

FCC Radio Test Report

FCC ID: 2AF82-FHD200

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-1-2104T005D Box PC FHD-200 Qbic Qbic Technology Co., Ltd. 26F12, NO.99, SEC. 1, XINTAI 5TH RD., XIZHI DIST., NEW TAIPEI CITY 22175, TAIWAN
Radio Function	: Bluetooth
FCC Rule Part(s) Measurement Procedure(s)	 FCC CFR Title 47, Part 15, Subpart C (15.247) ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2024/5/28 : 2024/6/24 ~ 2024/7/26 : 2024/8/9

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Bre Brett Shen, Engineer

Prepared by

Approved by

Jerry Chuang, Supervisor

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	SION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	8
1.4	DUTY CYCLE	9
2	GENERAL INFORMATION	10
2.1	DESCRIPTION OF EUT	10
2.2	TEST MODES	12
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.4	SUPPORT UNITS	14
3	AC POWER LINE CONDUCTED EMISSIONS TEST	15
3.1	LIMIT	15
3.2	TEST PROCEDURE	15
3.3	DEVIATION FROM TEST STANDARD	16
3.4	TEST SETUP	16
3.5	TEST RESULT	16
4	RADIATED EMISSIONS TEST	17
4.1	LIMIT	17
4.2	TEST PROCEDURE	18
4.3	DEVIATION FROM TEST STANDARD	18
4.4	TEST SETUP	19
4.5	EUT OPERATING CONDITIONS	20
4.6	TEST RESULT – 9 KHZ TO 30 MHZ	20
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	20
4.8	TEST RESULT – ABOVE 1 GHZ	20
5	NUMBER OF HOPPING CHANNEL	21
5.1	APPLIED PROCEDURES	21
5.2	TEST PROCEDURE	21
5.3	DEVIATION FROM STANDARD	21
5.4	TEST SETUP	21
5.5	EUT OPERATION CONDITIONS	21
5.6	TEST RESULTS	21
6	AVERAGE TIME OF OCCUPANCY	22
6.1	APPLIED PROCEDURES / LIMIT	22
6.2	TEST PROCEDURE	22
6.3	DEVIATION FROM STANDARD	22
6.4	TEST SETUP	22
6.5	EUT OPERATION CONDITIONS	22
6.6		22
7		23
7.1	APPLIED PROCEDURES / LIMIT	23
7.2		23
7.3	DEVIATION FROM STANDARD	23
7.4		23
7.5		23
8	BANDWIDTH TEST	24

8.1	APPL	IED PROCEDURES	24
8.2	TEST	PROCEDURE	24
8.3	DEVI	ATION FROM STANDARD	24
8.4	TEST	SETUP	24
8.5	EUT	OPERATION CONDITIONS	24
8.6	TEST	RESULTS	24
9	OUTPU	T POWER TEST	25
9.1	APPL	IED PROCEDURES / LIMIT	25
9.2	TEST	PROCEDURE	25
9.3	DEVI	ATION FROM STANDARD	25
9.4	TEST	SETUP	25
9.5	EUT	OPERATION CONDITIONS	25
9.6	TEST	RESULTS	25
10	ANTEN	NA CONDUCTED SPURIOUS EMISSION	26
10.1	APPL	IED PROCEDURES / LIMIT	26
10.2	TEST	PROCEDURE	26
10.3	DEVI	ATION FROM STANDARD	26
10.4	TEST	SETUP	26
10.5	EUT	OPERATION CONDITIONS	26
10.6	TEST	RESULTS	26
11	LIST OF	MEASURING EQUIPMENTS	27
12	EUT TE	ST PHOTO	29
13	EUT PH	OTOS	29
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	30
APPEND	IX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	35
APPEND	IX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	40
APPEND	IX D	RADIATED EMISSIONS - ABOVE 1 GHZ	43
APPEND	IX E	NUMBER OF HOPPING CHANNEL	62
APPEND	IX F	AVERAGE TIME OF OCCUPANCY	64
APPEND	IX G	HOPPING CHANNEL SEPARATION MEASUREMENT	67
APPEND	IX H	BANDWIDTH	70
APPEND	IX I	OUTPUT POWER	73
APPEND	IX J	ANTENNA CONDUCTED SPURIOUS EMISSION	75

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2104T005D	R00	Original Report.	2024/8/9	Valid

1 SUMMARY OF TEST RESULTS

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX G	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX H	Pass	
15.247 (b)(1)	Output Power	APPENDIX I	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX J	Pass	
15.203	Antenna Requirement		Pass	

Test procedures according to the technical standards.

Statement of Conformity

The statement of conformity is based on the binary decision rule according to IEC Guide 115 and ILAC G8 "simple acceptance" principle. Without considering measurement uncertainty, its specific risk is less than 50% PFA. (PFA: Probability of False Accept)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659) C05 □ CB08 □ CB11 \times SR11 □ SR10 No. 68-2, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659) CB12 \boxtimes SR05 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659) □ C06 ⊠ CB21 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
SR05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

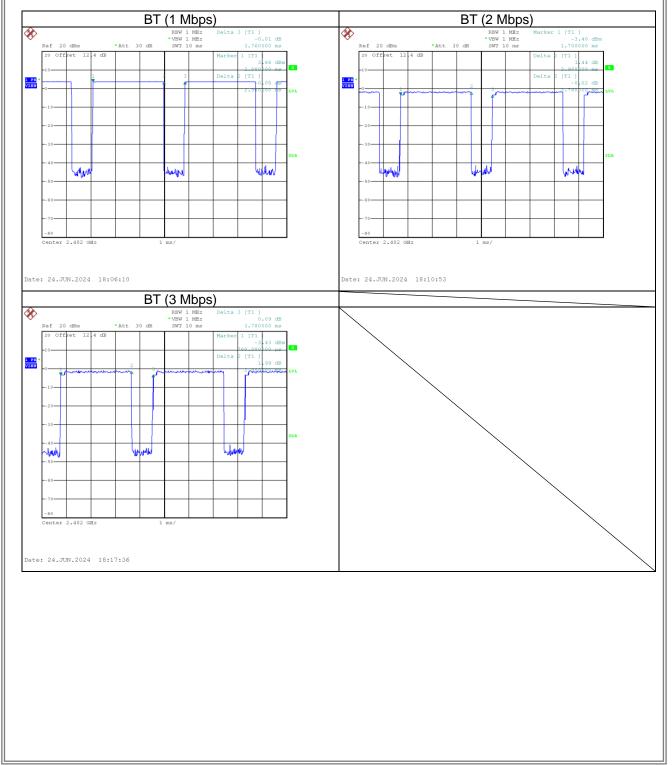
C. Conducted test :

Test Item	U (dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS


Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 50 %	AC 120V	Ken Lan
Radiated emissions below 1 GHz	Refer to data	AC 120V	Sean Huang
Radiated emissions above 1 GHz	Refer to data	AC 120V	Sean Huang
Number of Hopping Frequency	23 °C, 50 %	AC 120V	Ken Lan
Average Time of Occupancy	23 °C, 50 %	AC 120V	Ken Lan
Hopping Channel Separation	23 °C, 50 %	AC 120V	Ken Lan
Bandwidth	23 °C, 50 %	AC 120V	Ken Lan
Output Power	23 °C, 50 %	AC 120V	Ken Lan
Antenna conducted Spurious Emission	23 °C, 50 %	AC 120V	Ken Lan

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 2			Delta 3	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (2 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (3 Mbps)	2.900	1	2.900	3.780	76.72%	1.15

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

-				
Equipment	Box PC			
Model Name	FHD-200			
Brand Name	Qbic			
Model Difference	N/A			
Power Source	DC Voltage supplied from AC/DC adapter.			
Dowor Dating	I/P: 100-240V~, 50-60Hz, 300mA			
Power Rating	O/P: +5V, 2A MAX 10.0W			
	1 * Power Adapter: PHIHONG /PSM10R-050			
	1 * VESA Mounting: QBIC /MBP0400X01G01			
Products Covered	1 * Veicro Tie: 3M /NBP0400101001			
	1 * Power Plug for US.CE.US.AUS: PHIHONG /KPAD01005PH01			
	1 * Antenna: Joymax /TWX-100BRS3B-1242			
Operation Band	2400 MHz ~ 2483.5 MHz			
Operation Frequency	2402 MHz ~ 2480 MHz			
Modulation Type	GFSK, π/4-DQPSK, 8DPSK			
Modulation Technology	FHSS			
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps			
	1 Mbps: 4.06 dBm (0.0025 W)			
Output Power Max.	2 Mbps: -0.45 dBm (0.0009 W)			
	3 Mbps: -0.64 dBm (0.0009 W)			
Test Software Version	ADB			
Test Model	FHD-200			
Sample Status	Engineering Sample			
EUT Modification(s)	N/A			

