

FCC ID: 2AMYQ-2024PENGPLUS Report No.: 18220WC40068501 Page 1 of 32

FCC Test Report

Shenzhen Hua Xin Information Technology Applicant

Co.,Ltd.

B101-B801, building 4, No.7 Industrial Area,

Heshuikou Community, Matian Street, **Address**

Guangming District, Shenzhen, China.

Solar Robotic Pool Skimmer **Product Name**

: May 20, 2024 **Report Date**

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 2 of 32

Contents

Total Autore Ann							Yo.
General Information 1.1. Client Information	_*ek	ayodc	E	'/o	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	76k	
1.1. Client Information	bo,	hy.	, elt	- Mupoter	Aug.		9??
1.2. Description of Device (EUT)		224			<u>K</u>	⁽ /00,	6
1.3. Auxiliary Equipment Used Durir	ng Test	O464	<u></u>	And	re/V	botek	
1.4. Operation channel list	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Ω``	VII.	
1.5. Description of Test Modes 1.6. Measurement Uncertainty	otek	nbote		ek.	~po/ek		Pi
1.7 Test Summary		botek	Aupo,		,, ,,ek	vupo,	8
1.7. Test Summary 1.8. Description of Test Facility	Vipo _{lo}	N. S.		potek	AUD.		otek (
1.9. Disclaimer	, otek	Anbo'			<u></u>	ier. Vu	
1.10. Test Equipment List	VII.		4Ch	4.000		whek	.,,,\\:\.`1(
2. Antenna requirement	Aupo,	/#	vojek		D.C.		12
2.1. Conclusion	sk Pupo	ye. W	ur Ju	dae	tek.	Vupo.	12
1.8. Description of Test Facility	otek a						μ 1.5 μ
0.4 FUT O		hotek	Aupo,	······	Note K	VUPOL	gr 10
3.1. EUT Operation	Anboil			e);	1000	<u>F</u>	
3.3. Test Data	potek	Anba:		orek	anbot	e	۰.12ء 14ءء
4. Occupied Bandwidth	Potek	Anbo	ie.	Aug.	20	potek	Anbo.
4. Occupied Bandwidth	b/634	ek o	potek	Vupa;	_\/_ _\/_	botek	anbo
4.1. EUT Operation	<u>γ</u>					AUD"K	16
4.2. Test Setup	rek or	/p0/6/5	<i>Vup</i>		rojek	AUPOTE	10
Maximum Conducted Output Power 5.1. EUT Operation		hotek	AUPOAR		, rek	abote	۸-
5. Maximum Conducted Output Power	'upogg	- ANY	dno	.,ak	- Marin		
5.1. EUT Operation					<u>,</u> 40d/1	An	1
5.2. Test Setup	Vi. Otek	oti	3	,np		,070/5	
5.5. Test Data	Pup.		otek	Anbott		rek	nbor
6. Power Spectral Density	i Oaltha	E. Vu	-*e/-		8 _{/r}	70/20,	18
6.1. EUT Operation		otek	Vupo,		-04eV	Pupo _{te} ,	18
6.2. Test Setup),		/pote	<u> </u>	o		£18
6.3. Test Data	nboter.	<u> </u>	r	.,e	AMBOTO	A	18
5.2. Test Setup	/ bands	- Pupole	Ann		······································	e Vup,	19
7.1. EUT Operation	Vun.			Up.		ote ^k	ກ່ວວເວັ້ນ 19
7.2. Test Setup	Vupo,	b.,	Va)/	Wipo _{ter}	Anto		19
7.3. Test Data	baje	7Up		-100k	y	upo,	19
8. Band edge emissions (Radiated)	:://w	otel	Mpore	Ans		"Upotek	20
8.1. EUT Operation	Y'm	494	, abořek	Vul		botek	20
8.2. Test Setup	100tek	Aupo		rek	nbore	Vus	2′الق
8.3. Test Data	ter	Vipo _{ter}	And				22
9. Emissions in frequency bands (below	1GHz)	hotel	K DY	por	Dir.	ek .c	100ter 23
. 737	10112/20111					,	
9.1. EUT Operation	Anbore	Vun	otek	anbotek	Aup		2°00'2'
7.1. EUT Operation							

