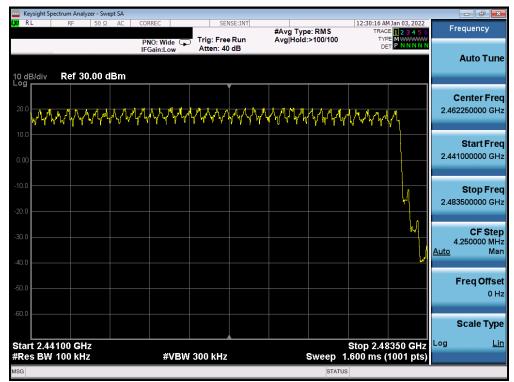


Plot 7-40. High End Spectrum Channel Hopping Plot Antenna 3A (Bluetooth, 8DPSK, ePA)


FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 49 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Antenna 1A


Plot 7-41. Low End Spectrum Channel Hopping Plot Antenna 1A (Bluetooth, GFSK, ePA)


Plot 7-42. High End Spectrum Channel Hopping Plot Antenna 1A (Bluetooth, GFSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 50 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

Plot 7-43. Low End Spectrum Channel Hopping Plot Antenna 1A (Bluetooth, 8DPSK, ePA)

Plot 7-44. High End Spectrum Channel Hopping Plot Antenna 1A (Bluetooth, 8DPSK, ePA)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 51 01 95
© 2022 PCTEST			V 10.5 12/15/2021

7.8 Conducted Spurious Emissions §15.247 (d); RSS-247 [5.5]

Test Overview and Limit

Conducted out-of-band spurious emissions were investigated from 30MHz up to 25GHz to include the 10th harmonic of the fundamental transmit frequency. *The maximum permissible out-of-band emission level is 20 dBc.*

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.8

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz* (See note below)
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-7. Test Instrument & Measurement Setup

Test Notes

- 1. Out-of-band conducted spurious emissions were investigated for all data rates and the worst case emissions were found with the EUT transmitting at 1Mbps. The display line shown in the following plots is the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, the traces in the following plots are measured with a 1MHz RBW to reduce test time, so the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.
- 2. The unit was tested with all possible mode and power schemes and only the highest emission is reported.

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dege 52 of 05				
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 52 of 95				
© 2022 PCTEST							

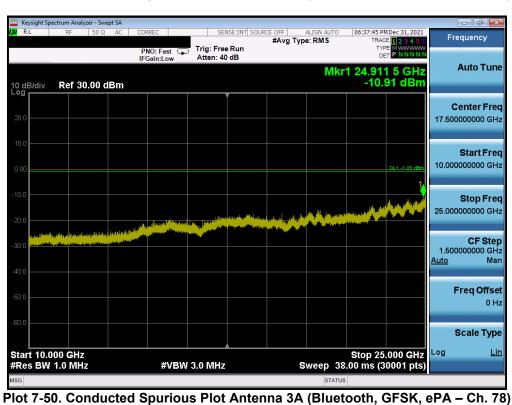
Antenna 3A

	pectrum Analyz										- # *
X/RL	RF	50 Ω)		DRREC		NSE:INT SOUP	#Avg Typ	ALIGN AUTO	TRAC	Dec 31, 2021	Frequency
10 dB/div Log	Ref 30.	.00 dB		PNO: Fast ⊂ FGain:Low	Atten: 4			M	(r1 6.86	B 8 GHz 46 dBm	Auto Tun
20.0											Center Fre 5.015000000 GH
0.00										<u>_DI 1 -0 70 dBm</u>	Start Fre 30.000000 MH
-10.0								1			Stop Fre 10.000000000 GH
-30.0			tan Terring Anter territori					n de la frega de la galega de la La galega de la galeg	l der begen det name per och som	pijajanska kondena Secondaria	CF Ste 997.000000 MH <u>Auto</u> Ma
-50.0											Freq Offso 0 ⊦
Start 30	MHz / 1.0 MHz			#\(B)	N 3.0 MHz			woon 19	Stop 10	.000 GHz 0001 pts)	Scale Typ
ARCES DW	T.O IVIHZ			#VD	W 3.0 WINZ			status		ooor pis)	

Plot 7-45. Conducted Spurious Plot Antenna 3A (Bluetooth, GFSK, ePA – Ch. 0)

Plot 7-46. Conducted Spurious Plot Antenna 3A (Bluetooth, GFSK, ePA – Ch. 0)

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 55 01 95
© 2022 PCTEST			V 10.5 12/15/2021