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

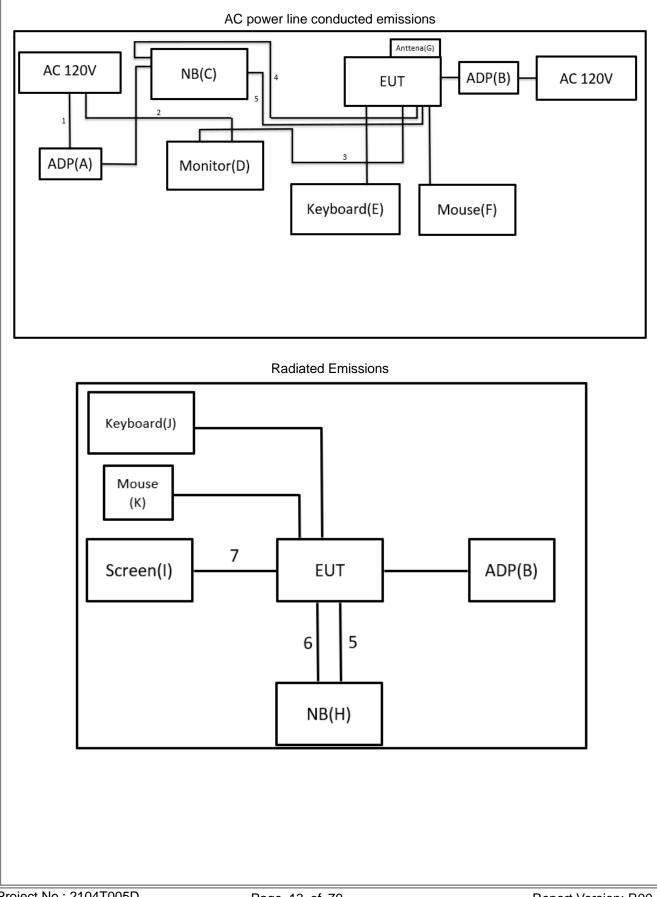
Antenna	Manufacture	Model name	Туре	Connector	Frequency (MHz)	Gain (dBi)
	1 Joymax TWX-100BRS3		Dipole		2400-2500	2.08
1		242		RP SMA Plug	5150-5250	4.05
		242			5555-5850	4.11

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Transmitter Radiated Emissions (above 18GHz)	1 Mbps	39	-
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:


(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

(2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No		Series No.	Remarks
A	ADP	HP	HSTNN-CA40		N/A	Furnished by test lab.
B	ADP	PHIHONG	PSM10R-0		N/A	Supplied by test requester
С	NB	HP	240 G5		N/A	Furnished by test lab.
D	Monitor	DELL	U2720Q		N/A	Furnished by test lab.
Е	Keyborad	DELL	KB216t		N/A	Furnished by test lab.
F	Mouse	DELL	MOCZUI	_	N/A	Furnished by test lab.
G	Anttena	JOEMAX	TWX-100BRS3	B-1242	N/A	Supplied by test requester
Н	NB	HP	TPN-I119	9	N/A	Furnished by test lab.
I	Screen	DELL	U2720Q		N/A	Furnished by test lab.
J	Keyboard	Bloody	KB-8		N/A	Furnished by test lab.
K	Mouse	Logitech	B100		N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	C	Cable Type	Remarks
1	No	No	1.8m	P	ower Cord	Furnished by test lab.
2	No	No	1.8m	P	ower Cord	Furnished by test lab.
3	No	No	1.5m	HDMI Cable		Furnished by test lab.
4	No	No	0.5m			Furnished by test lab.
5	No	No	1.5m	USB - A to Micro-USB		Furnished by test lab.
6	No	No	1m	LAN Cable		Furnished by test lab.
7	No	No	1.8m		HDMI	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)
 - Margin Level = Measurement Value Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
(dBµV)		(dB)		(dBµV)
38.22	+	3.45	Π	41.67
38.22	+	3.45	=	41.67

Measurement Value (dBuV)		Limit Value (dBuV)		Margin Level
(ασμν)		(ασμν)		(dB)
41.67	1	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

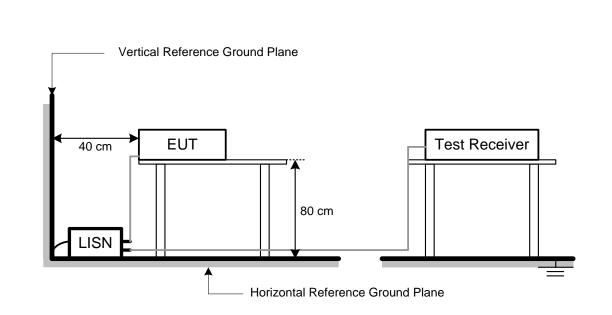
3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance	
	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Calculation example:

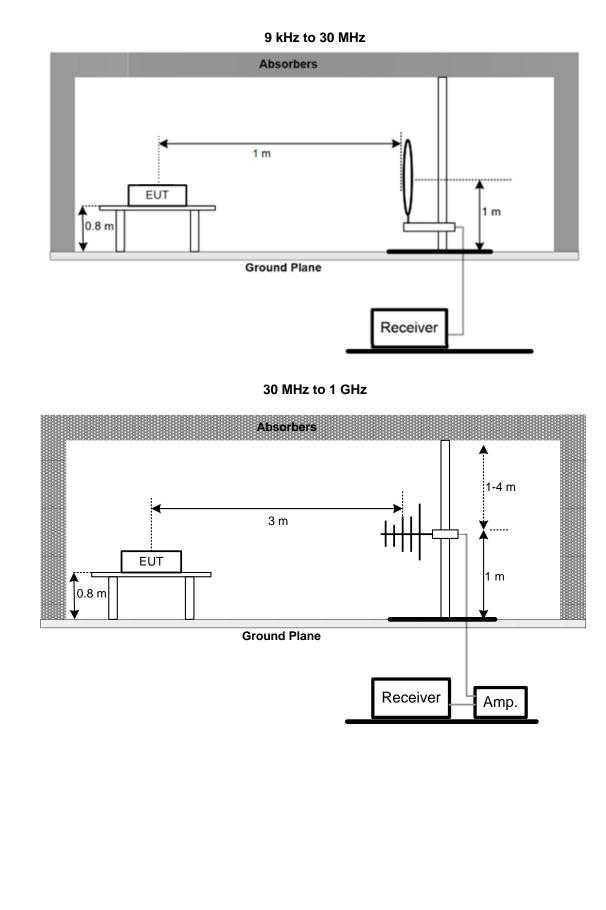
Reading Level (dBµV)		Correct Factor (dB/m)		Measurement Value (dBµV/m)
35.45	+	-11.37	Ш	24.08

Measurement Value (dBuV/m)		Limit Value (dBuV/m)		Margin Level (dB)
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

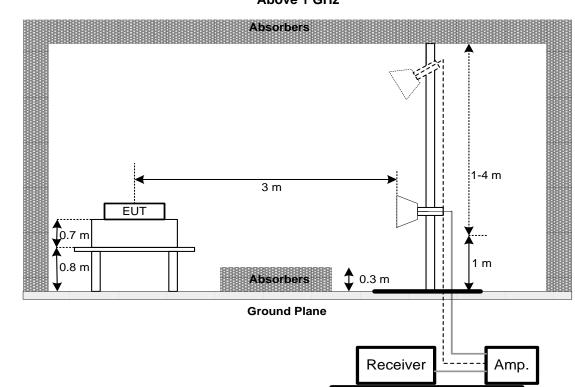
Spectrum Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency 9KHz~90KHz for PK/AVG det			
Start ~ Stop Frequency	90KHz~110KHz for QP detector		
Start ~ Stop Frequency 110KHz~490KHz for PK/AVG detecto			
Start ~ Stop Frequency 490KHz~30MHz for QP detector			
Start ~ Stop Frequency 30MHz~1000MHz for QP detector			

4.2 TEST PROCEDURE


- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 30MHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- c. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- d. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- f. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- g. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- h. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- j. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.



4.4 TEST SETUP

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT – 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section Test Item		Frequency Range (MHz)	Result
15.247(a)(1)(iii) Number of Hopping Channel		2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW 100 KHz	
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse. A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79) DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79) DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

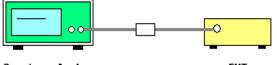
Please refer to the APPENDIX F.

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

Spectrum Analayzer

EUT

7.5 TEST RESULTS

Please refer to the APPENDIX G.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)
15.247(a)(2)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> Measurement Bandwidth or Channel Separation			
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)			
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

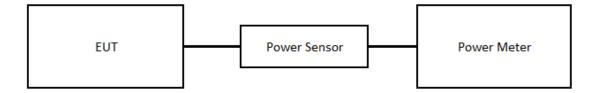
8.6 TEST RESULTS

Please refer to the APPENDIX H.