Report No.: 18220WC4006850	01 FCC II	D: 2AMYQ	-2024PEN	GPLUS	Page 3 of	32
10. Emissions in frequency bands (ab	ove 1GHz)	potek	Anbore	Anutotek	Anbotek	27
10.1. EUT Operation	Yup.	botek	Anboro	Air.	r Upoler	27
10.2. Test Setup	Vipolo	M. Sek	,bo ^{ter}	Anbe		28
10.3. Test Data	otek	Vupo,	by.	2dgg	HUP.	29

10.5. Test Data				Z9
APPENDIX I TEST SETUP PHOTOGRAPH	onbotek	Aupo	h. hotek	Anbore 32
APPENDIX II EXTERNAL PHOTOGRAPH				
APPENDIX III INTERNAL PHOTOGRAPH	Su Vup.	i	Vipo,	32

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 4 of 32

TEST REPORT

Applicant : Shenzhen Hua Xin Information Technology Co.,Ltd

Manufacturer : Shenzhen Hua Xin Information Technology Co.,Ltd.

Product Name : Solar Robotic Pool Skimmer

Test Model No. : Peng Plus

Peng Plus-1, Peng Plus-2, Peng Plus-3, Peng Plus-4, Queen, Queen

Reference Model No. : Surfer, Queen Surfer I , Queen Diamonds, Queen I , L2, L3, L4, L5, L6,

L7, L8, S1, S3, S5, S6, S7, S8, S9

Trade Mark : N/A

Rating(s) : Input: 5V-2A (with DC 7.2V, 5100mAh battery inside)

47 CFR Part 15.247

Test Standard(s) KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt: Apr. 03, 2024
Date of Test: Apr. 07, 2024 to Apr. 25, 2024
ak Anbores Anborek Anborek Anborek Anborek Arbores Anbores Anbores Anbores Anbores
Ella Liang
Prepared By: Dorek Andrew Andr
Anborek Anborek Anborek Anborek Anborek (Ella Liang) Anborek
And Andorek Andorek Andorek Andorek Andorek Andorek Andorek Andorek Andorek
Indivard par
Approved & Authorized Signer:
(Edward Pan)

Report No.: 18220WC40068501 Page 5 of 32 FCC ID: 2AMYQ-2024PENGPLUS

Revision History

	Report Version	Descri	ption	Issued	Date
	Anbores R00 photok	Original	Issue.	May 20,	2024 Anbore
, G. Tr	Anbotek Anbotek	Aupoier Aupo	otek Anbotek	Aupo, Pr	Anborek Anb
100	otek Anbotek Anbote	ok hotek A	nbotek Anbot	r Vupotek	Aupoter

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 6 of 32

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Hua Xin Information Technology Co.,Ltd.
Address	:	B101-B801, building 4, No.7 Industrial Area, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China.
Manufacturer	:	Shenzhen Hua Xin Information Technology Co.,Ltd.
Address	:	B101-B801, building 4, No.7 Industrial Area, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China.
Factory	:	Shenzhen Hua Xin Information Technology Co.,Ltd.
Address	:	B101-B801, building 4, No.7 Industrial Area, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China.

1.2. Description of Device (EUT)

Product Name	:	Solar Robotic Pool Skimmer
Test Model No.	:	Peng Plus
Reference Model No.	:	Peng Plus-1, Peng Plus-2, Peng Plus-3, Peng Plus-4, Queen, Queen Surfer, Queen Surfer I, Queen Diamonds, Queen I, L2, L3, L4, L5, L6, L7, L8, S1, S3, S5, S6, S7, S8, S9 (Note: All samples are the same except the model number and appearance color, so we prepare "Peng Plus" for test only.)
Trade Mark	:	N/A And hotek Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V/60Hz for Adapter; DC 7.2V Battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A hotek Anbotek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	140 dek Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type	:	GFSK Anborek Anborek Anborek Anborek Anborek
Antenna Type	:	PCB Antenna Andorek Andorek Andorek
Antenna Gain(Peak)	:	-1.3dBi hotek Anborek Anborek Anborek Anborek Anborek

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 7 of 32

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J

1.4. Operation channel list

Operation Band:

Juliu.		20. Pr.	0.0	- VID. VUL		- Va.
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2402	10 ¹	2422	20	2442	30,04	2462
2404	13otek	2424	21 otek	2444	31	2464
2406	12 _{nb} ote	2426	22	2446	32	2466
2408	tek 13 ant	2428	23	2448	33	2468
2410	14	2430	24	2450	34	2470
2412	15	2432	25	2452	Anh 35	2472
2414	16	2434	26	2454	36	2474
2416	17 000	2436	27	2456	37	2476
2418	18	2438	28	2458	38 🗥	2478
2420 And	19	2440	29	2460	oo ^{tek} 39 M	2480
	Frequency (MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	Frequency (MHz) Channel 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17 2418 18	Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436 2418 18 2438	Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27 2418 18 2438 28	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456 2418 18 2438 28 2458	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37 2418 18 2438 28 2458 38