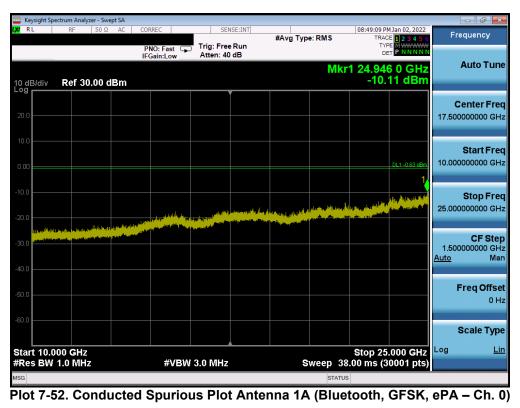


Keysight Spectrum Analyzer RL RF 5	- Swept SA	CORREC	SENSE:INT SO	URCE OFF ALIGN AUTO	06:30:20 PM Dec 31, 2021	
	O SZ AC	PNO: Fast	Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
		IFGain:Low	Atten: 40 dB		TYPE M WWWWW DET P N N N N N	Auto Tun
dB/div Ref 30.0	0 dBm			MK	r1 3.016 7 GHz -24.26 dBm	ruto run
			Ť			
).0						Center Fre 5.015000000 GH
						3.01300000 GH
0.0						Start Fre
00					DL1 -0.23 dBm	30.000000 MH
.0						Stop Fre
		1				10.00000000 GH
			والقارية فتقوي والمراجع	and and and build a spinor standing	فنهد يعاول وحديد ويتراوي المراو	CF Ste
	NTT - Control - Au			and the second secon	All and All and a state of the second	997.000000 MH
						<u>Auto</u> Ma
						Freq Offse
.0						0 +
).0						
						Scale Typ
art 30 MHz			2 0 MU-2	0	Stop 10.000 GHz .00 ms (30001 pts)	Log <u>Li</u>
		#VBW	3.0 MHZ	Sweep 18		
3	lucted			STATUS		$PA - Ch_3$
ot 7-47. Conc Keysight Spectrum Analyzer	- Swept SA	l Spuriou	s Plot Ante	nna 3A (Bluet	ooth, GFSK, d	
ot 7-47. Conc Keysight Spectrum Analyzer			SENSE:INT SO	nna 3A (Bluet	00th, GFSK, (06:31:22 PMDec 31, 2021 TRACE 2 34 5 6	
ot 7-47. Conc Keysight Spectrum Analyzer	- Swept SA	l Spuriou	s Plot Ante	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	06:31:22 PM Dec 31, 2021 TRACE 23 2 4 5 6 TYPE 24 5 6 TYPE 24 5 6	Frequency
b t 7-47. Conc Keysight Spectrum Analyzer RL RF 5	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	00000000000000000000000000000000000000	Frequency
b t 7-47. Conc Keysight Spectrum Analyzer RL RF 5	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	06:31:22 PM Dec 31, 2021 TRACE 23 2 4 5 6 TYPE 24 5 6 TYPE 24 5 6	Frequency
S Contraction Cont	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	00000000000000000000000000000000000000	Frequency Auto Tun Center Fre
S Contraction Cont	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	00000000000000000000000000000000000000	Frequency Auto Tun Center Fre
S Contraction Cont	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	00000000000000000000000000000000000000	Frequency Auto Tun Center Fre 17.50000000 GH
A Contraction of the second se	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	00000000000000000000000000000000000000	Frequency Auto Tun Center Fre 17.50000000 GF Start Fre
A Contraction of the second se	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	ooth, GFSK, c	Frequency Auto Tun Center Fre 17.50000000 GH Start Fre
A Contraction of the second se	- Swept SA 0 Ω AC		S Plot Ante SENSE:INT SO Trig: Free Run	STATUS	ooth, GFSK, e	Center Fre 17.50000000 GH Start Fre 10.00000000 GH
A Contraction of the second se	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	STATUS nna 3A (Bluet URCE OFF ALIGN AUTO #Avg Type: RMS	ooth, GFSK, e	Center Fre 17.50000000 GH Start Fre 10.00000000 GH
A Tot 7-47. Conc Keysight Spectrum Analyzer RL RF S C B/div Ref 30.0 C C C C C C C C C C C C C C C C C C C	- Swept SA 0 Ω AC		S Plot Ante	STATUS	ooth, GFSK, e	Center Fre 17.500000000 GH 10.000000000 GH Start Fre 10.000000000 GH Stop Fre 25.00000000 GH
Keysight Spectrum Analyzer RL RF 5	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	STATUS	ooth, GFSK, e	Center Fre 17.500000000 GH Start Fre 10.000000000 GH Stop Fre 25.00000000 GH CF Step 1.500000000 GH
A Tot 7-47. Conc Keysight Spectrum Analyzer RL RF S C B/div Ref 30.0 C C C C C C C C C C C C C C C C C C C	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	STATUS	ooth, GFSK, e	
A Seytight Spectrum Analyzer RL RF S S S S S S S S S S S S S S S S S S	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	STATUS	ooth, GFSK, e	Center Fre 17.500000000 GH Start Fre 10.000000000 GH Stop Fre 25.00000000 GH CF Step 1.500000000 GH Auto Tun Auto Tun Stop Fre 25.00000000 GH Auto Tun Auto Tun Stop Fre 1.500000000 GH Auto Ma Freq Offsee
A Control Cont	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	STATUS	ooth, GFSK, e	Center Fre 17.500000000 GH Start Fre 10.000000000 GH Stop Fre 25.000000000 GH CF Step 1.500000000 GH Auto Tun
A Seytight Spectrum Analyzer RL RF S S S S S S S S S S S S S S S S S S	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	STATUS	ooth, GFSK, e	Center Fre 17.500000000 GH Start Fre 10.000000000 GH Stop Fre 25.000000000 GH CF Ste 1.500000000 GH Auto Tun Trequency Comparison Stop Fre 25.00000000 GH Freq Offse 0 H
A Seysight Spectrum Analyzer RL RF S C C C C C C C C C C C C C C C C C C	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	STATUS	ooth, GFSK, e	Center Fre 17.500000000 GH Start Fre 10.000000000 GH Stop Fre 25.000000000 GH 1.500000000 GH Auto Tun CF Ste 1.500000000 GH Stop Fre 25.000000000 GH Stop Stop Fre 1.500000000 GH Scale Typ
S CKeysight Spectrum Analyzer RL RF S CKeysight Spectrum Analyzer RL RF S CKeysight Spectrum Analyzer R CKeysight Spectrum Ana	- Swept SA 0 Ω AC	CORREC PNO: Fast IFGain:Low	S Plot Ante	INTUS	ooth, GFSK, e	Center Fre 17.500000000 GH Start Fre 10.000000000 GH Stop Fre 25.000000000 GH CF Ste 1.500000000 GH Auto Tun Trequency Comparison Stop Fre 25.00000000 GH Freq Offse 0 H

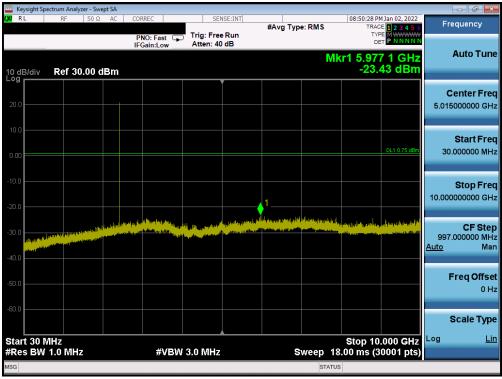
FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 95			
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 54 01 95			
© 2022 PCTEST V 10.5 12/15/2021						

	ectrum Analyzer - S									
LX/IRL	RF 50	Ω AC	CORREC	SE	NSE:INT SOUR	CE OFF	ALIGN AUTO e: RMS		MDec 31, 2021	Frequency
10 dB/div	Ref 30.00	dBm	PNO: Fast C IFGain:Low	Trig: Fre Atten: 4			N	TYF		Auto Tune
20.0										Center Freq 5.015000000 GHz
0.00									- DL1 -1.05 dBm	Start Freq 30.000000 MHz
-10.0							1			Stop Freq 10.000000000 GHz
-30.0	a constituti și în înceș de la prefetimente A constituți și înceș de la prefetimente a constituți înceș de la prefetimente a constituți înceș de la prefetimente a constituți în constituți			and the particular of the second s	len juli han perilan di Provinsi menangkan yan					CF Step 997.000000 MHz <u>Auto</u> Man
-50.0										Freq Offset 0 Hz
-60.0 Start 30 M	лы ₂							Stop 10	.000 GHz	Scale Type
#Res BW			#VB	W 3.0 MHz		s	weep	18.00 ms (3	.000 0112	
MSG							STAT	US		

Plot 7-49. Conducted Spurious Plot Antenna 3A (Bluetooth, GFSK, ePA – Ch. 78)


FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 55 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Antenna 1A


	pectrum Analyz											
X/RL	RF	50Ω A	ORREC		rig: Free		#Avg Typ	e:RMS	TRA	M Jan 02, 2022 CE 1 2 3 4 5 6 PE M WWWWW ET P N N N N	Frequ	ency
10 dB/div Log	Ref 30	.00 dBi	IFGain:Low	, Α	tten: 40	dB		М	kr1 6.20	4 4 GHz 49 dBm	Au	ito Tun
20.0											Cen 5.01500	ter Fre 0000 GH
0.00										DL1 -0.63 dBm		art Fre
-10.0							1				St 10.00000	о р Fre 0000 GH
30.0 40.0									fit - Hussel Have Bay	a second a second s		CF Ste 0000 M⊦ Ma
50.0											Fre	q Offs 0 ⊦
-60.0												ale Typ
Start 30 ∲Res BW	MHz / 1.0 MHz		#V	BW 3.0	MHz		s	weep 1	Stop 10 8.00 ms (:	.000 GHz 80001 pts)	Log	Li
ISG								STATU				

Plot 7-51. Conducted Spurious Plot Antenna 1A (Bluetooth, GFSK, ePA – Ch. 0)

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dago 56 of 05	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 56 of 95	
© 2022 PCTEST	·		V 10.5 12/15/2021	

Plot 7-53. Conducted Spurious Plot Antenna 1A (Bluetooth, GFSK, ePA - Ch. 39)

Keysight Spectrum Analyzer - S RL RF 50		SENSE:INT		08:51:01 PM Jan 02, 2022	- f
NE NF 50	PNO: Fast (IFGain:Low		#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
dB/div Ref 30.00	dBm		Mkr	1 24.847 0 GHz -8.90 dBm	Auto Tur
0.0					Center Fro 17.500000000 GI
0.0				DL1 0.75 dBm	Start Fr 10.000000000 G
).0					Stop Fr 25.000000000 G
					CF Sto 1.500000000 G <u>Auto</u> M
.0					Freq Offs 0
					Scale Ty
tart 10.000 GHz Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 38	Stop 25.000 GHz 3.00 ms (30001 pts)	Log <u>L</u>
G			STATUS	3	