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section Test Item		Limit	Frequency Range (MHz)	Result
15.247(b)(1) Peak Output Power		0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX I.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101497	2024/5/20	2025/5/19	
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2023/8/1	2024/7/31	
3	EMI Test Receiver	R&S	ESR3	102950	2024/4/12	2025/4/11	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC330N	980850	2023/9/6	2024/9/5			
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5			
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20			
4	Preamplifier	EMCI	EMC001340	980579	2023/9/6	2024/9/5			
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7			
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7			
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7			
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22			
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2023/9/12	2024/9/11			
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2024/5/9	2025/5/8			
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2024/5/17	2025/5/16			
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2024/6/14	2025/6/13			
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2024/6/14	2025/6/13			
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12			
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12			
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

	Number of Hopping Frequency						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7	

	Average Time of Occupancy						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7	

			Нор	ping Channel Se	paration		
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
	1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7
-							

			Bandwidth			
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2024/5/11	2025/5/10
2	Power Sensor	Anritsu	MA2411B	1126001	2024/5/11	2025/5/10

		Antenna	conducted Spuric	ous Emission		
Iter	m Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2024/3/8	2025/3/7

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

12 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2104T005D-FCCP-1 (APPENDIX-TEST PHOTOS).

13 EUT PHOTOS

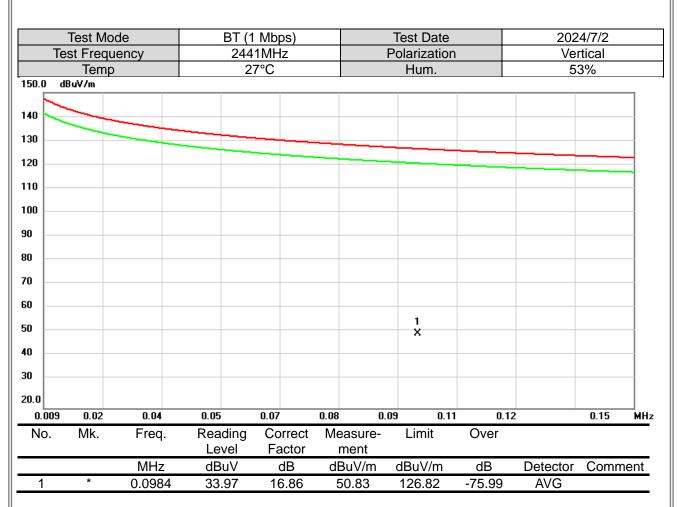
Please refer to document Appendix No.: EP-2104T005D-2 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

st Mo	ode	Normal						Test	ed Date	2024/6/25
st Fre	equency	-						Pha	se	Line
80.0) dBuV									
70										
60										
50										
40	1 X		3 X		5 X		7 ² ×	9 < 10	11 × 12 ×	
30	2		4 ×		6 X			×		
20	2 X				<u>^</u>					
10										
0.0 0	.150		0.5		(MHz)		5			30.000
lo. M	k. Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detecto	or C	Comment	
1	0.1590	28.95	9.59	38.54	65.52	-26.98	QP			
2	0.1590	13.64	9.59	23.23	55.52	-32.29	AVG			
3	0.5707	31.42	9.59	41.01	56.00	-14.99	QP			
4	0.5707	16.45	9.59	26.04	46.00	-19.96	AVG			
5	1.6148	27.79	9.63	37.42	56.00	-18.58	QP			
6	1.6148	15.74	9.63	25.37	46.00	-20.63	AVG			
7	4.5060	29.57	9.72	39.29	56.00	-16.71	QP			
8	4.5060	18.84	9.72	28.56	46.00	-17.44	AVG			
9	5.8515	33.43	9.74	43.17	60.00	-16.83	QP			
10	5.8515	23.63	9.74	33.37	50.00	-16.63	AVG			
11	10.0163	33.79	9.79	43.58	60.00	-16.42	QP			
12 *	10.0163	27.76	9.79	37.55	50.00	-12.45	AVG			

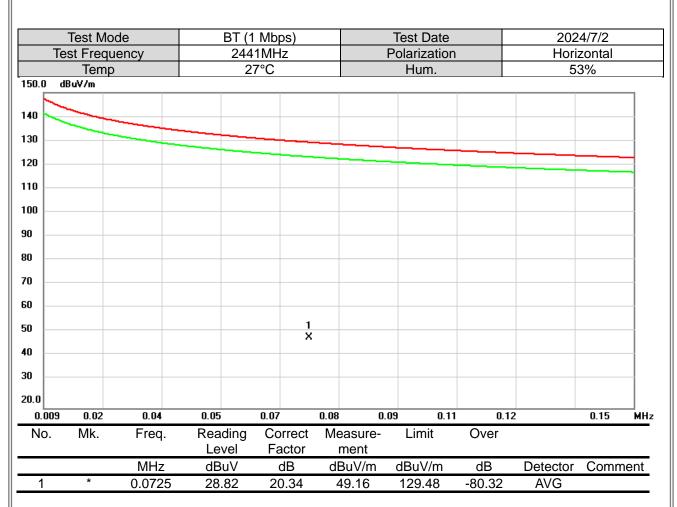
st Mod	le N	Iormal						Teste	d Date	2024/6/25
st Fred	uency -							Phas	е	Neutral
00.0	40.47									
80.0 dBu¥										
70										
60										
50										
50										
40 1			3			7 X		9 X	11 X	
			×		5			10	12 X	
30 2 X			4 ×		Х 6	8		×		
20			<u>^</u>		×	×				
10										
0.0										
0.1	50		0.5		(MHz)		5			30.000
lo. Mk	. Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detecto	or Co	omment	
1	0.1522	27.28	9.57	36.85	65.88	-29.03	QP			
2	0.1522	16.11	9.57	25.68	55.88	-30.20	AVG			
3	0.5730	24.71	9.60	34.31	56.00	-21.69	QP			
4 5	0.5730	14.91 20.13	9.60 9.64	24.51 29.77	46.00 56.00	-21.49 -26.23	AVG QP			
5 6	1.6643	13.44	9.64	29.77	46.00	-20.23	AVG			
7	3.5048	28.90	9.71	38.61	56.00	-17.39	QP			
8	3.5048	13.06	9.71	22.77	46.00	-23.23	AVG			
9	6.5963	29.44	9.79	39.23	60.00	-20.77	QP			
10	6.5963	20.12	9.79	29.91	50.00	-20.09	AVG			
11	10.0163	30.39	9.83	40.22	60.00	-19.78	QP			
12 *	10.0163	23.86	9.83	33.69	50.00	-16.31	AVG			

est Moo	de	Idle						Teste	d Date	2024/6/25	
est Fre	quency	ncy -						Phase	e	Line	
80.0	dBu¥										
70											
60			•								
50								9			
40	1		3 X		5 X	7 X		X 10	11 X		
30	×					8 ×		×	12 X		
	2 X		4 ×		X 6						
20											
10											
0.0 0.1	150		0.5		(MHz)		5			30.000	
		Reading	g Correct	Measure	-						
No. Mk		Level	Factor	ment	Limit	Margin					
	MHz	dBuV	dB	dBuV	dBuV	dB	Detecto	or Co	mment		
1	0.1908		9.59	36.76	64.01	-27.25	QP				
2	0.1908		9.59	21.45	54.01	-32.56	AVG				
3	0.5820		9.59	39.16	56.00	-16.84	QP				
4	0.5820) 14.79	9.59	24.38	46.00	-21.62	AVG				
5	1.6758	5 27.72	9.63	37.35	56.00	-18.65	QP				
6	1.6755	5 15.90	9.63	25.53	46.00	-20.47	AVG				
7	3.4395	5 30.53	9.68	40.21	56.00	-15.79	QP				
8	3.4395	5 19.91	9.68	29.59	46.00	-16.41	AVG				
9	6.4365	5 35.19	9.76	44.95	60.00	-15.05	QP				
10 *	6.4365	5 25.93	9.76	35.69	50.00	-14.31	AVG				
11	10.3830	30.56	9.79	40.35	60.00	-19.65	QP				
12	10.3830		9.79	32.72	50.00	-17.28	AVG				



st Mod	e l	dle						Teste	d Date	2024/6/25
st Freq	uency							Phas	е	Neutral
80.0 dBuV										
70										
/0										
60										
50										
40 1						7 X		9 X	11 X 12	
×			3 X		5			10	×	
30 2 X			4		X 6	8		X		
20			×		×	×				
10										
0.0										
0.15	50		0.5		(MHz)		5			30.000
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detecto	or Co	omment	
1	0.1522	26.68	9.57	36.25	65.88	-29.63	QP			
2	0.1522	16.03	9.57	25.60	55.88	-30.28	AVG			
3	0.5730	25.14	9.60	34.74	56.00	-21.26	QP			
4	0.5730	15.15	9.60	24.75	46.00	-21.25	AVG			
5	1.6170	20.23	9.64	29.87	56.00	-26.13	QP			
6	1.6170	13.18	9.64	22.82	46.00	-23.18	AVG			
7	3.4710	28.94	9.71	38.65	56.00	-17.35	QP			
8 9	3.4710 6.5963	12.93 30.77	9.71 9.79	22.64 40.56	46.00 60.00	-23.36 -19.44	AVG QP			
9	6.5963	20.42	9.79	30.21	50.00	-19.44	AVG			
10	10.0185	31.52	9.83	41.35	60.00	-18.65	QP			
12 *	10.0185	25.44	9.83	35.27	50.00	-14.73	AVG			