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek TM1Anbo otek	Keep the EUT works in continuously transmitting mode (BLE 1M)
or Anbore TM2 Anborrek	Keep the EUT works in continuously transmitting mode (BLE 2M)

Report No.: FCC ID: 2AMYQ-2024PENGPLUS 18220WC40068501 Page 8 of 32

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB Anbotek Anbotek
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB Anborek Anborek Anborek
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence

level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	tek uptek Aupo	P Am
Conducted Emission at AC power line	Mode1	bor P
Occupied Bandwidth	Mode1,2	Anbort Prek
Maximum Conducted Output Power	Mode1,2	ANDO.
Power Spectral Density	Mode1,2	Problem
Emissions in non-restricted frequency bands	Mode1,2	P Anb
Band edge emissions (Radiated)	Mode1,2	P P
Emissions in frequency bands (below 1GHz)	Mode1,2	Anbore P
Emissions in frequency bands (above 1GHz)	Mode1,2	Anbore
Note: P: Pass N: N/A, not applicable	Aupotek Aupotek	y Aupore

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 9 of 32

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

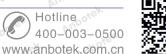
FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location


Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 10 of

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	tek Aupote	And	atek anbotek	Anbo,
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
,10 2 ² k	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
P3 001	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	tek Anbotek	Any of en
4 ^{An}	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Emissions in non-restricted frequency bands

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
Ant 1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	potekN/A Anto	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 11 of 32

	edge emissions (Ra sions in frequency ba		Aupo,	k bojek	. Aupore.	Vur.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
1003ek	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
A4008	EMI Test Software EZ-EMC	SHURPLE 100 TEN	N/A	N/A	Aybo. hotek	Andorek
5An	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
7k	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emiss	sions in frequency ba	ands (below 1GHz)	k Anbotek	Aupore	ek abotek	Aupoter
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
ooten 3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Anboa 4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A Anbox	otek N/A	otek / Aupote	Andre Andrei

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 12 of

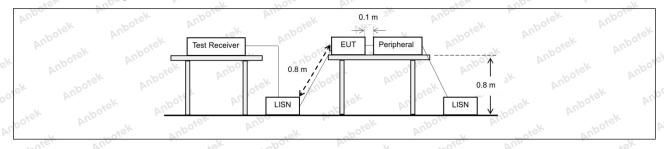
2. Antenna requirement

And ak shotek	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to
anbore And	ensure that no antenna other than that furnished by the responsible party
Test Requirement:	shall be used with the device. The use of a permanently attached antenna or
And	of an antenna that uses a unique coupling to the intentional radiator shall be
otek Anboten An	considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a PCB antenna which permanently attached, and the best case gain of the antenna is -1.3dBi. It complies with the standard requirement.

Page 13 of Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS

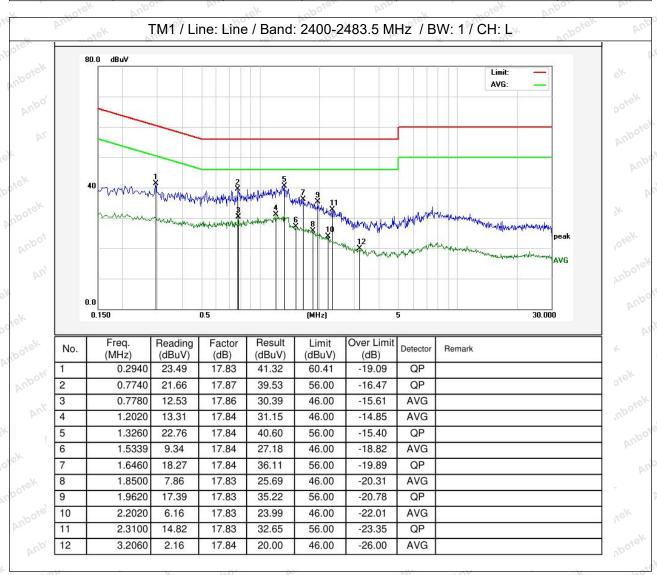

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
rek anboier	Frequency of emission (MHz)	Conducted limit (dBµV)					
Anbo. A. otek	Vupote Vup	Quasi-peak	Average				
- botek Anbo	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5 The same of	56	46				
Anbor	5-30 nbote And	60 And	50 Jek Job				
rek Anborek Anb	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2020 section 6.2						
Procedure:	Refer to ANSI C63.10-2020 sectio line conducted emissions from unl		od for ac power-				