Plot 7-54. Conducted Spurious Plot Antenna 1A (Bluetooth, GFSK, ePA Ch. 39)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 57 of 05	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 57 of 95	
© 2022 PCTEST			V 10.5 12/15/2021	

	ectrum Analyzer - S											- 0
RL	RF 50	Ω AC	COR	IO: Fast	Trig: Free		#Avg Typ	e: RMS	TRAC	MJan 02, 2022 E 1 2 3 4 5 6 PE M WWWW T P N N N N N	Fre	quency
0 dB/div	Ref 30.00	dBm	IFG	Gain:Low	Atten: 40	dB		MI	kr1 6.91		,	Auto Tun
20.0												e nter Fre 000000 GH
10.0).00										DL1 0.38 dBm		Start Fre 000000 M⊦
20.0								,1				Stop Fre
		Apar and Later Construction		United a Landin Street of an Article of Article Street of a Street of Article						n de la presidente de la companya d La companya de la comp	997.0 <u>Auto</u>	CF Ste 000000 MH Ma
:0.0											F	r eq Offs 0 I
:0.0 	ЛНа								Stop 10	000 GHz	S Log	cale Typ
Res BW	1.0 MHz			#VBW	3.0 MHz		S	weep 18		.000 GHz 0001 pts)		

Plot 7-55. Conducted Spurious Plot Antenna 1A (Bluetooth, GFSK, ePA – Ch. 78)

Res	BW 1.0	MHz			#VBW	3.0 MHz		s	weep 38	3.00 ms (3	0001 pts)		
tart	10.000	GHz								Stop 25	.000 GHZ	Log	Li
0.0												S	Scale Typ
													01
0.0												F	req Offs
D.O												<u>Auto</u>	M
).0 <mark>f</mark>	an a	in personalise bite film											CF Ste 000000 G
70 1	and an	National and a	ally payment				of the second	in all a set of the set of the set of the					05.04
					undust.	والمعريق ور	(Namu) (Saluka	a the allow a king to provide the	and hopens allow	la dreig der destrede		25.000	000000 G
).0											a da fizika a diti		Stop Fr
00											DL1 0.38 dBm	10.000	000000 G
).0 -													Start Fr
0.0													enter Fre
) dBa ^{yg} Γ	/div R	ef 30.00	dBm							-10.	28 dBm		
				IFGain:	LOW	Atten: 40	ub .		Mkr	1 24.82	5 0 GHz		Auto Tu
					Fast 🖵	Trig: Free Atten: 40		#Avg Typ	e:RMS	TY	DE 123456 PE MWWWW ET P NNNNN	110	queriey
RL		RF 50	Ω AC	CORREC		SEN	ISE:INT				M Jan 02, 2022	Fre	quency

Plot 7-56. Conducted Spurious Plot Antenna 1A (Bluetooth, GFSK, ePA – Ch. 78)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 56 01 95
© 2022 PCTEST			V 10.5 12/15/2021

7.9 Radiated Spurious Emissions – Above 1GHz §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 7 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-12 per Section 15.209 and RSS-Gen (8.9).

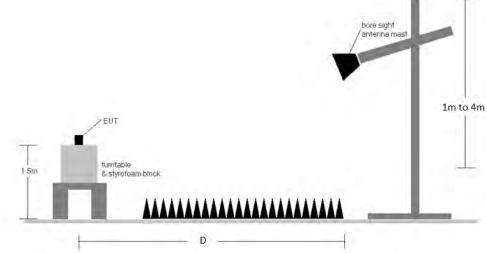
Frequency	Field Strength [µV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-12. Radiated Limits

Test Procedure Used

ANSI C63.10-2013 – Section 6.6.4.3

Test Settings


Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 95	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 59 01 95	
© 2022 PCTEST			V 10.5 12/15/2021	

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-8. Radiated Test Setup >1GHz

Test Notes

1. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-12.

- 2. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.

5. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.

6. D is the measurement test distance and emissions 1-18GHz were measured at a 3 meters test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.

- 7. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 8. All supported modulation, antenna and power schemes have been tested on the unit and only worst case configuration is reported.
- 9. Average emissions were not reported since the duty cycle correction factor was greater than 20dB.

FCC ID: BCGA2589 IC: 579C-A2589	Pout to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 60 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021

Sample Calculation

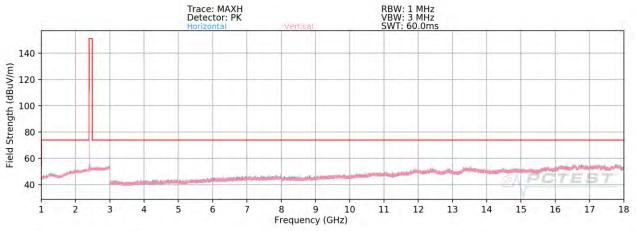
- \circ Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- o AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

Duty Cycle Correction Factor Calculation

- Channel hop rate = 800 hops/second (AFH Mode)
- Adjusted channel hop rate for DH5 mode = 133.33 hops/second
- Time per channel hop = 1 / 133.33 hops/second = 7.50 ms
- Time to cycle through all channels = 7.50×20 channels = 150 ms
- Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)
- Worst case dwell time = 7.5 ms

Duty cycle correction factor = 20log₁₀(7.5ms/100ms) = -22.5 dB

Average Emission Calculation

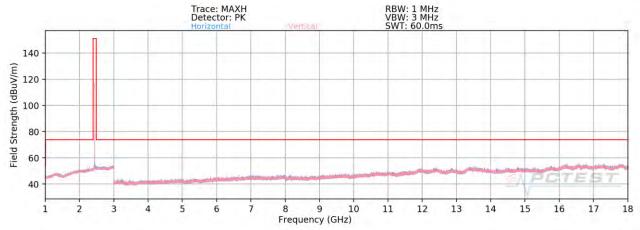

ο Average Emission = Measured Peak Emissions [dBμV/m] – Duty Cycle Correction Factor [dB]

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 01 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Radiated Spurious Emission Measurements (Above 1 GHz) §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Antenna 3A

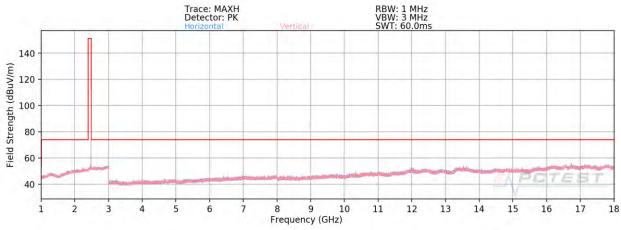
Plot 7-57. Radiated Spurious Emissions above 1GHz Antenna 3A (BT GFSK ePA - Ch. 0)


Bluetooth Mode:	GFSK		
Data Rate:	1Mbps		
Power Scheme	ePA		
Distance of Measurements:	3 Meters		
Operating Frequency:	2402MHz		
Channel:	0		


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Peak	Н	-	-	-67.44	6.28	45.84	73.98	-28.14
12010.00	Peak	Н	-	-	-72.19	15.62	50.43	73.98	-23.55

Table 7-13. Radiated Measurements Antenna 3A

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 62 01 95
© 2022 PCTEST			V 10.5 12/15/2021


Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2441MHz
Channel:	39

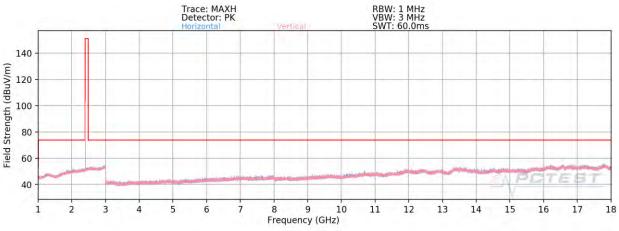
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4882.00	Peak	Н	-	-	-69.56	6.65	44.09	73.98	-29.89
7323.00	Peak	Н	-	-	-71.12	9.74	45.62	73.98	-28.36
12205.00	Peak	Н	-	-	-72.49	16.13	50.64	73.98	-23.34