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ


(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

	Test Mo			Mbps)		Test Date			4/7/2	
Те	st Frequ			1MHz		Polarization	า		rtical	
<u> </u>	Temp		2	7°C		Hum.		5	3%	
20.0 dl	Bu¥/m									_
10 00 0										
0 🔆		2 X						6		
o			3 X			4 ×	5 X	×		
o										
0										
10.0										
0.150	3.14	6.12	9.10	12.09		8.06 21.		3	30.00	MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent
1	*	0.7490	75.61	3.08	78.69	89.19	-10.50	QP		
2		4.3440	72.89	-4.20	68.69	88.62	-19.93	QP		
3		10.0870	58.46	-3.17	55.29	88.62	-33.33	QP		
4		17.8002	58.80	-3.89	54.91	88.62	-33.71	QP		
5		23.7384	56.81	-2.32	54.49	88.62	-34.13	QP		
6		26.7085	57.28	-0.91	56.37	88.62	-32.25	QP		

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

	Test Mode Test Frequency			Mana)		Test Data		2024/7/2		
				<u>Mbps)</u> 1MHz		Test Date Polarization	ר ר		4/7/2 zontal	
10	Temp			7°C		Hum.			3%	
20.0 dl	Bu¥/m			-		-		-		
110										
30 × ×	2. X									
50				3 X		4 ×	5 X	6 ×		
20										
)										
0.150	3.14	6.12	9.10	12.09	15.08 1	8.06 21.	04 24.0	3	30.00	мн:
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent
1	*	0.7500	76.51	3.07	79.58	89.18	-9.60	QP		
2		1.4972	72.39	-0.43	71.96	83.17	-11.21	QP		
3		11.4204	49.66	-3.30	46.36	88.62	-42.26	QP		
4		17.8073	47.11	-3.89	43.22	88.62	-45.40	QP		
5		23.7365	47.40	-2.32	45.08	88.62	-43.54	QP		
6		26.7075	48.32	-0.91	47.41	88.62	-41.21	QP		

APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Te	Test Mo est Freq			E		I Mb ∙1M⊢					Test Dat olarizati				4/7/26 rtical	
	Temp					1°C	2			<u> </u>	Hum.				6%	
80.0 d	IBuV/m	,			2	10					110111.				070	
70																
50																
																-
50																-
40									×	5 X		6 X				
	3		3					X			Î					
30 1 X																
20																
0																
0.0																
30.000) 127.0	D 224.	00	321.0	D	418.	00	515.	00	612	.00 7	709.00	806	5.00	1000.00	 MH:
No.	Mk.	Freq		Read Lev	ing		rrect		easure ment)-	Limit		Over			
		MHz	2	dBu			dB		BuV/m	1	dBuV/m	۱	dB	Detector	Comm	ent
1		45.46	71	41.3	39	-1	1.83		29.56		40.00		-10.44	QP		
2		77.23	84	49.8	31	-1	6.25		33.56		40.00		-6.44	peak		
3		257.04		46.4			3.11		33.31		46.00		-12.69	peak		
4		533.14		43.8			6.06		37.83		46.00		-8.17	peak		
5	*	593.98		45.2		-2	.60		40.62		46.00		-5.38	QP		
6		714.64	25	41.2	24	-2	2.54	:	38.70		46.00		-7.30	QP		

	Test Mode								-				
					1 Mbps)				t Date			4/7/26	
	Test Frec Tem				<u>41MHz</u> 21°C				rizatio lum.	n		zontal 6%	
80.0	dBuV/m	ιp		4	210				um.		J	0 /0	
70													
60 -													
												_	4
50 —	2							4			6		4
40	×							x			5 ×		
	1		3 X										
30 -	x												
20													
10													
0.0													
30.0	00 127.0	0 224.	00	321.00	418.00	515.	.00 (612.00	70	9.00 80	6.00	1000.00	MHz
No.	Mk.	Freq		Reading Level	Correo Facto		easure- ment	. L	imit	Over			
		MHz	_	dBuV	dB		BuV/m	dB	uV/m	dB	Detector	Comm	ent
1		62.334		44.53	-12.7		31.76		0.00	-8.24	QP		
2	*	122.89	27	57.25	-14.22	2	43.03	43	3.50	-0.47	QP		
3		259.12	17	48.15	-13.06	6	35.09	46	6.00	-10.91	peak		
4	!	593.99	51	48.09	-4.60) .	43.49	46	6.00	-2.51	QP		
5		816.71	52	40.75	-1.10);	39.65	46	6.00	-6.35	peak		
6	!	890.97	20	44.23	-0.24		43.99	46	6.00	-2.01	QP		