3.1. EUT Operation

N.	Operating Envir	onment:	Anboien	Anbo	abotek	Anbore	Dir.	hotek	Anbo
	Test mode:	1: TX mode(E	BLE 1M): K	eep the EUT v	vorks in cont	inuously tra	ansmittin	g mode	(BLE
>	rest mode.	1M) Moore							P.L

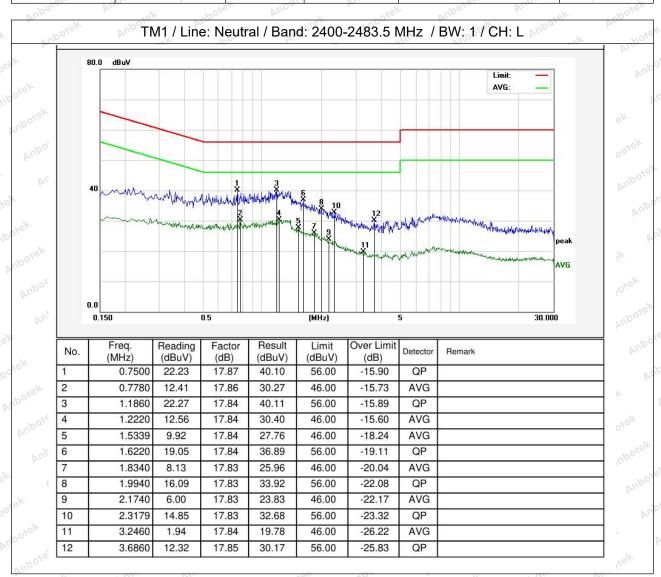
3.2. Test Setup


Hotline

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 14 of

3.3. Test Data

Temperature:	24.6 °C	Humidity:	66 %	Atmospheric Pressure:	101 kPa
D2/ .	100	~0 ·	V 1-0	D7.	200



FCC ID: 2AMYQ-2024PENGPLUS

Page 15 of 32

Temperature: 24.6 °C Humidity: 66 % Atmospheric Pressure: 101 kPa

Report No.: 18220WC40068501 Page 16 of

4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek Anbotek Anbotek Anbotek	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW].
	c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize.
Procedure:	g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
	11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be
Anbotek Anbotek	employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation
	function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.1. EUT Operation

Operating Envi	ronment:					
Test mode:	1: TX mode(BLE 1 1M) 2: TX mode(BLE 2 2M)	de No		riek	Anboten	Anbe

4.2. Test Setup

0	· · · · · ·	- Net	VUpo.	- PA	- 46	VU2	- Otok	VUpo.
				EUT	Spectrum A	nalyzer		Anbotek
		e						700

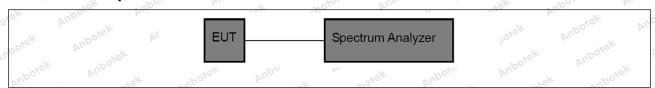
4.3. Test Data

Temperature: 25.5 °C	Humidity: 47 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

FCC ID: 2AMYQ-2024PENGPLUS

Page 17 of

Please Refer to Appendix for Details.


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
otek Anbotek Anbotek Inbotek Anbotek Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

Operating Envir	onment:	Anbo	, nbote	ik Vupo,	P.U.	-botek	Anboiek	P.
Test mode:	1: TX mode(BL 1M) 2: TX mode(BL 2M)	ek vupoj			botek		D. 121.	rek

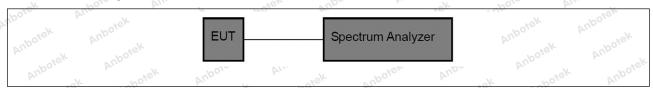
5.2. Test Setup

5.3. Test Data

Temperature: 25.5 °C Humidity: 47 % Atmospheric Pressure: 101 kF	a Anbo.
--	---------

Please Refer to Appendix for Details.