Table 7-14. Radiated Measurements Antenna 3A

FCC ID: BCGA2589 IC: 579C-A2589	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 63 of 95
© 2022 PCTEST			V 10.5 12/15/2021

Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	78

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Peak	Н	-	-	-69.95	6.66	43.71	73.98	-30.27
7440.00	Peak	Н	-	-	-71.60	10.20	45.60	73.98	-28.38
12400.00	Peak	Н	-	-	-72.21	15.83	50.62	73.98	-23.36

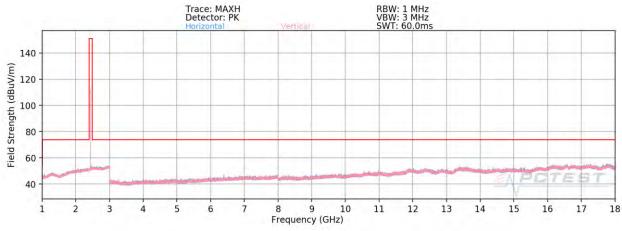

Table 7-15. Radiated Measurements Antenna 3A

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 64 61 95
© 2022 PCTEST			V 10.5 12/15/2021

Radiated Spurious Emission Measurements (1 – 18GHz) §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Antenna 1A

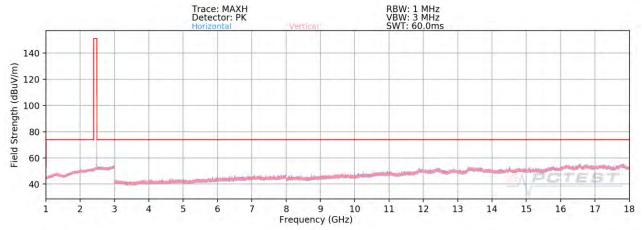
Plot 7-60. Radiated Spurious Emissions above 1GHz Antenna 1A (BT GFSK ePA - Ch. 0)


Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Peak	Н	-	-	-68.83	6.28	44.45	73.98	-29.53
12010.00	Peak	Н	-	-	-73.16	15.62	49.46	73.98	-24.52

Table 7-16. Radiated Measurements Antenna 1A

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 05 01 95
© 2022 PCTEST			V 10.5 12/15/2021


Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2441MHz
Channel:	39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4882.00	Peak	Н	-	-	-69.67	6.65	43.98	73.98	-30.00
7323.00	Peak	Н	-	-	-70.70	9.74	46.04	73.98	-27.94
12205.00	Peak	Н	-	-	-72.20	16.13	50.93	73.98	-23.05

Table 7-17. Radiated Measurements Antenna 1A

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 66 of 05
1C2111150079-12.BCG 12/02/2021 - 02/02/2022		Tablet Device	Page 66 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021

Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	78

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Peak	Н	-	-	-70.11	6.66	43.55	73.98	-30.43
7440.00	Peak	Н	-	-	-71.83	10.20	45.37	73.98	-28.61
12400.00	Peak	Н	-	-	-72.44	15.83	50.39	73.98	-23.59

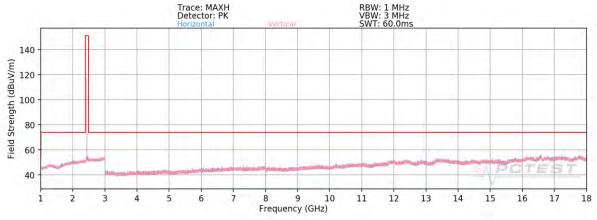

Table 7-18. Radiated Measurements Antenna 1A

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 67 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

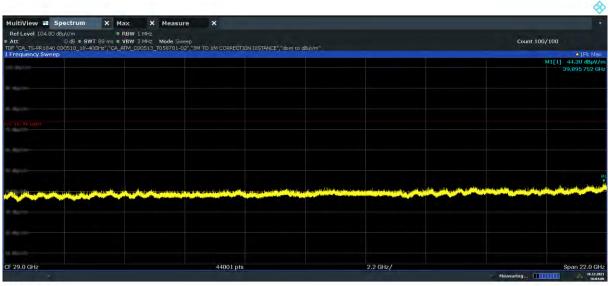
Radiated Spurious Emission Measurements (Above 1 GHz) §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

TxBF

Plot 7-63. Radiated Spurious Emissions above 1GHz TxBF (BT GFSK ePA – Ch. 0)


Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Peak	Н	-	-	-69.94	6.28	43.34	73.98	-30.64
12010.00	Peak	Н	-	-	-72.91	15.62	49.71	73.98	-24.27


Table 7-19. Radiated Measurements TxBF

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 08 01 95
© 2022 PCTEST	• •		V 10.5 12/15/2021

Plot 7-64. Radiated Spurious Emissions above 1GHz TxBF (BT GFSK ePA – Ch. 39)

16:04:06 26.12.2021

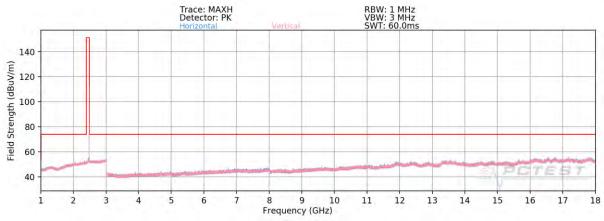
Plot 7-65. Radiated Spurious Plot above 18GHz TxBF (GFSK ePA – Ch.39, Pol. H)

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 05
1C2111150079-12.BCG 12/02/2021 -	12/02/2021 - 02/02/2022	Tablet Device	Page 69 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021

	RBW 1 MHz							
tt 0 dB = SWT 88 ms "CA_TS-PR1840 C00510_18-40GHz","CA	VBW 3 MHz Mode Sweet MTM_C00513_T058701-02 th	P MIN TO 1M CORRECT	ON DISTANCE ^{® 8} dom to 1	-Red Int			Count 100/	100
requency Sweep	ENINECCOSTO_1000101-02	, sill to the constant	CITEDIO INTOLI COM LO I	on and a state of the state of				• 1Pk N
								43,43 dBµ 39,940 751
		- but on limit of the bills		an an an aire bhilinn ¹ 11 ail inns innsan inn	andin klastice toit ditau	line and the second second	interdential and the state of the state	an stal in sufficient
				and the second	and the state of the second	the set of the set	No. of Concession, and the second	

16:07:33 26.12.2021

Plot 7-66. Radiated Spurious Plot above 18GHz TxBF (GFSK ePA – Ch.39, Pol. V)


Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2441MHz
Channel:	39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4882.00	Peak	Н	-	-	-69.19	6.65	44.46	73.98	-29.52
7323.00	Peak	Н	-	-	-71.11	9.74	45.63	73.98	-28.35
12205.00	Peak	Н	-	-	-72.94	16.13	50.19	73.98	-23.79

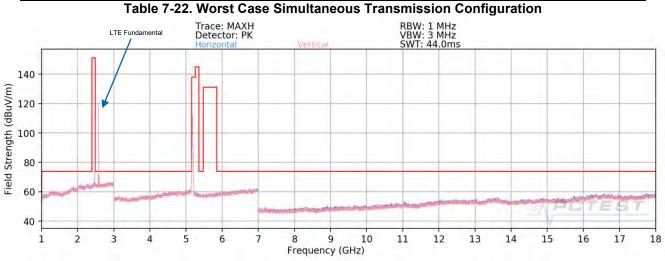
Table 7-20. Radiated Measurements TxBF

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 70 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 70 01 95
© 2022 PCTEST			V 10.5 12/15/2021

