

FCC Test Report

Application No.: DNT2407220165R0389-01227

Applicant: Dongguan Yongfang Electronics Technology Co., Ltd.

Address of NO.12, Long'an Road, The 2'nd Industrial Zone, Shigu, Tangxia, Dongguan,

Applicant: 523729, China

EUT Description: Active Noise Cancelling Wireless Headphones

Model No.: ANC-6090

FCC ID: 2ACYR-ANC6090D

Power Supply: DC 3.7V From Battery

Charging Voltage: DC 5V

Trade Mark:

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2020

Date of Receipt: 2024/07/15

Date of Test: 2024/07/15 to 2024/07/24

Date of Issue: 2024/07/24

Test Result: PASS

Prepared By: Wayne Jin (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: _____ (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

Date: July 24, 2024

Page: 2/66

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Jul.24, 2024	Valid	Original Report

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	1 2	Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2020	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d);	ANSI C63.10: 2020	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.205/15.209 15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.11	PASS

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: July 24, 2024

Page: 4/66

Contents

1 Test S	Summary	3
2 Gene	eral Information	5
2.1	Test Location	5
2.2	General Description of EUT	6
2.3	Channel List	7
2.4	Test Environment and Mode	8
2.5	Power Setting of Test Software	9
2.6	Description of Support Units	9
2.7	Test Facility	9
2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
2.9	Equipment List	11
2.10	Assistant equipment used for test	12
3 Test r	results and Measurement Data	13
3.1	Antenna Requirement	13
3.2	20dB Emission Bandwidth	14
3.3	Conducted Output Power	15
3.4	Carrier Frequencies Separationy	16
3.5	Dwell Time	17
3.6	Hopping Channel Number	18
3.7	Band-edge for RF Conducted Emissions	19
3.8	RF Conducted Spurious Emissions	20
3.9	Radiated Spurious Emissions	21
3.10	Restricted bands around fundamental frequency	29
3.11	AC Power Line Conducted Emissions	33
4 Apper	endix	36
Apper	ndix A: 20dB Emission Bandwidth	
Apper	ndix B: Maximum conducted output power	40
Apper	ndix C: Carrier frequency separation	44
Apper	ndix D: Dwell Time	46
Apper	ndix F: Number of hopping channels	47
	ndix F: Band edge measurements	
Apper	ndix F: Conducted Spurious Emission	

General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

2.2 General Description of EUT

Manufacturer:	Dongguan Yongfang Electronics Technology Co., Ltd.
Address of Manufacturer:	NO.12, Long'an Road, The 2'nd Industrial Zone, Shigu, Tangxia, Dongguan, 523729, China
Test EUT Description:	Active Noise Cancelling Wireless Headphones
Model No.:	ANC-6090
Additional Model(s):	AIRPHONE DNC 3000, 71129
Chip Type:	AC7006F8
Serial number:	PR2407220165R0389
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
Trade Mark:	
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK
Sample Type:	
Antenna Type:	☐ External, ⊠ Integrated
Antenna Ports:	
Antonno Coint.	⊠ Provided by applicant
Antenna Gain*:	2.5dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

^{*}All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

^{*}Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
_ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel		Frequency
	The Lowest channel	2402MHz
	The Middle channel	2441MHz
	The Highest channel	2480MHz

2.4 5Test Environment and Mode

Operating Environment:			
Temperature:	20~25.0 °C		
Humidity:	45~56 % RH		
Atmospheric Pressure:	101.0~101.30 KPa		
Test mode:			
Transmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

2.5 Power Setting of Test Software

Software Name	Software Name FCC_assist_1.0.2.2.exe			
Frequency(MHz)	2402	2441	2480	
GFSK Setting	10	10	10	
π/4-DQPSK Setting	10	10	10	
8DPSK	10	10	10	

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

N COUNTY OF THE PARTY OF THE PA

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty		
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
	0, 0, 0, 0, 0,	± 4.8dB (Below 1GHz)		
2	Dedicted Emission	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
	0 0 0 0 0 0 0	± 5.02dB (Above 18GHz)		

Date: July 24, 2024

2.9 Equipment List

For Connect EUT Antenna Terminal Test							
Description	Manufacturer	Model	Serial Number	Cal date	Due date		
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24		
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24		
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24		
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24		
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24		
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA		
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA		
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24		
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24		
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24		