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mod st Freque		E	,	Mbps) 2MHz			Test Da Polariza			4/6/28 zontal
100	Temp	лоу			5°C			Hum			1%
130.0 dB	uV/m			_					•	0	170
120											
110						5					
100											
90											
80											
70											
/0						1					
60			_								
50			X		AL	in and	Maria	العراقية المعاد		www.automatically.html	s X
40	Million and Control of	t governilet at the dented	2	alteration	Allow Marked Walk	n hand	1.11.11.14.14	fixes a fields a straight	horan de la construction de la construcción de la construcción de la construcción de la construcción de la cons	MALE AND ALL ALL AND A	· · ·
			×								×
30											
20											
10.0											
	0 2322.00	2342.00	2362.		2382.00	2402		422.00		462.00	2502.00 MH
No.	Mk.	Freq.	Read Lev		Correc		asure-	Limit	Over		
		MHz	dBu		Factor dB		nent BuV/m	dBuV/	m dB	Detector	Comment
1		2354.913	56.8		-5.05		1.76	74.00			Comment
2		2354.913	43.6		-5.05		8.63	54.00			
3		2400.000	76.2		-4.99		1.28	74.00		peak	No Limit
4	Х	2402.000	110.	56	-5.00	1(05.56	74.00) 31.56	peak	No Limit
5	*	2402.000	110.	08	-5.00	1(05.08	54.00) 51.08	AVG	No Limit
6		2498.320	55.7		-4.86		88.0	74.00			
7		2498.320	43.3		-4.86		8.51	54.00) -15.49	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Temp 25°C Hum. 61% 20 49.0V/m 49.0V/m 49.0V/m 49.0V/m 49.0V/m 20 49.0V/m 49.0V/m 49.0V/m 49.0V/m 49.0V/m 49.0V/m 20 49.0V/m 49.0V/m 49.0V/m 49.0V/m 49.0V/m 49.0V/m 49.0V/m 00 49.0V/m 40.0V/m 40.0V	Т	Test Mo Test Frequ		,	1 Mbps) 80MHz		Test Date Polarizatior	า	-	1/6/28 zontal
20 10 00 00 00 00 00 00 00 00 0		Temp		2	25°C		Hum.		6	1%
10 00 0	50.0	00017111								
00 00 0	20 -									
0	10 🗕									
0						- Î				
0										
0 0						11				
0 2 5	0									
0 2 3 X 2480.000 2480.000 2480.000 2500.00 2500.00 2540.00 2580.00 MHz 1 2381.247 54.53 -5.02 49.51 74.00 -24.49 peak 2 2381.247 43.13 -5.02 38.11 54.00 -15.89 AVG 3 X 2480.000 112.64 -4.89 107.75 74.00 53.37 AVG No Limit 4 * 2480.000 112.26 -4.89 107.37 54.00 -19.80 peak	o 🗖									
0 5 5 6 7	1									
0 2 X	n 🗆),				
0 -	:0					5				
0.0 2380.000 2400.00 2420.00 2440.00 2460.00 2480.00 2500.00 2520.00 2540.00 2580.00 MHz No.<		yarramanahada	ufthefar and a stand and a stand a stan	militar	Anna she hata at ha	5 *********	and leader of the second	Waterburreren Walakamar	generaliteter and	mahanara
0.0 2400.00 2420.00 2440.00 2460.00 2480.00 2500.00 2520.00 2540.00 2580.00 MH No. Mk. Freq. Reading Level Correct Factor Measurement Limit Over Ver	io 🕌	www.white	nfillyaap so a harven ayadaan	mdakduguntum	often on statistical and the	All X	when when the second	hyperternertideterer	yannakhinanna	nadayadahand
0.0 2400.00 2420.00 2440.00 2460.00 2480.00 2500.00 2520.00 2540.00 2580.00 MH No. Mk. Freq. Reading Level Correct Factor Measurement Limit Over Ver	io 🕌	ununun	afilipeopus and also appendistan	mininter	open un podra p	×****	whenter a second	u photon an Adal Amer	yanun deheraran say	nadanji di wanad
2380.000 2400.00 2420.00 2440.00 2460.00 2480.00 2500.00 2520.00 2540.00 2580.00 MH No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over -	i0 <mark>%</mark> 10 2 X	un an	ngdlynep ser af new a garleetan	endelidusjonwen	ofen on the defendent of the	Here and the second sec		la potencia entre de la composició de la c	ganhintkhrimenneg	nudiquint/letions.v4
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 1 2381.247 54.53 -5.02 49.51 74.00 -24.49 peak 2 2381.247 43.13 -5.02 38.11 54.00 -15.89 AVG 3 X 2480.000 112.64 -4.89 107.75 74.00 33.75 peak No Limit 4 * 2480.000 112.26 -4.89 107.37 54.00 53.37 AVG No Limit 5 2483.920 59.07 -4.87 54.20 74.00 -19.80 peak	io <mark>2</mark> io 2 x io x	an a	nfillipeoperature performan	mininin m	oden van de			st pletanovellakihing	genturalkhernerura	nullayudfahirsod
Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 1 2381.247 54.53 -5.02 49.51 74.00 -24.49 peak 2 2381.247 43.13 -5.02 38.11 54.00 -15.89 AVG 3 X 2480.000 112.64 -4.89 107.75 74.00 33.75 peak No Limit 4 * 2480.000 112.26 -4.89 107.37 54.00 53.37 AVG No Limit 5 2483.920 59.07 -4.87 54.20 74.00 -19.80 peak	0 2 0 2 X 0									
1 2381.247 54.53 -5.02 49.51 74.00 -24.49 peak 2 2381.247 43.13 -5.02 38.11 54.00 -15.89 AVG 3 X 2480.000 112.64 -4.89 107.75 74.00 33.75 peak No Limit 4 * 2480.000 112.26 -4.89 107.37 54.00 53.37 AVG No Limit 5 2483.920 59.07 -4.87 54.20 74.00 -19.80 peak	0 2 0 2 0 0 0 0 0.0 2380.	.000 2400.0	00 2420.00	2440.00	2460.00	2480.00 25	i00.00 252	20.00 254		2580.00 MH
2 2381.247 43.13 -5.02 38.11 54.00 -15.89 AVG 3 X 2480.000 112.64 -4.89 107.75 74.00 33.75 peak No Limit 4 * 2480.000 112.26 -4.89 107.37 54.00 53.37 AVG No Limit 5 2483.920 59.07 -4.87 54.20 74.00 -19.80 peak	0 2 0 2 0 0 0 0 2380.	.000 2400.0	00 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 25 Measure- ment	00.00 252 Limit	20.00 254 Over		
3 X 2480.000 112.64 -4.89 107.75 74.00 33.75 peak No Limit 4 * 2480.000 112.26 -4.89 107.37 54.00 53.37 AVG No Limit 5 2483.920 59.07 -4.87 54.20 74.00 -19.80 peak	0 2 0 2 X 0 0 0.0 2380.	.000 2400.0	00 2420.00 Freq. MHz	2440.00 Reading Level dBuV	2460.00 Correct Factor dB	2480.00 25 Measure- ment dBuV/m	00.00 252 Limit dBuV/m	20.00 254 Over dB	0.00 Detector	2580.00 MH
4 * 2480.000 112.26 -4.89 107.37 54.00 53.37 AVG No Limit 5 2483.920 59.07 -4.87 54.20 74.00 -19.80 peak	0 2 0 2 0 2 0 0 2380 No.	.000 2400.0	00 2420.00 Freq. MHz 2381.247	2440.00 Reading Level dBuV 54.53	2460.00 Correct Factor dB -5.02	2480.00 25 Measure- ment dBuV/m 49.51	00.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -24.49	0.00 Detector peak	2580.00 MH
4 2480.000 112.20 -4.89 107.37 54.00 53.37 AVG NO LIMIT 5 2483.920 59.07 -4.87 54.20 74.00 -19.80 peak	0 2 0 2 0 2 0 2 2380 No.	0.000 2400.0 Mk.	0 2420.00 Freq. MHz 2381.247 2381.247	2440.00 Reading Level dBuV 54.53 43.13	2460.00 Correct Factor dB -5.02 -5.02	2480.00 25 Measure- ment dBuV/m 49.51 38.11	00.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -24.49 -15.89	0.00 Detector peak AVG	2580.00 MH
	0 2 0 2 0 2 0 2 3	0.000 2400.0 Mk.	00 2420.00 Freq. MHz 2381.247 2381.247 2480.000	2440.00 Reading Level dBuV 54.53 43.13 112.64	2460.00 Correct Factor dB -5.02 -5.02 -4.89	2480.00 25 Measure- ment dBuV/m 49.51 38.11 107.75	00.00 252 Limit dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -24.49 -15.89 33.75	0.00 Detector peak AVG peak	2580.00 MH
6 2483.920 51.27 -4.87 46.40 54.00 -7.60 AVG	0 2 0 2 0 2 0 2 3 4	0.000 2400.0 Mk.	00 2420.00 Freq. MHz 2381.247 2381.247 2480.000 2480.000	2440.00 Reading Level dBuV 54.53 43.13 112.64 112.26	2460.00 Correct Factor dB -5.02 -5.02 -4.89 -4.89	2480.00 25 Measure- ment dBuV/m 49.51 38.11 107.75 107.37	00.00 252 Limit dBuV/m 74.00 54.00 74.00 54.00	0.00 254 Over dB -24.49 -15.89 33.75 53.37	Detector peak AVG AVG	2580.00 MH

		1.				Test Dete		000	
	Test Moo st Freque			3 Mbps) 2MHz		Test Date Polarizatio			1/6/28 zontal
163	Temp	ency		5°C		Hum.			1%
130.0 dB	uV/m								. , 0
120									
110					4				
100					Ň				
90									
80					×				
70									
60									
	1								.
о н м/т.М		Annonimmedia	mprovementation	man sharp all a short the	we thusberry	monormounder-solary	magelenner	mut man	
40	2 X								7 X
30									
20									
10.0									
2302.00	0 2322.00	2342.00	2362.00	2382.00	2402.00	2422.00 24	42.00 246	2.00	2502.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2316.273	55.39	-5.11	50.28	74.00	-23.72	peak	
2		2316.273	43.29	-5.11	38.18	54.00	-15.82	AVG	
3	Х	2400.000	83.92	-4.99	78.93	74.00	4.93	peak	No Limit
4	Х	2402.000	110.83	-5.00	105.83	74.00	31.83	peak	No Limit
5	*	2402.000	107.28	-5.00	102.28	54.00	48.28	AVG	No Limit
6		2498.640	55.48	-4.86	50.62	74.00	-23.38	peak	
7		2498.640	43.34	-4.86	38.48	54.00	-15.52	AVG	