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 18 of


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Envi	ronment:	, boiek	Aupole	An	otek anbotel	Anbo
Anborek .	1: TX mode(BLE 1M)	1M): Keep th	ne EUT work	s in continu	ously transmitt	ing mode (BLE
Test mode:	2: TX mode(BLE 2M)	2M): Keep th	ne EUT work	s in continu	ously transmitt	ing mode (BLE

6.2. Test Setup

6.3. Test Data

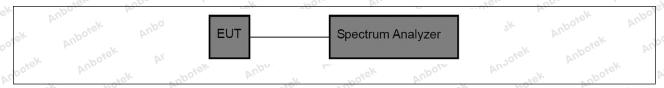
D	Temperature:	25.5 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa	D.

Please Refer to Appendix for Details.

Hotline

FCC ID: 2AMYQ-2024PENGPLUS

Page 19 of


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

	Operating Envir	onment:	Aupo	upotek	Anboro	ak abotek	Anbores	VUD
>10	Test mode:	1M)	k upoten	AUD		tinuously transm tinuously transm	O p.,	rek

7.2. Test Setup

7.3. Test Data

Temperature:	25.5 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

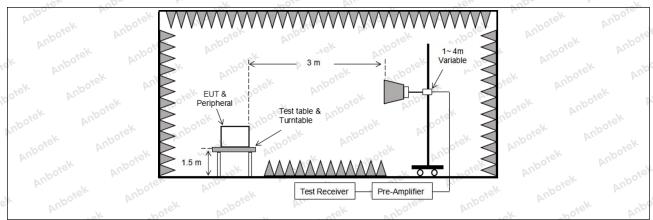
Page 20 of Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS

8. Band edge emissions (Radiated)

Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the					
otek Anbotek Ant	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
Anbotek Anbotek	0.009-0.490 0.490-1.705 1.705-30.0	2400/F(kHz) 24000/F(kHz) 30	300 30 30					
Anbotek Anbote	30-88 88-216	100 ** 150 **	3					
Anbore And	216-960 Above 960	200 ** 500	3					
Test Limit:	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other							
Anbotek Anbotek Anbote	sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in							
botek Anbotek A		ed on measurements employing						
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		otek Aupotek					
Procedure:	ANSI C63.10-2020 section	6.10.5.2	Anbotek Anbote					

8.1. EUT Operation

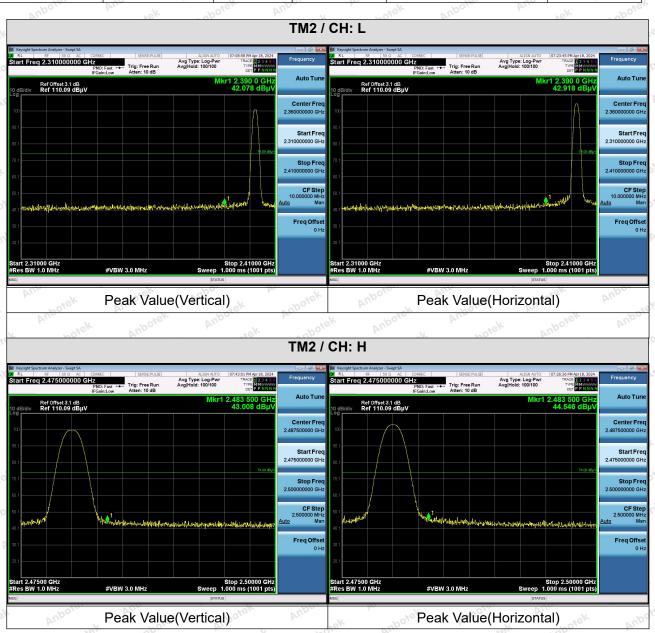
Operating Envir	onment:	r roj	ek Anbo	ie. Vu	.ek	abotek	Aupo,	Y 12.
Test mode:	1: TX mode(l 1M) 2: TX mode(l 2M)	otek An	por Ar		aboten	Anbo	-V 10	otek



Hotline

Page 21 of Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS

8.2. Test Setup


32

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 22 of

8.3. Test Data

Temperature: 25.5 °C Humidity: 47 % Atmospheric Pressure: 101 kPa

Remark:

- 1. During the test, pre-scan all modes, the report only record the worse case mode.
- 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