Page: 11 / 66

	Test Equipment for Conducted Emission										
Description Manufacturer Model Serial Number Cal Date Due [
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23						
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23						
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23						

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23	
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA	
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23	
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23	
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23	

Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 12 / 66

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 13 / 66

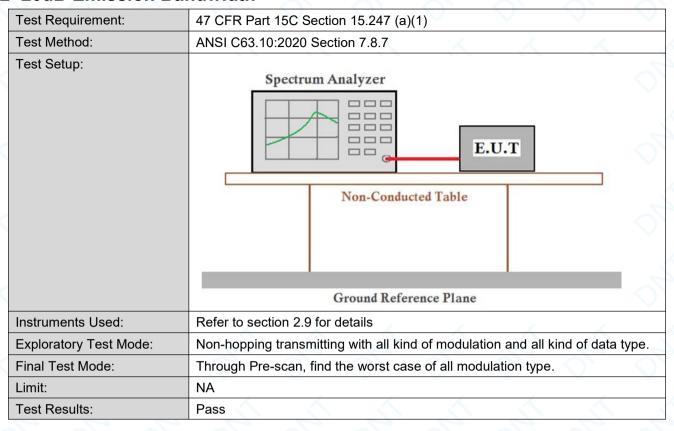
B Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

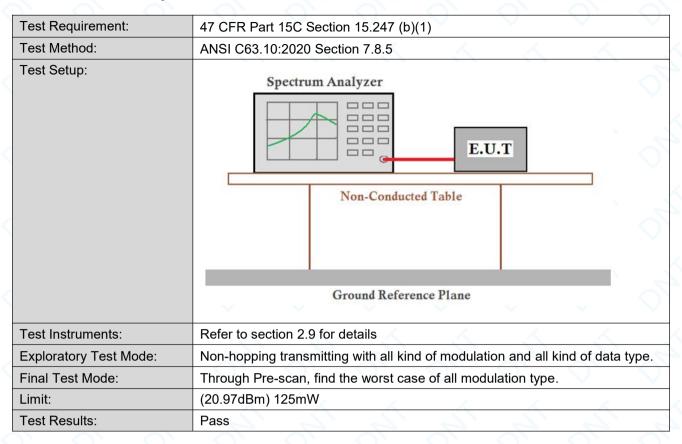
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.87dBi.