		Test Mode Test Frequency Temp		3T (3 N 2480N			Test Date Polarizatior	2		1/6/28 zontal
				2 <u>400</u>			Hum.	1		1%
30.0	dBuV/m	۲		20	0		Tiditi.		0	170
Г		Ì								
20										
10 -						3				
00 -						- Ñ				
0										
:0 -										
'o =										
io -						5				
	į					5				
50 <mark>-</mark> 44		www.mah.out.out.	un manageral des	Non Maple	, eviller aller and	10 ⁴ L	-h-second-and-and-and-and-and-and-and-and-and-a	edillik kananasi kanyan	a management deriver and	nnummuhuy
50 -M	2 X	gagedrach-e-landdau	ber-namelallyber	ndpi Malinhy	n nadda n yn daethau yn arwydd arw	AN BHANA	down the state of	dhhainneach ann an	errouten and entrony	www.www.
50 40		han an a	berneyeledeber	hdp. Makaha	nerski film Madeline	AN BHANA	droom and a second and the	ndd tryd a new Maryw	n na prima della nee	www.
50 50 40 30		graph of the second	ber-recorded Alter	ndpi, Malanhy		AN BHANA	alarate Maria and a state	nhhuunnahona	n	www.
50		nynaputti vakututututututututututututututututututut	warang hat Ma	rdp. Makeda	verdetaat tektoor	AN BHANA	where the second s	dhlithginner Martun	d nad primedation of	www.we
i0 .0 .0 .0 .0					460.00	**************************************			илалун ^а лификлопу 0.00	2580.00 MH
i0 .0 .0 .0 .0	2 X 20.000 2400.		2440.0 Read	00 2 ling (460.00 Correct	2480.00	2500.00 252			
0 49 0	2 X 0.000 2400.	00 2420.00) 2440.0	00 2 ling (460.00	2480.00	2500.00 252	20.00 254		
0 40 0 0 0 0 0.0 2380	2 X 0.000 2400.	00 2420.00 Freq.	2440.0 Read Leve dBu	00 2 ling (el	460.00 Correct Factor	2480.00 Measure- ment	2500.00 252 Limit	20.00 254 Over	0.00	2580.00 Mł
0 49 0	2 X 0.000 2400.	00 2420.00 Freq. MHz	2440.0 Read Leve dBu 54.8	00 2 ling (el V 34	460.00 Correct Factor dB	2480.00 Measure- ment dBuV/m	2500.00 252 Limit	20.00 254 Over dB	0.00 Detector	2580.00 MH
0 0 0 0 0.0 2380 No.	2 X 0.000 2400.	00 2420.00 Freq. MHz 2387.247	2440.0 Read Leve dBu 754.8 743.0	00 2 ling (el V 34 D2	460.00 Correct Factor dB -5.01	2480.00 2480.00 Measure- ment dBuV/m 49.83	2500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -24.17	0.00 Detector peak	2580.00 MH
0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 X 0.000 2400. . Mk.	00 2420.00 Freq. <u>MHz</u> 2387.247 2387.247	2440.0 Read Leve dBu 54.8 7 43.0 0 111.8	00 2 ling (el V 34 02 87	460.00 Correct Factor dB -5.01 -5.01	2480.00 3 Measure- ment dBuV/m 49.83 38.01	2500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -24.17 -15.99	0.00 Detector peak AVG	2580.00 MH
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 X 20.000 2400. Mk.	00 2420.00 Freq. MHz 2387.247 2387.247 2480.000	2440.0 Read Leve dBu 554.8 7 43.0 111.8 0 108.3	00 2 ling (el V 34 02 87 32	460.00 Correct Factor dB -5.01 -5.01 -4.89	2480.00 2480.00 Measure- ment dBuV/m 49.83 38.01 106.98	2500.00 252 Limit dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -24.17 -15.99 32.98	0.00 Detector peak AVG peak	2580.00 MH Comment

Te	Test Mo st Frequ				Mbps) 2MHz		Test I Polariz		1		4/6/28 rtical
	Temp				5°C		Hu				1%
130.0 d	Bu¥/m	i									
120											
110											
100											
90											
80											
70											
50											
50			1								
10 <u> </u>			1 X 2								
30			x								
20											
10.0											
	00 2700.0)0	6100.00	7800.00		11200.00			500.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure ment	- Lirr	nit	Over		
		MHz		dBuV	dB	dBuV/m	dBu\	//m	dB	Detector	Comment
1		4804.00		42.94	0.88	43.82	74.(-30.18	peak	
2	*	4804.00	0	32.14	0.88	33.02	54.0	00	-20.98	AVG	

	Test Mo				Mbps)		Test Date			1/6/28
Tes	t Frequ Temp				<u>2MHz</u> 5°C		Polarization Hum.	1		zontal 1%
130.0 dB	uV/m	/		Z\			Tiditi.		0	170
120										
110										
100										
90										
80										
70										
60										
50			1							
40			1 2 X							
30										
20										
10.0										
1000.000				6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00		43.65	0.88	44.53	74.00	-29.47	peak	
2	*	4804.00	0	36.63	0.88	37.51	54.00	-16.49	AVG	

	est Mo t Frequ		_		1 Mbps) 41MHz		Test Date Polarization	n		4/6/28 rtical
	Temp)		2	25°C		Hum.		6	1%
130.0 dBu	iV/m									
120										
10										
00										
0										
0										
0										
o 📃										
io			-							
o 🦾			1 X 2							
0			x							
20										
0.0										
1000.000		0 4400).00	6100.00	7800.00	9500.00 1	1200.00 129	900.00 146	00.00	18000.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	2	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0	00	44.65	1.04	45.69	74.00	-28.31	peak	
2	*	4882.0		35.85	1.04	36.89	54.00	-17.11	AVG	

	Test Mo st Frequ				Mbps) 1MHz		Test Date Polarizatio			1/6/28 zontal
	Temp			2	5°C		Hum.		6	1%
130.0 dB	uV/m									
120										
10										
00										
90										
30										
0										
50										
i0			1 Ž							
10			ž.							
80										
20										
0.0	0.0700.0				7000.00	0500.00	1000.00 10		00.00	
1000.00 No.	0 2700.0 Mk.	0 4400.0 Freq.	-	6100.00 Reading	7800.00 Correct	9500.00 1 Measure-	1200.00 12 Limit	900.00 146 Over	00.00	18000.00 MH
110.	IVIN.	Fieq.	r	Level	Factor	measure-		Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00		43.49	1.04	44.53	74.00	-29.47	peak	
2	*	4882.00	0	38.48	1.04	39.52	54.00	-14.48	AVG	

	est Mo t Frequ				Mbps) 0MHz		Test Date Polarizatio			1/6/28 rtical
	Temp				5°C		Hum.			1%
130.0 dB	ıV/m							1		
20										
10										
00										
0										
0										
0										
0										
0			ł							
0			2 X							
0										
:0										
0.0					7000.00	0500.00	1000 00 10			
1000.000 No.	Mk.	0 4400. Freq.	UU	6100.00 Reading	7800.00 Correct	9500.00 ··· Measure-		900.00 146 Over	00.00	18000.00 MH
110.	IVIN.	i ieq.		Level	Factor	ment		Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.00)0	44.93	1.21	46.14	74.00	-27.86	peak	
2	*	4960.00)0	36.36	1.21	37.57	54.00	-16.43	AVG	

-	Test M Test Free		V			BT (1	Mbp 0MH					Test [Polariz		•			4/6/28 zontal	
	Terr		<u>y</u>				5°C	2				Hur		<u> </u>			1%	
130.0	dBuV/m	<u>۱</u> ۳				_											170	
120																		
110 _																		
100 -																		
90 -																		
80 -																		
70																		
60																		
50				1 X														
40				2 X														
30																		
20 — 10.0																		
).000 2700	.00	4400.	00	6100	.00	7800	.00	9500).00	11	200.00	129	00.00	1460	0.00	18000.0	 0 MHz
No.	Mk.		Freq.		Rea Le			rrect ctor		easu ment		Lim	it	Ove	er			
			MHz		dB			βB		BuV/		dBu∨	//m	dB		Detector	Comm	ent
1		49	60.00	00	42.	32	1	.21		43.53		74.0	00	-30.4	17	peak		
2	*	49	60.00)0	33.	54	1	.21	:	34.75	5	54.0)0	-19.2	25	AVG		

Te	Test Mo est Frequ				<u>8 Mbps)</u> 2MHz		Test Date Polarizatio			1/6/28 rtical
	Temp			2	5°C		Hum.		6	1%
130.0 d	lBuV/m									
120										
10										
00										
0										
0										
0										
0										
0			1 X							
0			2 X							
0			^							
0.0										
	00 2700.0	00 4400.	00	6100.00	7800.00	9500.00 1	1200.00 12	900.00 146	00.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	00	43.77	0.88	44.65	74.00	-29.35	peak	
2	*	4804.00	00	32.55	0.88	33.43	54.00	-20.57	AVG	

	Test						8 Mbp					Test [4/6/28	
	Test Fre		ency				<u>2MHz</u> 5°C	2				Polariz		1			zontal	
130.0	Ter dBu¥/m	пр				Z	5-0					Hur	n.			0	1%	
																		٦
120																		
110																		1
100 🗕																		-
90																		
50																		
80																		
70																		1
60																		1
50				1														1
40				1 X														
				2 X														
30 -																		
20																		
10.0																		
	.000 270	0.00	4400	.00	6100	.00	7800.	00	9500).00	11	200.00	129	00.00	146)0.00	18000.00	_ D MHz
No.	Mk.		Freq			ding	Cor	rect ctor		easui ment	re-	Lim		Ov				
			MHz		dB			B		BuV/		dBu∖	//m	dE	3	Detector	Comme	ent
1			4804.0		43.			88		44.34		74.0		-29.		peak	Comme	on
2	*		4804.0		33.			88		34.87		54.0		-19.		AVG		