FCC ID: 2AMYQ-2024PENGPLUS

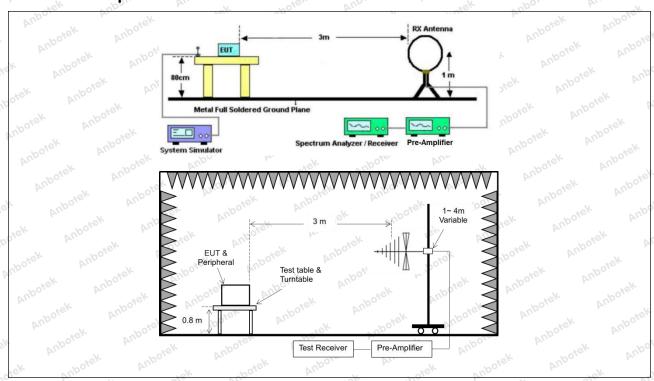
Page 23 of

9. Emissions in frequency bands (below 1GHz)

ATT	-64 -70	L 2010 VIII	Let .						
Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the								
k hotek Anbot		radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
botek Anbotek Ant	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
aborek Ando	0.009-0.490	2400/F(kHz)	300						
y, otek vupoter	0.490-1.705	24000/F(kHz)	30						
Anbo. K k. hotek	1.705-30.0	30 botel Anto	30× Anbor						
anboten Anbo	30-88	100 **	3 , , , , , , , , , , , , , , , , , , ,						
w niek Anbore	88-216	150 **	3 bole Ans						
YUD OK IN	216-960	200 **	3 notek prib						
rek anbore. And	Above 960	500	3 Ans						
Test Limit:	intentional radiators operati frequency bands 54-72 MH	ragraph (g), fundamental emission ing under this section shall not be z, 76-88 MHz, 174-216 MHz or 4 hese frequency bands is permitt	e located in the 470-806 MHz.						
k Anbotek Anbotel	The emission limits shown	e, the tighter limit applies at the b in the above table are based on	measurements						
otek Anbotek And	employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average								
Anbotek Anbo	detector.	A CIT I COSCI CITICALS CITIPIO I II S	Anbotek						
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		lotek Aupotek						
Procedure:	ANSI C63.10-2020 section	6.6.4 nbote And Andrew	Anbotek Anbo						

9.1. EUT Operation

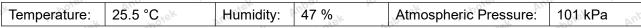
Operating Envir	onment:	r roj	ek Anbo	ie. Vu	.ek	abotek	Aupo,	Y 12.
Test mode:	1: TX mode(l 1M) 2: TX mode(l 2M)	otek An	por Ar		aboten	Anbo	-V 10	otek

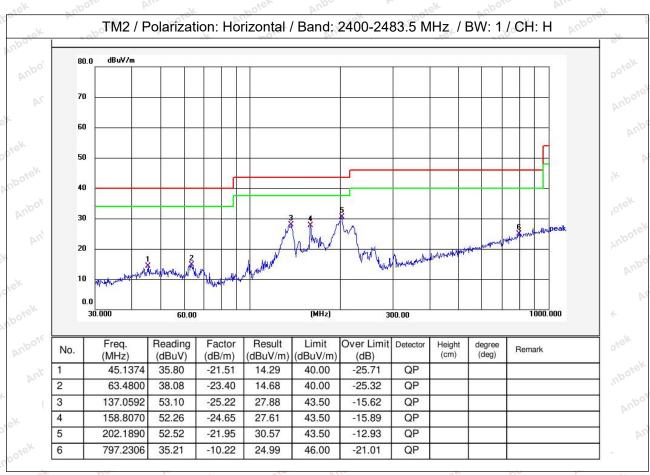

Hotline

FCC ID: 2AMYQ-2024PENGPLUS

Page 24 of 32

9.2. Test Setup



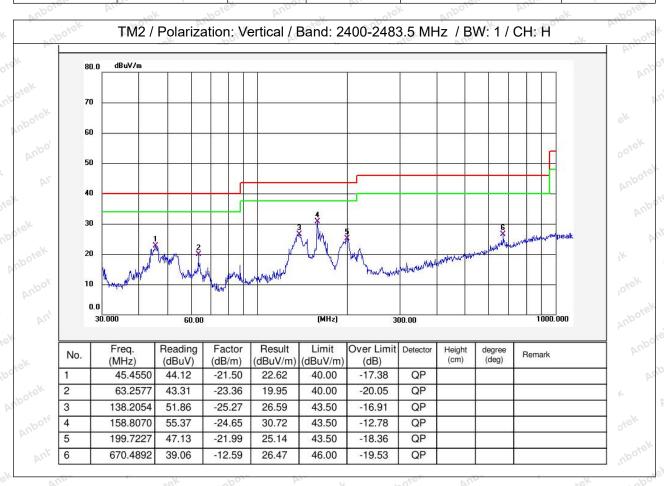

FCC ID: 2AMYQ-2024PENGPLUS

Page 25 of

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Note: Only record the worst data in the report.