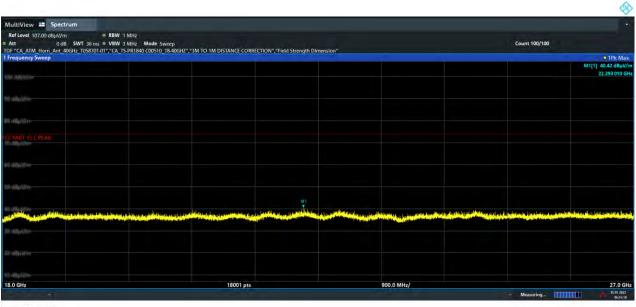
Plot 7-67. Radiated Spurious Emissions above 1GHz TxBF (BT GFSK ePA – Ch. 78)

Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Power Scheme	ePA
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	78

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Peak	Н	-	-	-69.83	6.66	43.83	73.98	-30.15
7440.00	Peak	Н	-	-	-71.95	10.20	45.25	73.98	-28.73
12400.00	Peak	Н	-	-	-73.07	15.83	49.76	73.98	-24.22


Table 7-21. Radiated Measurements TxBF

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dawa 74 af 05	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 71 of 95	
© 2022 PCTEST			V 10.5 12/15/2021	



Simultaneous Tx Radiated Spurious Emission Measurements (Above 1 GHz) §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Description	LTE (Band 41)	Bluetooth	U-NII
Antenna	Antenna 3A	Antenna 3A	Antenna 3A
Channel	40640	78	36
Operating Frequency (MHz)	2595	2480	5180
Mode/Modulation	QPSK/1RB/20MHz	GFSK ePA	802.11n

Plot 7-68. Radiated Spurious Emissions Simultaneous Transmission 1GHz – 18GHz

06:15:19 25,01.2022

Plot 7-69. Radiated Spurious Emissions above 18GHz Simultaneous Transmission Pol. H

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dego 70 of 05	
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 72 of 95	
© 2022 PCTEST			V 10.5 12/15/2021	

fultiView 🛲 Spectrum								
Ref Level 107.00 dBµV/m = RBW 1 Att 0 dB SWT 36 ms ≠ VBW 3 F "CA_ATM_Horn_Ant_40GHz_1058701.01","CA_TS	MHz Mode Sweep	TO 1M DISTANCE CORRI	ECTION","Field Strength Dir	nension"			Count 100/100	
Frequency Sweep					1			 1Pk Ma M1[1] 40.19 dBµX
o destroite								22.244 510
dējāšie								
PART 15 C PEAK								
11000								
			MT					
and a label of the state of the	and the state of the land	a in a shit of t			un II	I fair a man and all an an announce	aklest a star constant	Marga Balatan and Balatan
						the particulation of the particulation of the	i klasticus aliatata utumu laka	No. of Street, or other street, or other
all a la l								
chige/V/m-								
.0 GHz		18001 pts			900.0 MHz/		- Measuring	27.0 0

~

06:13:51 25.01.2022

Plot 7-70. Radiated Spurious Emissions above 18GHz Simultaneous Transmission Pol. V

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Peak	-	-	-	-70.44	16.68	53.24	73.98	-20.74
7440.00	Peak	-	-	-	-70.41	10.51	47.10	73.98	-26.88
12400.00	Peak	-	-	-	-74.35	17.44	50.09	73.98	-23.89

Table 7-23. BT Harmonic Emissions Measurements in Simultaneous Transmission Mode

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dBm]	Field Strength [dBµV/m]	Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5172.00	RMS	-	-	-	-80.83	16.84	43.0	-52.22	-25.0	-27.2
7758.00	RMS	-	-	-	-81.17	10.92	36.7	-58.48	-25.0	-33.5
10344.00	RMS	-	-	-	-83.92	14.38	37.5	-57.77	-25.0	-32.8
2692.00	RMS	V	279	274	-61.63	18.89	64.3	-30.97	-25.0	-5.97
2374.00	RMS	-	-	-	-78.95	18.23	46.3	-48.95	-25.0	-23.9

Table 7-24. LTE Harmonic and Intermodulation Emissions Measurements in Simultaneous Transmission Mode

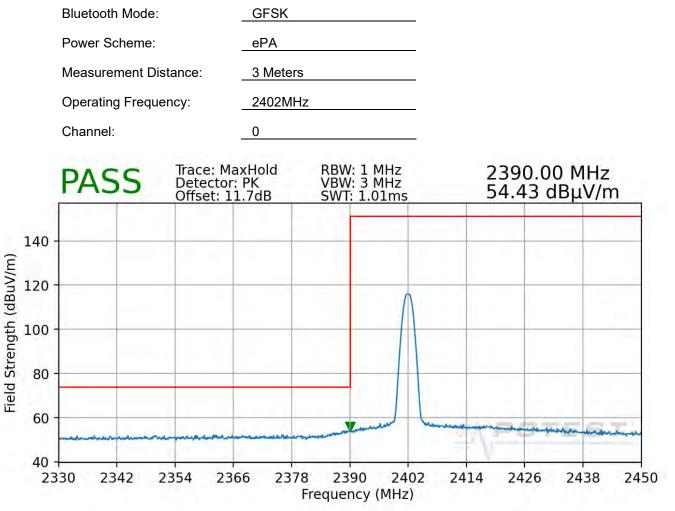
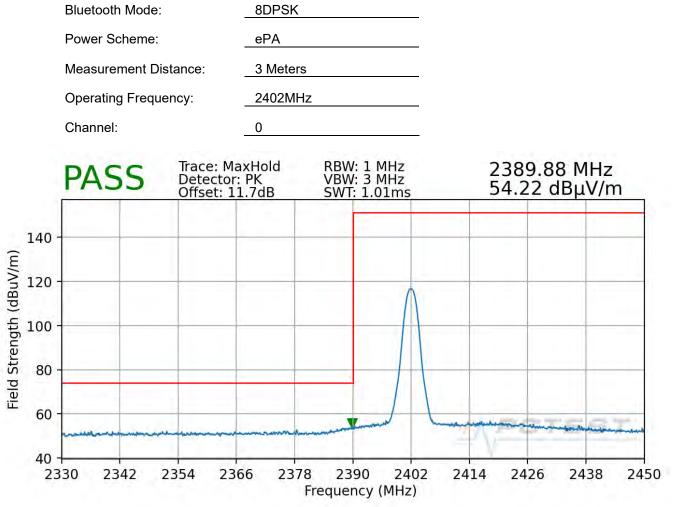

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
10360.00	Peak	-	-	-	-73.63	14.47	47.84	68.20	-20.36
15540.00	Avg	-	-	-	-86.61	21.47	41.86	53.98	-12.12
15540.00	Peak	-	-	-	-75.20	21.47	53.27	73.98	-20.71

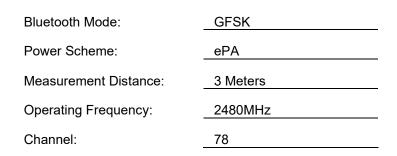
Table 7-25. U-NII Harmonic Emissions Measurements in Simultaneous Transmission Mode

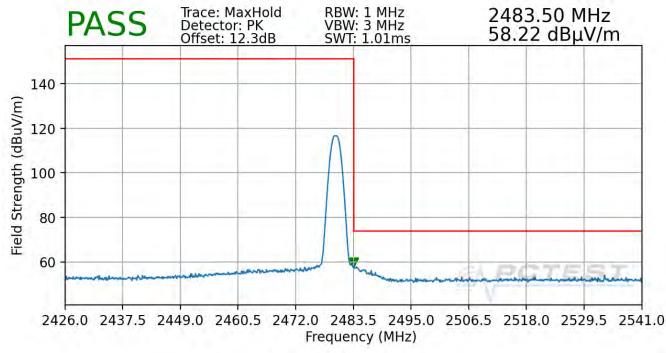
FCC ID: BCGA2589 IC: 579C-A2589	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 73 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 73 01 95
© 2022 PCTEST	-		V 10.5 12/15/2021