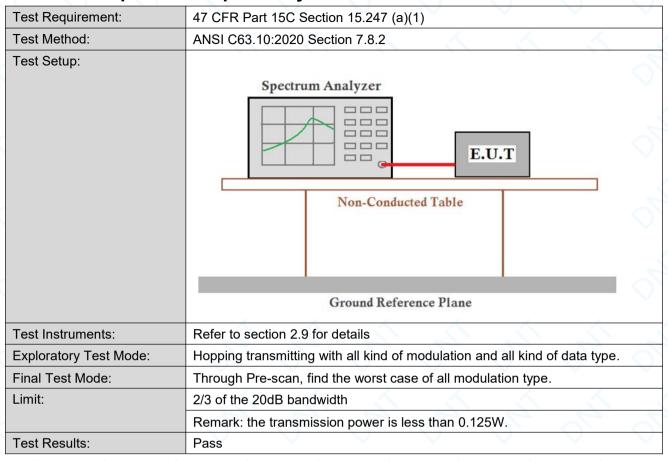
3.2 20dB Emission Bandwidth



The detailed test data see: Appendix A

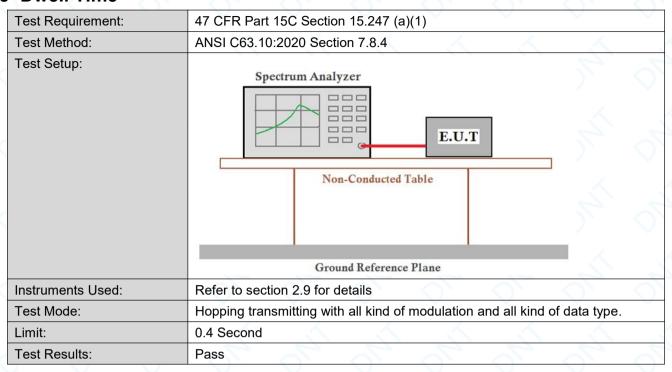
Date: July 24, 2024 Page: 15 / 66

3.3 Conducted Output Power



The detailed test data see: Appendix B

Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 16 / 66

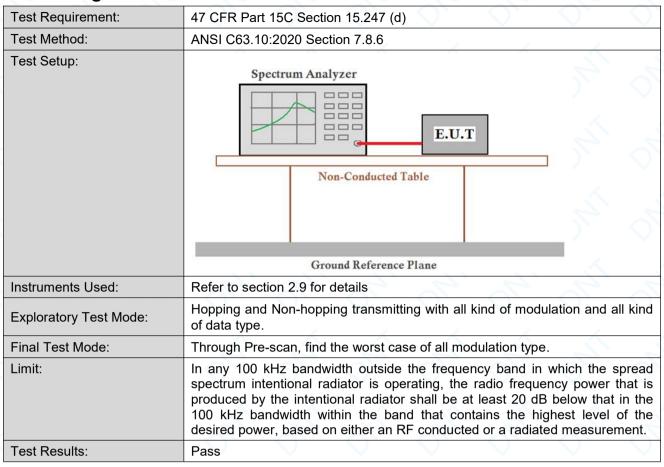

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

3.5 Dwell Time

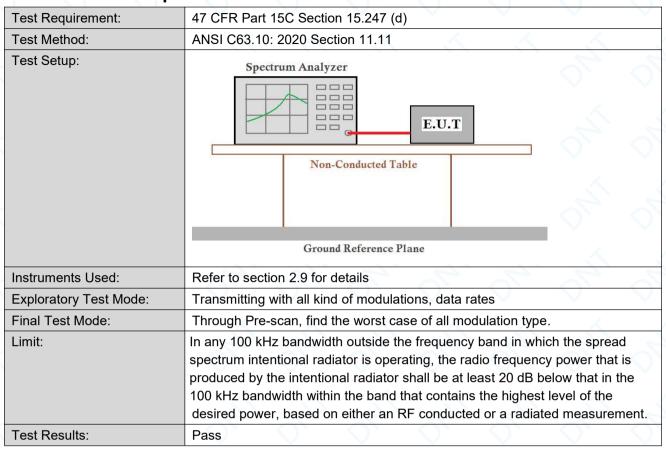
The detailed test data see: Appendix D

Date: July 24, 2024 Page: 18 / 66


3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2020 Section 7.8.3		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		9, 9,
	Ground Reference Plane		
Instruments Used:	Refer to section 2.9 for details		
Test Mode:	Hopping transmitting with all kind of modulation		
Limit:	At least 15 channels		
Test Results:	Pass	4	

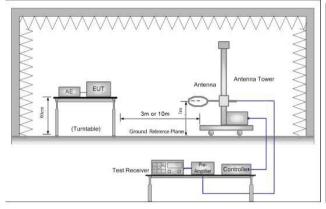
The detailed test data see: Appendix E

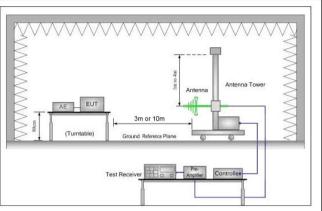

3.7 Band-edge for RF Conducted Emissions

The detailed test data see: Appendix F

3.8 RF Conducted Spurious Emissions

The detailed test data see: Appendix G


Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 21 / 66


3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20	05		~
Test Method:	ANSI C63.10: 2020 Sect	ion 11.12			
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	6 7
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	(DC<0.98) Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- /	-<	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	(-)	30
	1.705MHz-30MHz	30	<u> </u>	<u> </u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. This	mitted avera	ge emission lir	nit

Page: 22 /

Test Setup:

Date: July 24, 2024

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

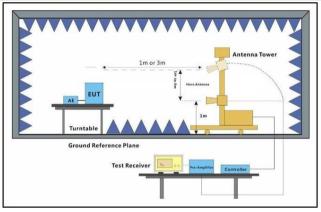


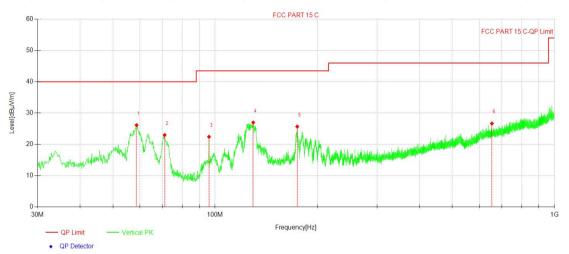
Figure 3. Above 1 GHz

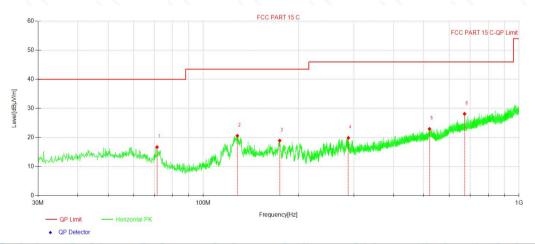
Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for

Dongguan DN Testing Co., Ltd.

Date: July 24, 2024 Page: 23 /

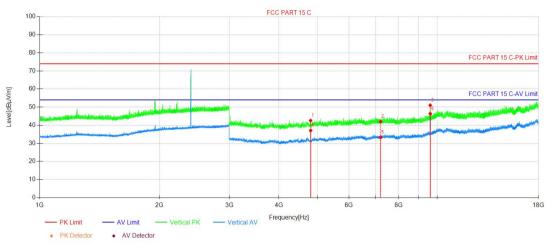

	Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Test Configuration:	 Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

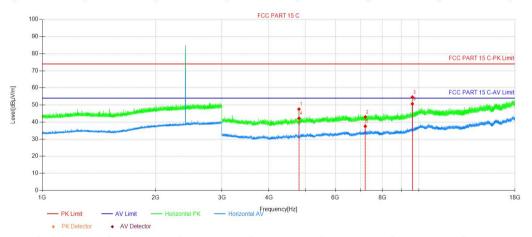

Date: July 24, 2024 Page: 24 / 66

Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	58.71	34.75	-8.62	26.13	40.00	13.87	100	182	QP	Vertical
2	71.03	33.23	-10.26	22.97	40.00	17.03	100	91	QP	Vertical
3	95.96	35.63	-13.22	22.41	43.50	21.09	100	177	QP	Vertical
4	129.53	36.43	-9.46	26.97	43.50	16.53	100	47	QP	Vertical
5	174.64	34.38	-8.71	25.67	43.50	17.83	100	52	QP	Vertical
6	654.16	25.16	1.49	26.65	46.00	19.35	100	1	QP	Vertical

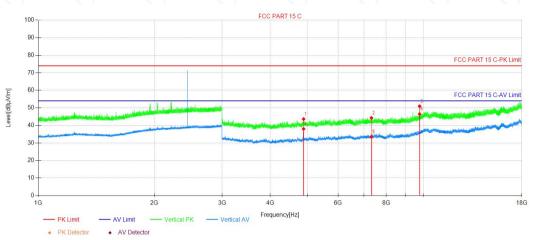

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	71.42	27.05	-10.35	16.70	40.00	23.30	200	174	QP	Horizontal
2	128.27	30.17	-9.57	20.60	43.50	22.90	200	134	QP	Horizontal
3	174.64	27.64	-8.71	18.93	43.50	24.57	100	284	QP	Horizontal
4	288.14	27.16	-7.29	19.87	46.00	26.13	100	233	QP	Horizontal
5	520.57	24.16	-1.20	22.96	46.00	23.04	200	65	QP	Horizontal
6	672.10	26.37	1.77	28.14	46.00	17.86	100	137	QP	Horizontal

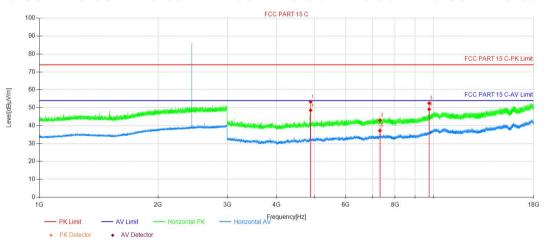

Date: July 24, 2024

Page: 25 / 66

For above 1GHz 3DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4803.84	47.19	-4.61	42.58	74.00	31.42	150	132	Peak	Vertical
2	7206.21	43.79	-1.76	42.03	74.00	31.97	150	122	Peak	Vertical
3	9608.58	50.15	0.88	51.03	74.00	22.97	150	110	Peak	Vertical
4	4804.59	41.67	-4.61	37.06	54.00	16.94	150	132	AV	Vertical
5	7206.21	35.01	-1.76	33.25	54.00	20.75	150	35	AV	Vertical
6	9609.33	45.52	0.88	46.40	54.00	7.60	150	110	AV	Vertical