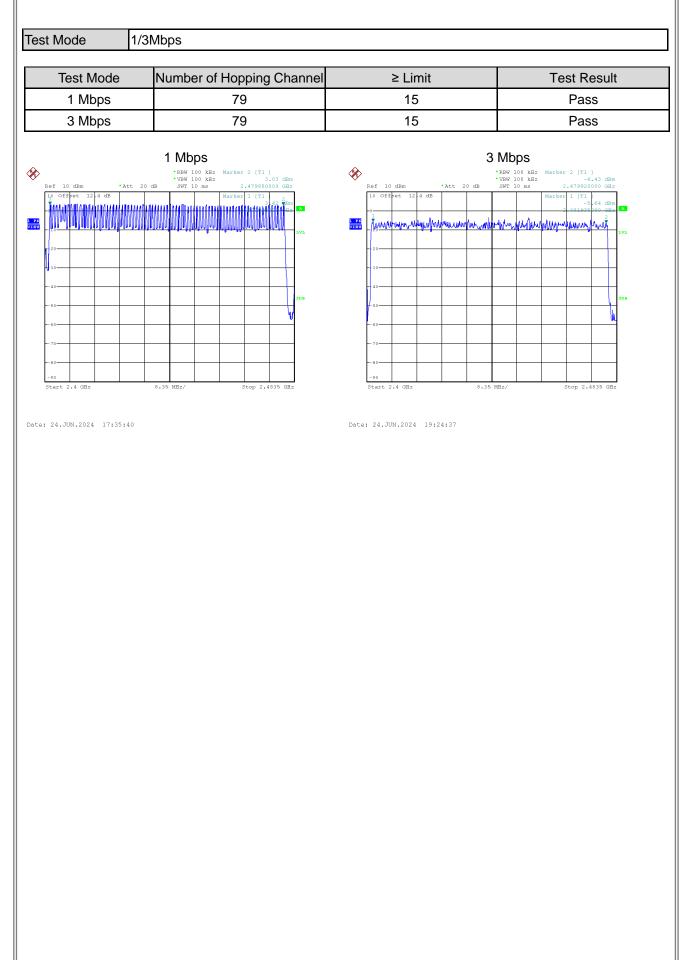
	Test Mo st Frequ		_		<u>3 Mbps)</u> 1MHz		Test Date Polarizatio			1/6/28 rtical
	Temp				5°C		Hum.			1%
30.0 d	BuV/m									
20										
10										
00										
o										
0										
0										
0										
0			1 X							
0			2 X							
o			~							
0										
0.0	00 2700.0	0 4400	00	6100.00	7800.00	9500.00 1	1200.00 12	900.00 146	00.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over	vv. 4V	
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0	00	43.58	1.04	44.62	74.00	-29.38	peak	
2	*	4882.0	00	33.17	1.04	34.21	54.00	-19.79	AVG	

	est Mo	ode uency				Mbps) 1MHz			Test D Polariza				4/6/28 zontal
163	Tem					5°C		-	Hum				1%
130.0 dB					2				Tian				170
120													
110													
100													
90													
80													
70													
60													
50			1										
40			1 X 2 X										
30			X										
20													
10.0													
1000.000				6100.0		7800.00	0.00	11	200.00			4600.00	18000.00 MH
No.	Mk.	Freq		Readi Leve		Correc Factor	easur ment	e-	Limit	t	Over		
		MHz		dBu		dB	BuV/r	n	dBuV/		dB	Detector	Comment
1		4882.0		42.7		1.04	43.81		74.00		-30.19		
2	*	4882.0	000	32.7	2	1.04	33.76		54.00)	-20.24	AVG	

Т	Test N Fest Free	que				(3 M 480M	Hz				Test Da Polarizat	tion		Vei	4/6/28 rtical
	Terr	np				25°C	;				Hum.	L.		6	1%
130.0	dBuV/m														
120 -															
110 -															
100 -															
90 -															
80															
70 —															
50															
50				X											
40				2 X											
10.0															
1000.	.000 2700	00.	4400.0	DO	6100.00	78	00.00	9500).00	112	200.00	12900	.00 146	00.00	18000.00 MH
No.	Mk.		Freq.		Readin Level		Correct Factor		easure ment)-	Limit		Over		
			MHz		dBuV		dB	d	BuV/m	1	dBuV/r	n	dB	Detector	Comment
1			4960.00	0	44.57		1.21	4	45.78		74.00		-28.22	peak	
2	*		4960.00		32.63		1.21		33.84		54.00		-20.16	AVG	

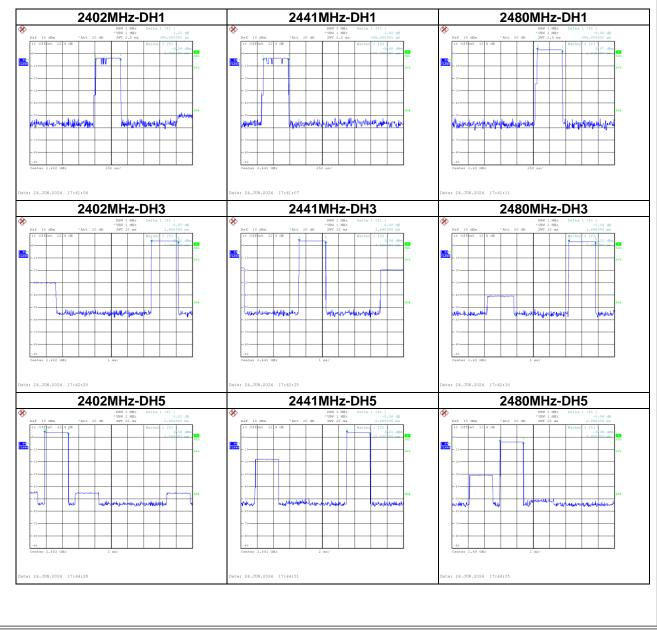
Те	Test Mo st Frequ			(3 Mbps) 480MHz		Test Date Polarization	n		1/6/28 zontal
	Temp			25°C		Hum.			1%
130.0 d	BuV/m								
120									
110									
100									
90									
80									
70									
60									
50			1 X						
40			2						
30			x						
20									
10.0									
	00 2700.0			7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	g Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	43.90	1.21	45.11	74.00	-28.89	peak	
2	*	4960.000	32.66	1.21	33.87	54.00	-20.13	AVG	

٦	Test Mo Test Frequ				441					lest Da olarizat				4/7/1 rtical
	Temp)			26°	С				Hum.	I		6	0%
130.0	dBu¥/m													
120														
110 -														
100 -														
90 -														
80														
70														
50														
50 -		1 X												
40		2 X												
30														
20 -														
1800	0.000 18850	.00 19700	D.00	20550.0	0 2	1400.00	2225	0.00	231	00.00	23950.0	00 24	800.00	26500.00 MH
No.	Mk.	Freq.		Readin Level		Correct Factor		easure- ment	-	Limit		Over		
		MHz		dBuV		dB		BuV/m		dBuV/n	n	dB	Detector	Comment
1		19528.0	00	51.98		-5.63		6.35		74.00		27.65	peak	
2	*	19528.0		42.22		-5.63		36.59		54.00		17.41	AVG	

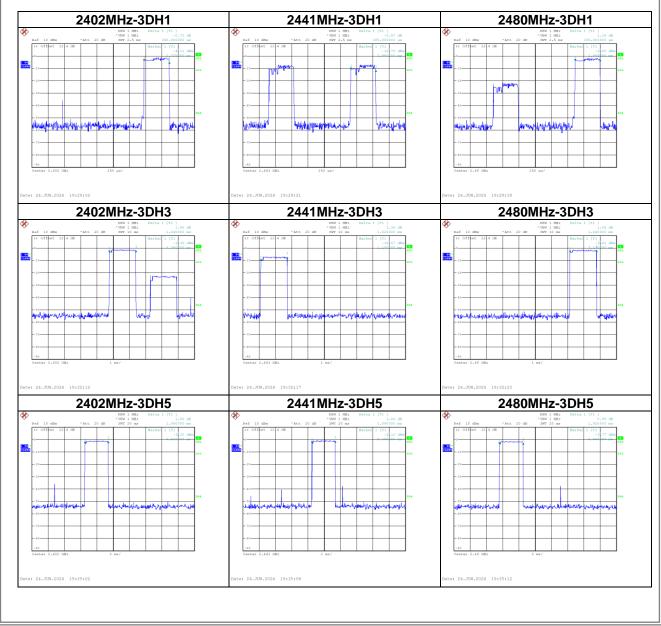


T	Test Mo est Frequ					Mbps) 1MHz				Test Da Polariza					4/7/1 zontal	
	Temp					5°C				Hum					0%	
130.0	dBu∀/m															_
120																
110 -																
100 -																
90 -																
80 -																
70																
60																
50		1 X														
40		2 X														
30																
20																
10.0																
	D.000 18850.			20550.		21400.00	2225			00.00		50.00	24800.	.00	26500.0	0 MH:
No.	Mk.	Freq	•	Readi Leve		Correct Factor		easure ment)-	Limit	t	Ove	er			
		MHz		dBu'	V	dB	dE	3uV/m		dBuV/	m	dB		Detector	Comme	ent
1		19528.		50.9		-5.63		15.33		74.00		-28.6		peak		
2	*	19528.	00	40.6	7	-5.63	Э	35.04		54.00)	-18.9	96	AVG		