Antenna 3A

Plot 7-71. Radiated Restricted Lower Band Edge Measurement Antenna 3A

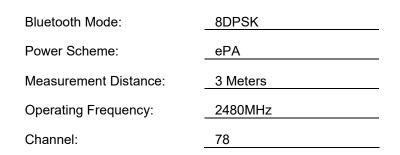
FCC ID: BCGA2589 IC: 579C-A2589	PCTEST*	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 74 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 74 01 95
© 2022 PCTEST			V 10.5 12/15/2021

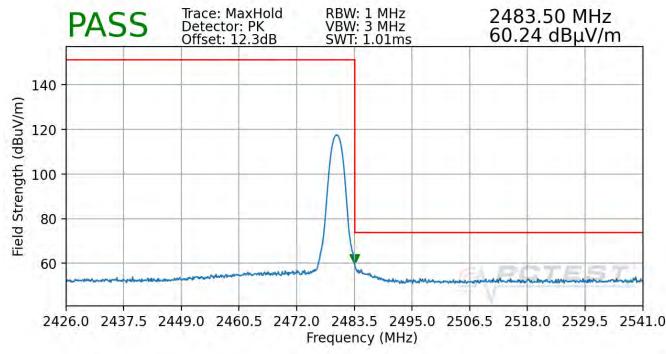




Plot 7-72. Radiated Restricted Lower Band Edge Measurement Antenna 3A

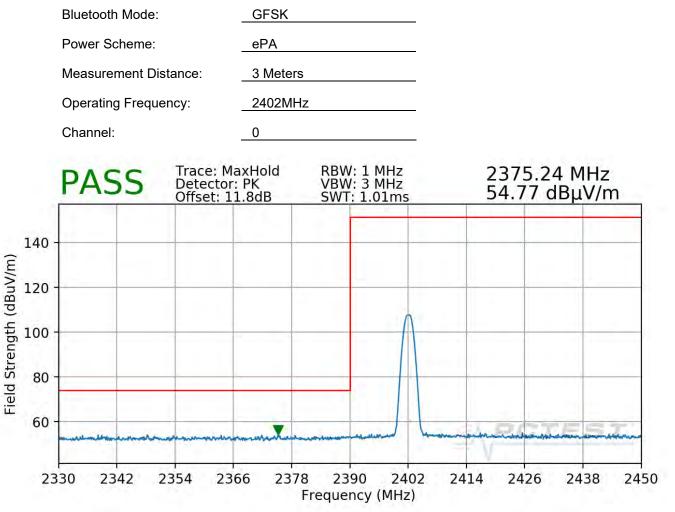
FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 75 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 75 of 95
© 2022 PCTEST			V 10.5 12/15/2021





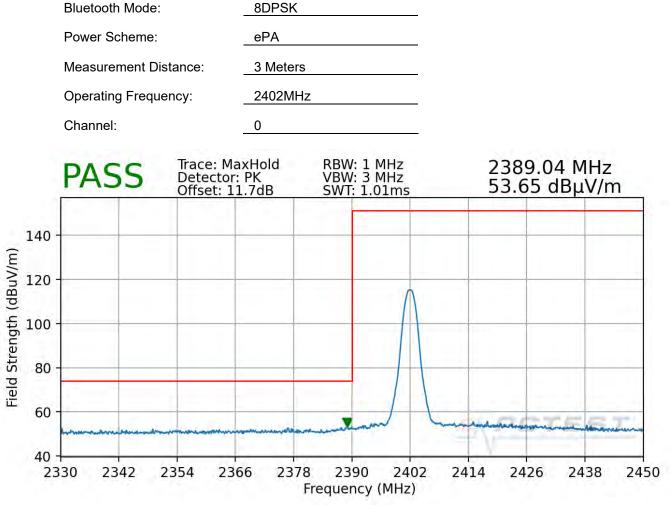
Plot 7-73. Radiated Restricted Lower Band Edge Measurement Antenna 3A

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 76 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 76 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021



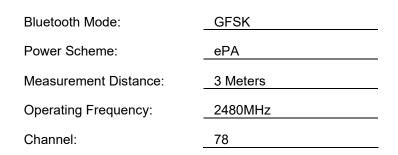
Plot 7-74. Radiated Restricted Lower Band Edge Measurement Antenna 3A

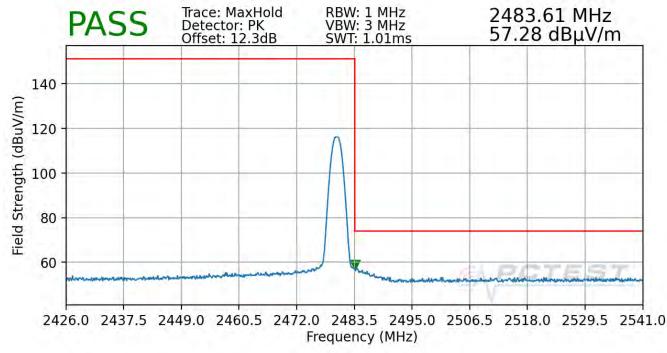
FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 77 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 77 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021


Antenna 1A

Plot 7-75. Radiated Restricted Lower Band Edge Measurement Antenna 1A

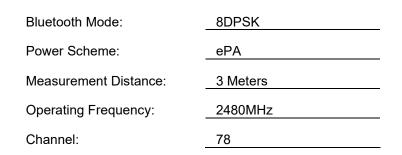
FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 76 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

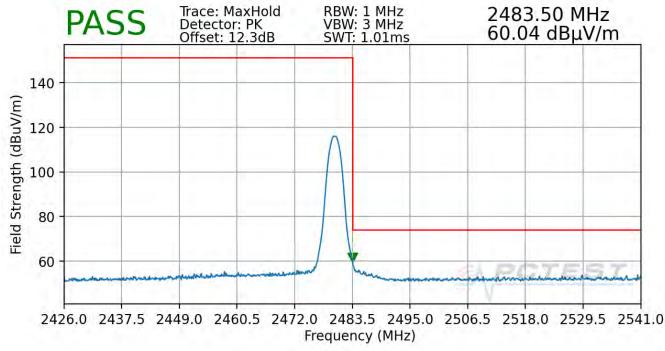




Plot 7-76. Radiated Restricted Lower Band Edge Measurement Antenna 1A

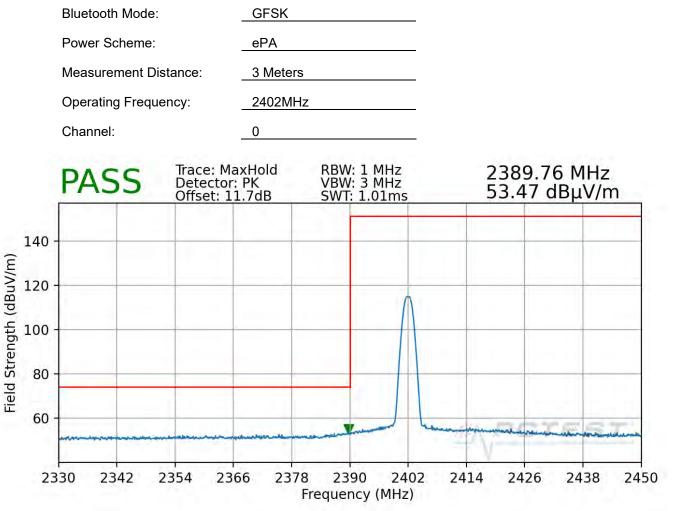
FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 70 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 79 of 95
© 2022 PCTEST			V 10.5 12/15/2021