FCC ID: 2AMYQ-2024PENGPLUS

Page 26 of 32

Temperature: 25.5 °C Humidity: 47 % Atmospheric Pressure: 101 kPa

FCC ID: 2AMYQ-2024PENGPLUS

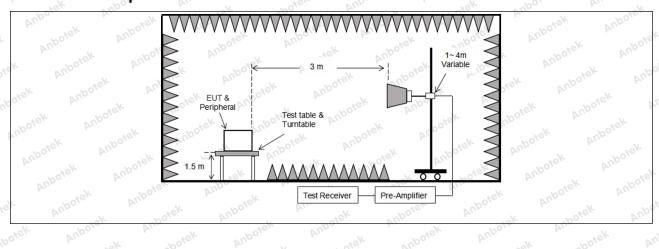
Page 27 of

10. Emissions in frequency bands (above 1GHz)

An	10,000		-01
Test Requirement:		ons which fall in the restricted ba omply with the radiated emission	
hotek Anborr	in § 15.209(a)(see § 15.205		Anbore Specification
Cotek Aupotek Aut	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
upotek Ande	0.009-0.490	2400/F(kHz)	300
anbore.	0.490-1.705	24000/F(kHz)	30
Ando ok hotek	1.705-30.0	30 boten And	30 Anbor
Anboite. And	30-88	100 **	3
k hotek Anbor	88-216	150 **	3bore Arre
Aug Ck	216-960	200 **	3 notek pub
otek Anbore An	Above 960	500	3 Am
Test Limit:		ragraph (g), fundamental emissing under this section shall not b	
atek upotek		z, 76-88 MHz, 174-216 MHz or 4	
Anbotek Anbotek	sections of this part, e.g., §		oo, by
k upotek Aupote		e, the tighter limit applies at the b in the above table are based on	
otek Anbotek Anbo		beak detector except for the freq above 1000 MHz. Radiated emis	
abotek Anbotek A		ed on measurements employing	
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		lotek Aupotek
Procedure:	ANSI C63.10-2020 section	6.6.4 nbotes And Andrew	Anbotek Anbo
		26. 179	

10.1. EUT Operation

Operating Envir	onment:	W. Potek	Anboter	Ann	, abotek	Aupo,	-K
Test mode:	1: TX mode(BLI 1M) 2: TX mode(BLI 2M)	Anbor		rek abore	Anbe	-V.	hotek .



Hotline

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 28 of 32

10.2. Test Setup

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 29 of 32

10.3. Test Data

Temperature:	25.5°C	Wpose. H	lumidity:	47 %	shotel	Atmospheric Pressure:	101 kPa
	-20-	DA'		26.	- O.	7 1411100 1110110 11000 1100	1

Aupor A	ek .	abotek Anb	V .	otek Aupo,	- Dir	ek abote
			TM2 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.14	15.27	43.41	74.00	-30.59	Vertical
7206.00	28.26	18.09	46.35	74.00	-27.65	Vertical
9608.00	29.00	23.76	52.76	74.00	-21.24	Vertical
12010.00	200*SK	Auport A	- Otek	74.00	iek al	Vertical
14412.00	* otek	Aupole	Anb	74.00	iupo, K	Vertical
4804.00	27.83	15.27	43.10	74.00	-30.90	Horizontal
7206.00	28.67	18.09	46.76	74.00	-27.24	Horizontal
9608.00	27.98	23.76	51.74	74.00	-22.26	Horizontal
12010.00	"Otek*	poter And	, ek 50	74.00	K Pode	Horizontal
14412.00	Anb. *k	anbotek Ar	por br.	74.00	AUR.	Horizontal
Average value: Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4804.00	16.41	15.27	31.68	54.00	-22.32	Vertical
7206.00	_otd7.31 ⊾n	18.09	35.40	54.00	-18.60	Vertical
9608.00	18.47	23.76	42.23	54.00	-11.77	Vertical
12010.00	Vupo *	potek	Aupolo Ar	54.00	Poter Yup	Vertical
14412.00	VU/Jo	Protek	Vupole.	54.00	abotek A	Vertical
4804.00	16.16	15.27	31.43	54.00	-22.57	Horizontal
7206.00	17.70 bote	18.09	35.79	54.00	-18.21	Horizontal
9608.00	17.49	23.76	41.25	54.00	-12.75	Horizontal
12010.00	Upor * Pu	hotek Ant	oter Andr	54.00	SK Wiporg	Horizontal
14412.00	Wupole*	ius isk	Spotek An	54.00	otek anbo	Horizontal