APPENDIX E NUMBER OF HOPPING CHANNEL

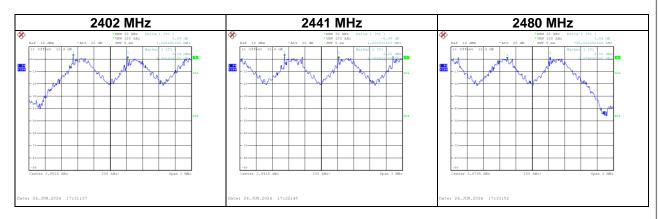


APPENDIX F AVERAGE TIME OF OCCUPANCY

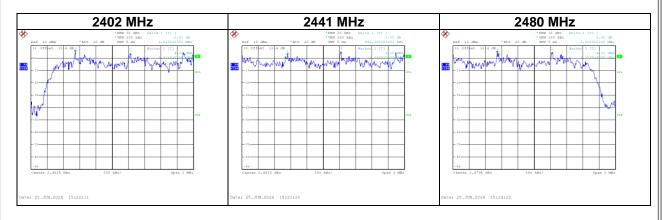


Test Mode :	1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9200	0.3115	0.4000	Pass
DH3	2402	1.6600	0.2656	0.4000	Pass
DH1	2402	0.3850	0.1232	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3850	0.1232	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH1	2480	0.3850	0.1232	0.4000	Pass

Test Mode :	3Mbps				
Data Packet	Frequency (MHz)	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH3	2402	1.6400	0.2624	0.4000	Pass
3DH1	2402	0.3900	0.1248	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH3	2441	1.6200	0.2592	0.4000	Pass
3DH1	2441	0.3850	0.1232	0.4000	Pass
3DH5	2480	2.9200	0.3115	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	0.3850	0.1232	0.4000	Pass

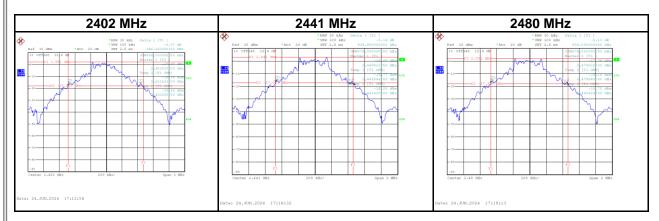


APPENDIX G HOPPING CHANNEL SEPARATION MEASUREMENT

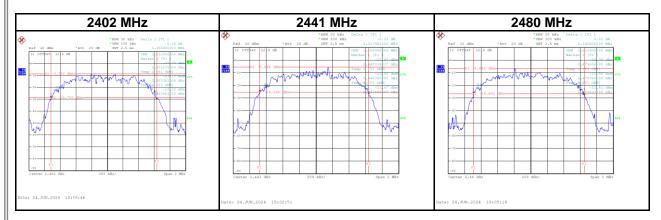


Test Mode : Hopping on _1Mbps				
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result	
2402	1.008	0.644	Pass	
2441	1.001	0.625	Pass	
2480	0.795	0.624	Pass	

Test Mode : Hopping on _3Mbps				
	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
	2402	1.019	0.904	Pass
	2441	0.993	0.879	Pass
	2480	1.008	0.895	Pass



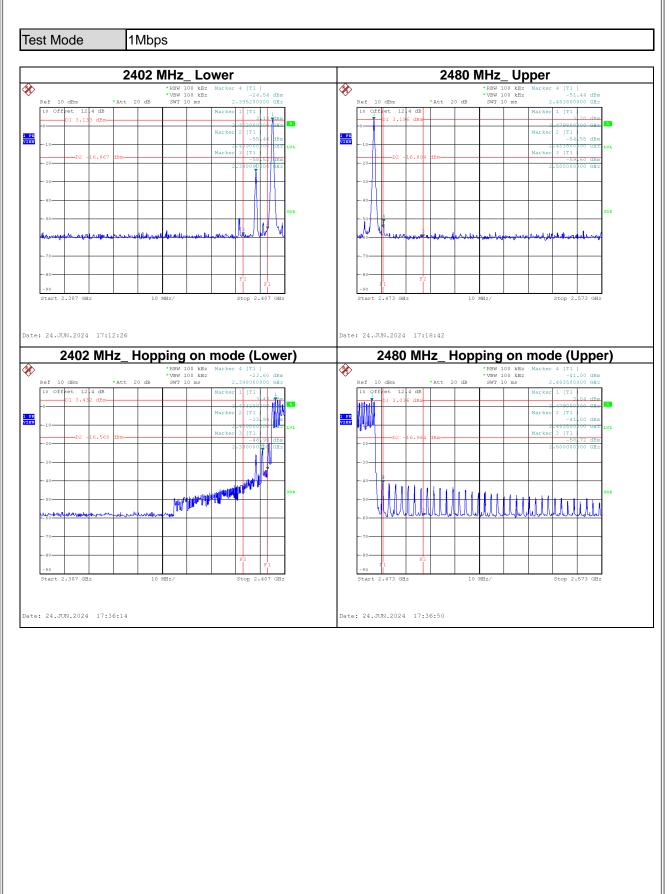
APPENDIX H BANDWIDTH



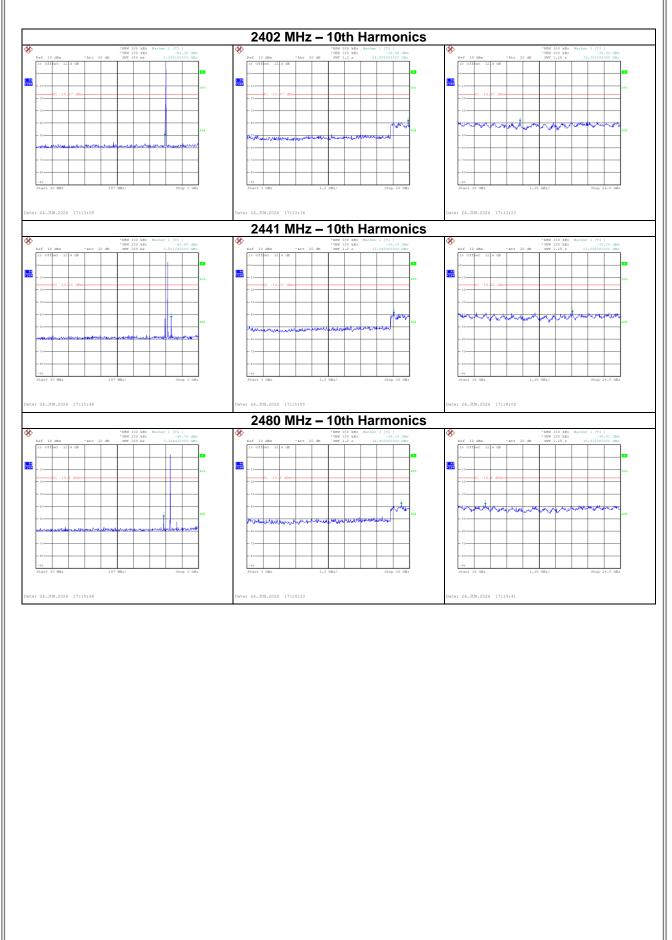
Test Mode : 1Mbps					
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result		
2402	0.966	0.908	Pass		
2441	0.937	0.876	Pass		
2480	0.936	0.876	Pass		

Test Mode : 3Mbps					
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result		
2402	1.356	1.212	Pass		
2441	1.318	1.208	Pass		
2480	1.342	1.232	Pass		

APPENDIX I	OUTPUT POWER	



Test Mode :	1Mbps		Testeo	d Date	2024/6/21
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.06	0.0025	21.00	0.1259	Pass
2441	3.90	0.0025	21.00	0.1259	Pass
2480	3.35	0.0022	21.00	0.1259	Pass
Test Mode :	2Mbps		Testeo	d Date	2024/6/21
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-0.45	0.0009	21.00	0.1259	Pass
2441	-0.81	0.0008	21.00	0.1259	Pass
2480	-1.34	0.0007	21.00	0.1259	Pass
Test Mode : 3Mbps Tested Date 2					2024/6/21
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-0.84	0.0008	21.00	0.1259	Pass
2441	-0.64	0.0009	21.00	0.1259	Pass
2480	-1.26	0.0007	21.00	0.1259	Pass



APPENDIX J ANTENNA CONDUCTED SPURIOUS EMISSION