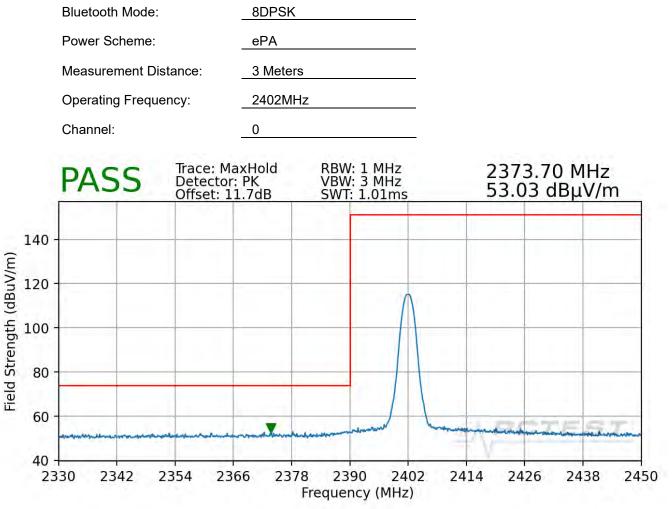
Plot 7-77. Radiated Restricted Lower Band Edge Measurement Antenna 1A

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 80 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 80 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021



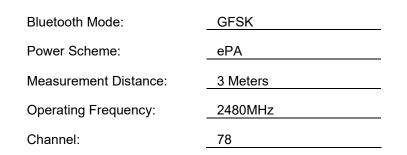
Plot 7-78. Radiated Restricted Lower Band Edge Measurement Antenna 1A

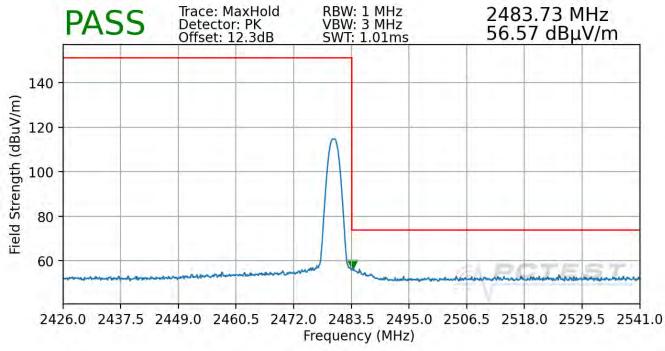
FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 81 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 61 01 95
© 2022 PCTEST			V 10.5 12/15/2021


TxBF

Plot 7-79. Radiated Restricted Lower Band Edge Measurement TxBF

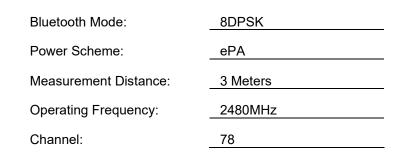
FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 82 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 62 01 95
© 2022 PCTEST			V 10.5 12/15/2021

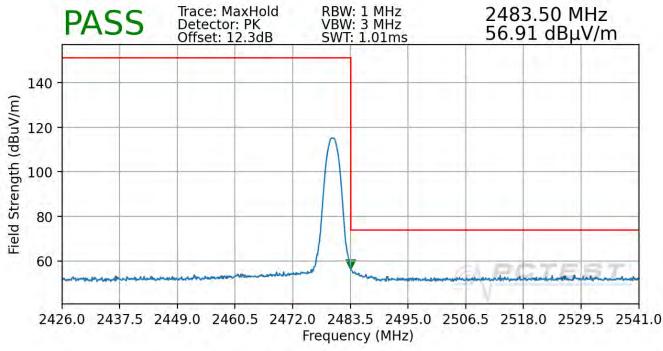




Plot 7-80. Radiated Restricted Lower Band Edge Measurement TxBF

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 83 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 03 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021





Plot 7-81. Radiated Restricted Lower Band Edge Measurement TxBF

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 84 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 84 of 95
© 2022 PCTEST	-		V 10.5 12/15/2021

Plot 7-82. Radiated Restricted Lower Band Edge Measurement TxBF

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 85 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 85 of 95
© 2022 PCTEST	-		V 10.5 12/15/2021

7.10 Radiated Spurious Emissions – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 7 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-26 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-26. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. VBW = 300kHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage % of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 86 of 95
© 2022 PCTEST			V 10.5 12/15/2021

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

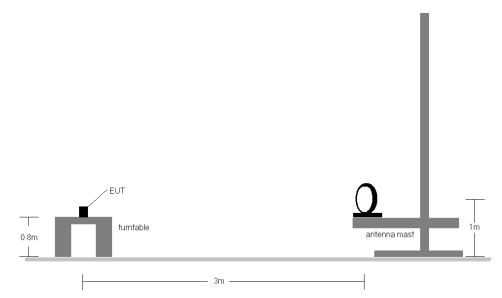
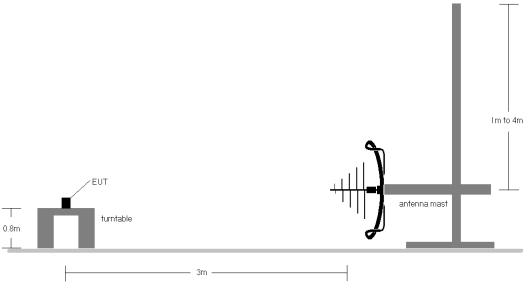
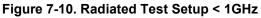




Figure 7-9. Radiated Test Setup < 30MHz

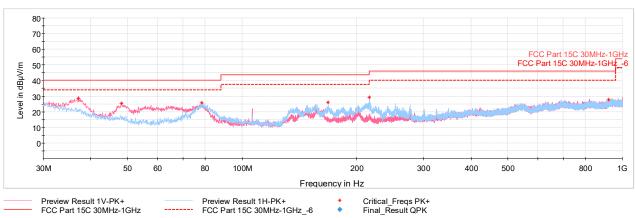
FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 87 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-26.
- The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes. For below 30MHz the loop antenna was positioned in 3 orthogonal planes (X front, Y side, Z top) to determine the orientation resulting in the worst case emissions.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR guasi peak detector on emissions that were within 6dB of the limit.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- 9. All supported modulation, antenna and power schemes have been tested on the unit and only worst case configuration is reported.
- 10. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT powered by AC/DC adaptor via USB-C cable with wire charger
 - b. EUT powered by host PC via USB-C cable with wire charger

Sample Calculations

Determining Spurious Emissions Levels


- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 89 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 88 of 95
© 2022 PCTEST	-		V 10.5 12/15/2021

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

TxBF

Plot 7-83. Radiated Spurious Emissions Below 1GHz TxBF (GFSK ePA – Ch.39, with AC/DC Adapter)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
37.13	Max Peak	V	100	233	-63.28	-14.95	28.77	40.00	-11.23
48.24	Max Peak	V	100	23	-61.39	-20.22	25.39	40.00	-14.61
78.31	Max Peak	Н	300	134	-60.72	-20.45	25.83	40.00	-14.17
168.52	Max Peak	Н	200	73	-64.30	-16.59	26.11	43.52	-17.41
216.39	Max Peak	Н	100	235	-62.47	-15.35	29.18	46.02	-16.84
921.48	Max Peak	Н	300	218	-78.60	-0.65	27.75	46.02	-18.27

Table 7-27. Radiated Spurious Emissions Below 1GHz TxBF (GFSK ePA – Ch.39 with AC/DC Adapter)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 89 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 69 01 95
© 2022 PCTEST	•		V 10.5 12/15/2021