Page 30 of Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS 32

tek aboter	And	L Lotek	Anbore	YII.	abotek	Anber k
		7	ГM2 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	27.69	15.42	43.11	74.00	-30.89	Vertical
7320.00	28.23	18.02	46.25	74.00	-27.75	Vertical
9760.00	28.50	23.80	52.30	74.00	-21.70	Vertical
12200.00	* **	tek aupote	Anb	74.00	Aupor	Vertical
14640.00	poter * And	sek ab	yek Aupo,	74.00	k Aupole	Vertical
4880.00	27.64	15.42	43.06	74.00	-30.94	Horizontal
7320.00	28.54	18.02	46.56	74.00	-27.44	Horizontal
9760.00	27.70	23.80	51.50	74.00	-22.50	Horizontal
12200.00	AQPek	abotek	Anbore	74.00	Anboten	Horizontal
14640.00	*Aupor	rojek	Anbore.	74.00	anbotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	16.50	15.42	31.92	54.00	-22.08	Vertical
7320.00	17.17	18.02	35.19	54.00	-18.81	Vertical
9760.00	18.32	23.80	42.12	54.00	-11.88	Vertical
12200.00	otek * nbot	Anbo	ok hotek	54.00	Am	Vertical
14640.00	*	otek Anbot	All o	54.00	Ando	Vertical
4880.00	16.27	15.42	31.69	54.00	-22.31	Horizontal
7320.00	18.05	18.02	36.07	54.00	17.93	Horizontal
9760.00	17.79	23.80	41.59	54.00	-12.41	Horizontal
12200.00	* * botek	Anbore	Anz	54.00	Aupo	Horizontal
14640.00	Aug.	k vupojek	Aupo,	54.00	Anbor	Horizontal

Report No.: 18220WC40068501 FCC ID: 2AMYQ-2024PENGPLUS Page 31 of 32

		Lorek				
		٦	ГМ2 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	27.82	15.58	43.40	74.00	-30.60	Vertical
7440.00	28.39	17.93	46.32	74.00	-27.68	Vertical
9920.00	29.20	23.83	53.03	74.00	-20.97	Vertical
12400.00	ek * Aupe	ek botel	Anbore	74.00	Anbotek	Vertical
14880.00	potek * Aupo	bit.	itek Anbote	74.00	k spotek	Vertical
4960.00	27.78	15.58	43.36	74.00	-30.64	Horizontal
7440.00	28.75	17.93	46.68	74.00	-27.32	Horizontal
9920.00	28.08	23.83	51.91	74.00	-22.09	Horizontal
12400.00	Anbore	Am	Anboiek	74.00	botek	Horizontal
14880.00	sk * Anbotek	Pupp.	abotek	74.00	Pil. Potek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	17.62	15.58	33.20	54.00	-20.80	Vertical
7440.00	18.44	17.93	36.37	54.00	-17.63	Vertical
9920.00	18.97	23.83	42.80	54.00	-11.20	Vertical
12400.00	*	ok anboyen	Augs.	54.00	Anbore	Vertical
14880.00	Ofer * Pup	iods yes	Sk Aupo,	54.00	Anbore.	Vertical
4960.00	17.45	15.58	33.03	54.00	-20.97	Horizontal
7440.00	18.85	17.93	36.78	54.00	-17.22	Horizontal
9920.00	17.94	23.83	41.77	54.00	-12.23	Horizontal
12400.00	MU#	abotek	Vupo.	54.00	Anborer A	Horizontal
14880.00	¥upo,	k rotek	Vupoles	54.00	Spoiek	Horizontal

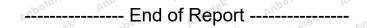
Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

FCC ID: 2AMYQ-2024PENGPLUS

Page 32 of 32

APPENDIX I -- TEST SETUP PHOTOGRAPH


Please refer to separated files Appendix I -- Test Setup Photograph RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