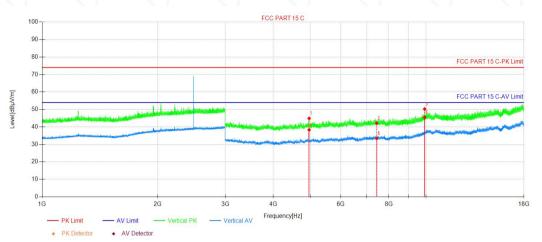

\	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
Ī	1	4803.84	52.15	-4.61	47.54	74.00	26.46	150	132	Peak	Horizon
	2	7206.21	44.75	-1.76	42.99	74.00	31.01	150	23	Peak	Horizon
	3	9608.58	53.69	0.88	54.57	74.00	19.43	150	110	Peak	Horizon
	4	4804.59	46.84	-4.61	42.23	54.00	11.77	150	57	AV	Horizon
	5	7206.96	39.27	-1.76	37.51	54.00	16.49	150	79	AV	Horizon
	6	9609.33	49.76	0.88	50.64	54.00	3.36	150	110	AV	Horizon

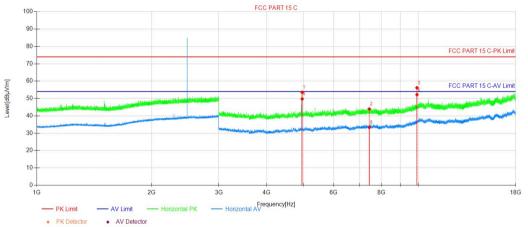

Date: July 24, 2024

Page: 26 / 66

3DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4882.59	48.35	-4.72	43.63	74.00	30.37	150	280	Peak	Vertical
2	7323.21	45.77	-1.49	44.28	74.00	29.72	150	67	Peak	Vertical
3	9764.58	49.30	1.64	50.94	74.00	23.06	150	110	Peak	Vertical
4	4882.59	42.72	-4.72	38.00	54.00	16.00	150	280	AV	Vertical
5	7323.21	34.98	-1.49	33.49	54.00	20.51	150	154	AV	Vertical
6	9765.33	44.82	1.65	46.47	54.00	7.53	150	110	AV	Vertical


	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	4882.59	57.98	-4.72	53.26	74.00	20.74	150	57	Peak	Horizon
	2	7323.21	44.55	-1.49	43.06	74.00	30.94	150	112	Peak	Horizon
	3	9764.58	50.88	1.64	52.52	74.00	21.48	150	90	Peak	Horizon
	4	4882.59	53.30	-4.72	48.58	54.00	5.42	150	57	AV	Horizon
ſ	5	7323.96	38.71	-1.49	37.22	54.00	16.78	150	68	AV	Horizon
	6	9765.33	47.49	1.65	49.14	54.00	4.86	150	79	AV	Horizon


Date: July 24, 2024

Page: 27 / 66

DH5 2480MHz

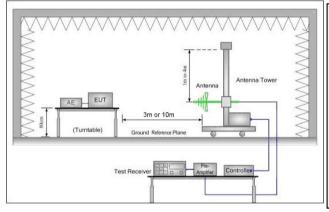
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	49.74	-4.86	44.88	74.00	29.12	150	275	Peak	Vertical
2	7440.22	43.46	-1.34	42.12	74.00	31.88	150	3	Peak	Vertical
3	9920.59	47.99	2.27	50.26	74.00	23.74	150	176	Peak	Vertical
4	4960.59	43.16	-4.86	38.30	54.00	15.70	150	286	AV	Vertical
5	7440.22	34.75	-1.34	33.41	54.00	20.59	150	34	AV	Vertical
6	9921.34	43.23	2.27	45.50	54.00	8.50	150	188	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4960.59	58.41	-4.86	53.55	74.00	20.45	150	67	Peak	Horizon
2	7440.22	45.29	-1.34	43.95	74.00	30.05	150	79	Peak	Horizon
3	9920.59	53.90	2.27	56.17	74.00	17.83	150	101	Peak	Horizon
4	4960.59	54.59	-4.86	49.73	54.00	4.27	150	57	AV	Horizon
5	7440.22	34.62	-1.34	33.28	54.00	20.72	150	210	AV	Horizon
6	9921.34	49.93	2.27	52.20	54.00	1.80	150	101	AV	Horizon