Simultaneous Tx Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Description	LTE (Band 41)	Bluetooth	U-NII
Antenna	Antenna 3A	Antenna 3A	Antenna 3A
Channel	40640	78	36
Operating Frequency (MHz)	2595	2480	5180
Mode/Modulation	QPSK/1RB/20MHz	GFSK ePA	802.11n

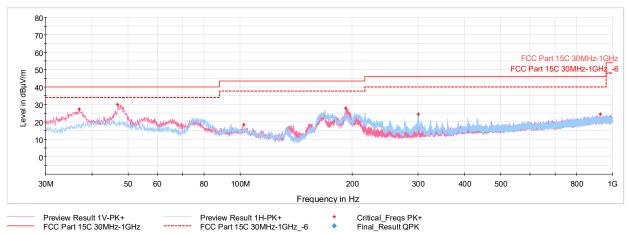


Table 7-28. Worst Case Simultaneous Transmission Configuration

Plot 7-84. Radiated Spurious Emissions below 1GHz Simultaneous Transmission (with AC/DC Adapter)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
36.98	Max Peak	V	100	11	-14.95	27.31	40.00	-12.69
46.93	Max Peak	V	100	9	-20.22	30.08	40.00	-9.92
102.31	Max Peak	V	300	152	-20.45	18.36	43.52	-25.16
191.94	Max Peak	V	100	27	-16.59	27.90	43.52	-15.62
300.68	Max Peak	Н	100	21	-15.35	24.49	46.02	-21.53
926.33	Max Peak	V	300	121	-0.65	24.47	46.02	-21.55

Table 7-29. Radiated Spurious Emissions Simultaneous Transmission Below 1GHz (with AC/DC Adapter)

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 90 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 90 01 95
© 2022 PCTEST			V 10.5 12/15/2021

7.11 AC Line-Conducted Emissions Measurement §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for AC Line conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dBµV)				
(141112)	Quasi-peak	Average			
0.15 – 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 – 30	60	50			

Table 7-29. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

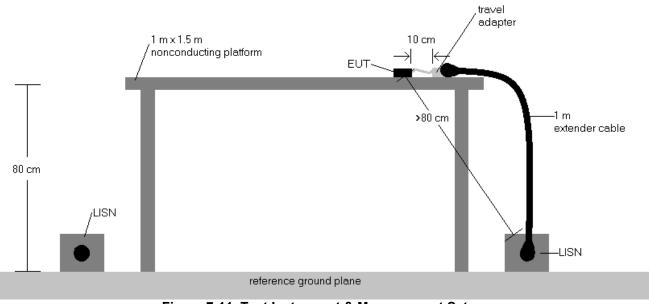
Average Measurements

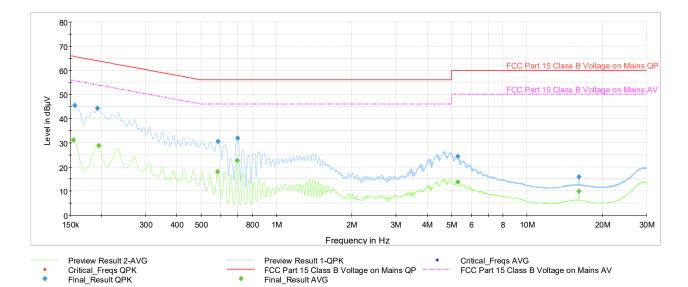
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 91 of 95
© 2022 PCTEST	·		V 10.5 12/15/2021

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

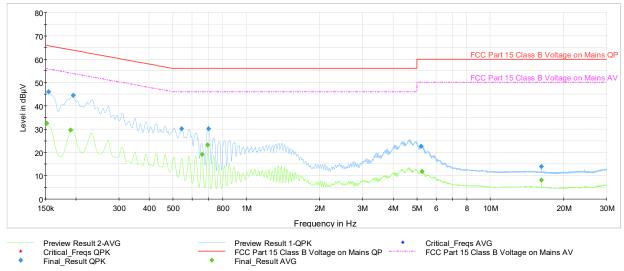



Figure 7-11. Test Instrument & Measurement Setup

Test Notes

- 1. All modes of operation were investigated and the worst-case emissions are reported. The emissions found were not affected by the choice of channel used during testing.
- 2. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT powered by AC/DC adaptor via USB-C cable with wire charger
 - b. EUT powered by host PC via USB-C cable with wire charger
- 3. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen (8.8).
- 4. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 5. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Correction Factor (dB)
- 6. Margin (dB) = QP/AV Level (dB μ V) QP/AV Limit (dB μ V)
- 7. Traces shown in plot are made using a quasi peak and average detectors.
- 8. Deviations to the Specifications: None.

FCC ID: BCGA2589 IC: 579C-A2589	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 02 of 05
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Page 92 of 95
© 2022 PCTEST	•		V 10.5 12/15/2021



Frequency [MHz]	Process State	QuasiPeak [dBµV]	Average [dBµV]	Limit [dBµV]	Margin [dB]	Line	PE
0.155	FINAL	_	31.07	55.75	-24.69	L1	GND
0.157	FINAL	45.4	_	65.63	-20.20	L1	GND
0.193	FINAL	44.2	_	63.92	-19.75	L1	GND
0.195	FINAL	-	28.88	53.82	-24.94	L1	GND
0.582	FINAL	_	17.88	46.00	-28.12	L1	GND
0.584	FINAL	30.4	_	56.00	-25.56	L1	GND
0.697	FINAL	_	22.62	46.00	-23.38	L1	GND
0.699	FINAL	31.9	_	56.00	-24.11	L1	GND
5.285	FINAL	24.3	_	60.00	-35.66	L1	GND
5.287	FINAL	_	13.80	50.00	-36.20	L1	GND
16.145	FINAL	_	9.88	50.00	-40.12	L1	GND
16.145	FINAL	15.8	_	60.00	-44.19	L1	GND

Table 7-30. AC Line-Conducted Test Data TxBF (L1, GFSK ePA – Ch.39, with AC/DC Adapter)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 93 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 95 01 95
© 2022 PCTEST			V 10.5 12/15/2021

Plot 7-86. AC Line-Conducted Test Plot TxBF (N, GFSK ePA – Ch.39, with AC/DC Adapter)

Frequency [MHz]	Process State	QuasiPeak [dBµV]	Average [dBμV]	Limit [dBµV]	Margin [dB]	Line	PE
0.152	FINAL	_	32.47	55.88	-23.40	N	GND
0.155	FINAL	46.0	_	65.75	-19.79	Ν	GND
0.191	FINAL	-	29.60	54.02	-24.42	Ν	GND
0.195	FINAL	44.5	_	63.82	-19.35	N	GND
0.544	FINAL	30.2	_	56.00	-25.78	N	GND
0.659	FINAL	_	19.15	46.00	-26.85	N	GND
0.695	FINAL	-	23.15	46.00	-22.85	Ν	GND
0.699	FINAL	30.1	_	56.00	-25.87	Ν	GND
5.210	FINAL	22.6	_	60.00	-37.44	N	GND
5.244	FINAL	_	11.81	50.00	-38.19	N	GND
16.166	FINAL	_	8.13	50.00	-41.87	N	GND
16.166	FINAL	13.9	_	60.00	-46.14	Ν	GND

Table 7-31. AC Line-Conducted Test Data TxBF (N, GFSK ePA – Ch.39, with AC/DC Adapter)

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 94 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 94 01 95
© 2022 PCTEST			V 10.5 12/15/2021

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Apple Tablet Device FCC ID: BCGA2589 and IC: 579C-A2589** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules and RSS-247 of the Innovation, Science and Economic Development Canada Rules.

FCC ID: BCGA2589 IC: 579C-A2589	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 95 of 95
1C2111150079-12.BCG	12/02/2021 - 02/02/2022	Tablet Device	Fage 95 01 95
© 2022 PCTEST			V 10.5 12/15/2021