ET3DV6 SN:1788 September 30, 2004 # DASY - Parameters of Probe: ET3DV6 SN:1788 | Sensitivity in Free | ensitivity in Free Space ^A | | Diode C | ompression ^l | 3 | |---------------------|---------------------------------------|-----------------|---------|-------------------------|---| | NormX | 1.68 ± 9.9% | $\mu V/(V/m)^2$ | DCP X | 94 mV | | | NormY | 1.70 ± 9.9% | $\mu V/(V/m)^2$ | DCP Y | 94 mV | | | NormZ | 1.74 ± 9.9% | $\mu V/(V/m)^2$ | DCP Z | 94 mV | | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. ### **Boundary Effect** | TOI | ODO BALL | T. minel CAD | dit. E 0/ | | |-----|----------|--------------|-----------------|--------| | TSL | 900 MHz | I VDICAL SAK | gradient: 5 % p | er min | | | | | | | | Sensor Cente | r to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|-------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 8.1 | 4.4 | | SAR _{be} [%] | With Correction Algorithm | 0.7 | 0.1 | TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Cente | r to Phantom Surface Distance | 3.7 mm | 4.7 mm | |-----------------------|-------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 12.0 | 8.2 | | SAR _{be} [%] | With Correction Algorithm | 0.9 | 0.1 | #### Sensor Offset Probe Tip to Sensor Center 2.7 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1788_Sep04 Page 4 of 9 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required. September 30, 2004 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) September 30, 2004 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1788_Sep04 Page 6 of 9 September 30, 2004 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) September 30, 2004 # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|----------------|----------------|-------|-------|--------------------| | 835 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.90 ± 5% | 1.12 | 1.42 | 6.74 ± 11.0% (k=2) | | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 1.07 | 1.44 | 6.63 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Head | $40.0 \pm 5\%$ | 1.40 ± 5% | 0.56 | 2.31 | 5.37 ± 11.0% (k=2) | | 1900 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.55 | 2.42 | 5.16 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.54 | 2.59 | 4.88 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.65 | 2.22 | 4.56 ± 11.8% (k=2) | | | | | | | | | | | 835 | ± 50 / ± 100 | Body | 55.2 ± 5% | $0.97 \pm 5\%$ | 1.04 | 1.52 | 6.53 ± 11.0% (k=2) | | 900 | ± 50 / ± 100 | Body | $55.0 \pm 5\%$ | 1.05 ± 5% | 0.99 | 1.56 | 6.17 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Body | 53.3 ± 5% | $1.52 \pm 5\%$ | 0.53 | 2.74 | 4.73 ± 11.0% (k=2) | | 1900 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.55 | 2.82 | 4.56 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.54 | 2.98 | 4.43 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.72 | 2.00 | 4.26 ± 11.8% (k=2) | ^C The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: ET3-1788_Sep04 September 30, 2004 # **Deviation from Isotropy in HSL** Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates rtificates Accreditation No.: SCS 108 Certificate No: DAE3-577 Nov04 Client Sporton (Auden) | Object | DAE3 - SD 000 D | 003 AA - SN: 577 | | |---|-------------------------------------|--|---------------------------------------| | Calibration procedure(s) | QA CAL-06.v10
Calibration proces | dure for the data acquisition unit ([| DAE) | | Calibration date: | November 17, 20 | 04 | | | Condition of the calibrated item | In Tolerance | | | | The measurements and the uncert | tainties with confidence pro | onal standards, which realize the physical unlits obability are given on the following pages and a gradity: environment temperature (22 ± 3)°C a | are part of the certificate. | | Calibration Equipment used (M&TI | E critical for calibration) | | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Fluke Process Calibrator Type 702 | SN: 6295803 | 7-Sep-04 (Sintrel, No.E-040073) | Sep-05 | | men i roome camatari i ypa roa | | . Dop at (omita, no. 2 a loar a) | | | | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards Calibrator Box V1.1 | ID# | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards | ID #
SE UMS 006 AB 1002 | Check Date (in house) 16-Jul-04 (SPEAG, in house check) | Scheduled Check In house check Jul-05 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards Calibrator Box V1.1 | ID # SE UMS 006 AB 1002 | Check Date (in house) 16-Jul-04 (SPEAG, in house check) Function | Scheduled Check In house check Jul-05 | Certificate No: DAE3-577_Nov04 Page 1 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE digital acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. #### DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV full range = -1......+3mV Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Y | Z | |---------------------|---|---|---| | High Range | 404.437 ± 0.1% (k=2) | 403.891 ± 0.1% (k=2) | $404.359 \pm 0.1\%$ (k=2) | |------------|----------------------|----------------------|---------------------------| | Low Range | 3 94121 + 0 7% (k=2) | 3.89867 ± 0.7% (k=2) | 3 95408 ± 0.7% (k=2) | # Connector Angle | Connector Angle to be used in DASY system | 127°±1° | |---|---------| # Appendix ### 1. DC Voltage Linearity | High Range | Input (μV) | Reading (μV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 200000 | 200000.6 | 0.00 | | Channel X + Input | 20000 | 20001.77 | 0.01 | | Channel X - Input | 20000 | -19991.81 | -0.04 | | Channel Y + Input | 200000 | 199999.7 | 0.00 | | Channel Y + Input | 20000 | 19999.20 | 0.00 | | Channel Y - Input | 20000 | -19994.82 | -0.03 | | Channel Z + Input | 200000 | 200000.2 | 0.00 | | Channel Z + Input | 20000 | 19996.22 | -0.02 | | Channel Z - Input | 20000 | -19996.74 | -0.02 | | Low Range | | Input (μV) | Reading (μV) | Error (%) | |-------------|---------|------------|--------------|-----------| | Channel X | + Input | 2000 | 2000 | 0.00 | | Channel X | + Input | 200 | 200.05 | 0.03 | | Channel X - | Input | 200 | -200.88 | 0.44 | | Channel Y | + Input | 2000 | 1999.9 | 0.00 | | Channel Y | + Input | 200 | 199.73 | -0.13 | | Channel Y - | Input | 200 | -200.53 | 0.27 | | Channel Z | + Input | 2000 | 2000.1 | 0.00 | | Channel Z | + Input | 200 | 199.25 | -0.38 | | Channel Z - | Input | 200 | -201.42 | 0.71 | | | | | | | #### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 13.15 | 12.30 | | | - 200 | -12.61 | -12.86 | | Channel Y | 200 | -7.43 | -7.53 | | | - 200 | 6.30 | 6.52 | | Channel Z | 200 | -0.16 | 0.31 | | | - 200 | -1.51 | -1.48 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.90 | -0.22 | | Channel Y | 200 | 1.47 | - | 4.60 | | Channel Z | 200 | -1.40 | -0.08 | - | Page 4 of 5 #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15948 | 15814 | | Channel Y | 15960 | 16073 | | Channel Z | 16236 | 16172 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.03 | -3.07 | 1.24 | 0.58 | | Channel Y | -0.66 | -2.19 | 1.96 | 0.55 | | Channel Z | -0.91 | -2.82 | 0.42 | 0.39 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 0.2000 | 199.3 | | Channel Y | 0.2000 | 200.4 | | Channel Z | 0.2001 | 199.5 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | 10. Common Mode Bit Generation (verified during pre test) | Typical values | Bit set to High at Common Mode Error (VDC) | | |-----------------|--|--| | Channel X, Y, Z | +1.25 | |