Date: July 24, 2024

Page: 28 / 66

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 29 / 66

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205							
Test Method:	ANSI C63.10: 2020 Section	ANSI C63.10: 2020 Section 11.12							
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
Limit:	Frequency	Limit (dBuV/m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak						
	88MHz-216MHz	43.5	Quasi-peak						
	216MHz-960MHz	46.0	Quasi-peak						
	960MHz-1GHz	54.0	Quasi-peak						
	Ab 4011-	54.0	Average Value						
	Above 1GHz	74.0	Peak Value						
Test Setup:			0, 0, (

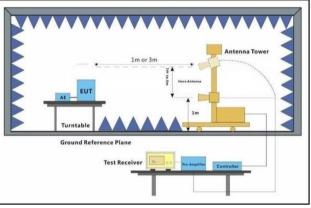


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

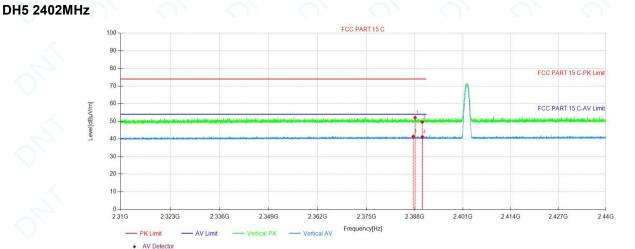
Test Procedure:

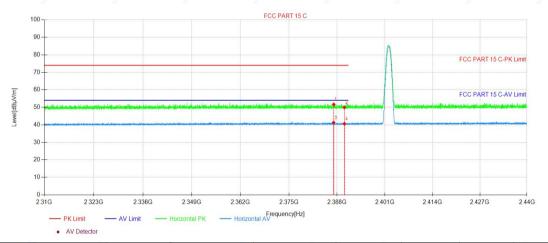
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz

Dongguan DN Testing Co., Ltd.

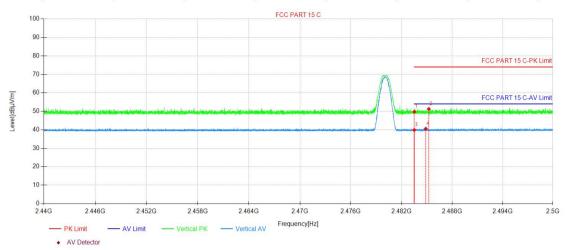

Poport No : DN	T2407220165R0389-01227 Date: July 24, 2024 Page: 30 / 66
Nepolt NO DIV	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of all modulation type. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass


Report No.: DNT2407220165R0389-01227

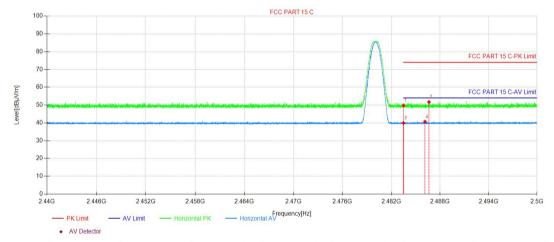
Test Date

Date: July 24, 2024 Page: 31 / 66

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2388.08	52.88	-0.80	52.08	74.00	21.92	150	12	Peak	Vertical
2	2390.01	50.35	-0.80	49.55	74.00	24.45	150	340	Peak	Vertical
3	2387.61	42.24	-0.80	41.44	54.00	12.56	150	57	AV	Vertical
4	2390.01	41.99	-0.80	41.19	54.00	12.81	150	88	AV	Vertical



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2387.11	52.47	-0.81	51.66	74.00	22.34	150	181	Peak	Horizon
2	2390.01	50.75	-0.80	49.95	74.00	24.05	150	181	Peak	Horizon
3	2387.08	42.11	-0.81	41.30	54.00	12.70	150	258	AV	Horizon
4	2390.01	41.43	-0.80	40.63	54.00	13.37	150	122	AV	Horizon



Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 32 / 66

DH5 2480MHz

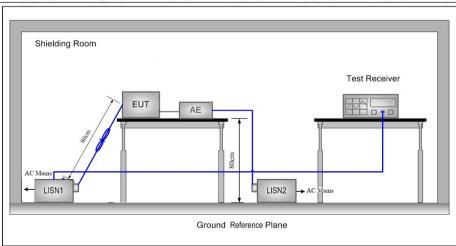
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.51	50.03	-0.29	49.74	74.00	24.26	150	30	Peak	Vertical
2	2485.24	51.53	-0.27	51.26	74.00	22.74	150	185	Peak	Vertical
3	2483.51	40.16	-0.29	39.87	54.00	14.13	150	325	AV	Vertical
4	2484.87	40.83	-0.27	40.56	54.00	13.44	150	158	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	50.02	-0.29	49.73	74.00	24.27	150	40	Peak	Horizon
2	2486.64	51.94	-0.26	51.68	74.00	22.32	150	190	Peak	Horizon
3	2483.51	40.16	-0.29	39.87	54.00	14.13	150	227	AV	Horizon
4	2486.15	40.90	-0.27	40.63	54.00	13.37	150	77	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.


2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

3.11 AC Power Line Conducted Emissions

47 CFR Part 15C Section 15.207							
ANSI C63.10: 2020							
150kHz to 30MHz							
F (MIL)	Limit	(dBuV)					
Frequency range (MHZ)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
* Decreases with the logarit	hm of the frequency.						
room. 2) The EUT was connected Impedance Stabilization Ne impedance. The power caba a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the ration of the tabletop EUT was provided on the horizontal ground reference plane. An placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equal of the interest of the in	I to AC power source the twork) which provides a les of all other units of the bonded to the ground he LISN 1 for the unit be was used to connect multing of the LISN was not laced upon a non-metal d for floor-standing arrangement are vertical ground reference plane, with a vertical ground reane was bonded to the late was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the Eleuipment was at least 0.8 m emission, the relative erface cables must be cited.	rough a LISN 1 (Line 50Ω/50μH + 5Ω linear ne EUT were connected to reference ing measured. A stiple power cables to a exceeded. It table 0.8m above the regement, the EUT was reference plane. The rear reference plane. The norizontal ground in the boundary of the lane for LISNs a distance was JT. All other units of 8 m from the LISN 2. positions of					
	ANSI C63.10: 2020 150kHz to 30MHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarit 1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization Ne impedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the rate 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground reference plane. The LISN funit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equal or order to find the maximum equipment and all of the interest.	ANSI C63.10: 2020 150kHz to 30MHz Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was					

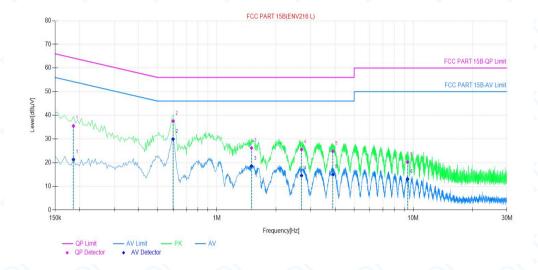
Test Setup:

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

Dongguan DN Testing Co., Ltd.


7220165R0389-01227	Date: July 24, 2024	Page: 34 / 66	
Through Pre-scan find the the	worst case		

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

	NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dΒμV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dΒμV]	AV Result Level [dBµV]	AV Limit [dΒμV]	AV Margin [dB]
	1	0.18	9.92	25.57	35.49	64.22	28.73	11.39	21.31	54.22	32.91
	2	0.59	9.82	27.75	37.57	56.00	18.43	20.13	29.95	46.00	16.05
	3	1.50	9.73	16.44	26.17	56.00	29.83	8.83	18.56	46.00	27.44
	4	2.70	9.74	15.82	25.56	56.00	30.44	4.77	14.51	46.00	31.49
	5	3.89	9.75	15.02	24.77	56.00	31.23	7.18	16.93	46.00	29.07
Y	6	9.36	9.86	10.38	20.24	60.00	39.76	3.17	13.03	50.00	36.97

Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 35 / 66

Neutral Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dΒμV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dΒμV]	AV Result Level [dBµV]	AV Limit [dΒμV]	AV Margin [dB]
1	0.17	9.82	28.32	38.14	64.87	26.73	12.5	22.32	54.87	32.55
2	0.59	9.78	33.76	43.54	56.00	12.46	25.14	34.92	46.00	11.08
3	1.51	9.73	23.93	33.66	56.00	22.34	16.03	25.76	46.00	20.24
4	3.89	9.95	22.12	32.07	56.00	23.93	14.06	24.01	46.00	21.99
5	7.53	9.96	19.47	29.43	60.00	30.57	11.33	21.29	50.00	28.71
6	24.82	10.14	6.79	16.93	60.00	43.07	-1.01	9.13	50.00	40.87

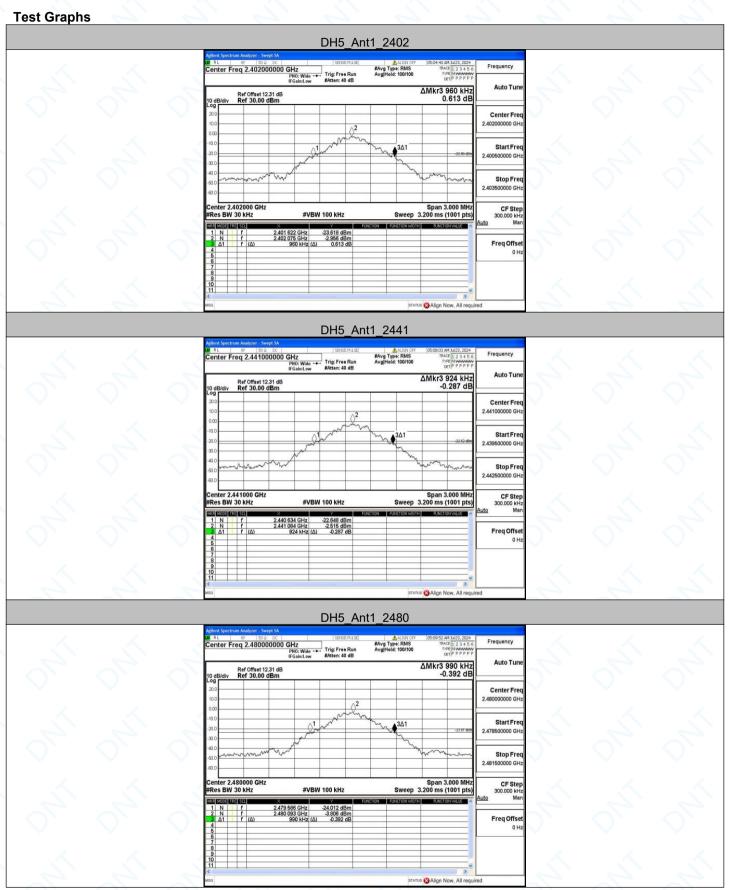
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 36 / 66

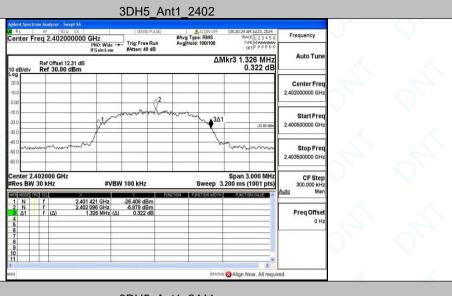
4 Appendix


Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.960	2401.622	2402.582	/	
DH5		2441	0.924	2440.634	2441.558		
		2480	0.990	2479.586	2480.576		
		2402	1.320	2401.427	2402.747		
2DH5	Ant1	2441	1.290	2440.457	2441.747		
		2480	1.317	2479.433	2480.750		
		2402	1.326	2401.421	2402.747		
3DH5	Ant1	2441	1.317	2440.439	2441.756		
		2480	1.293	2479.442	2480.735		

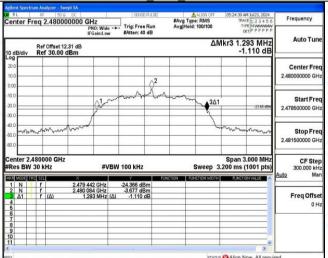
Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 37 / 66



Report No.: DNT2407220165R0389-01227 Page: 38 / 66 Date: July 24, 2024

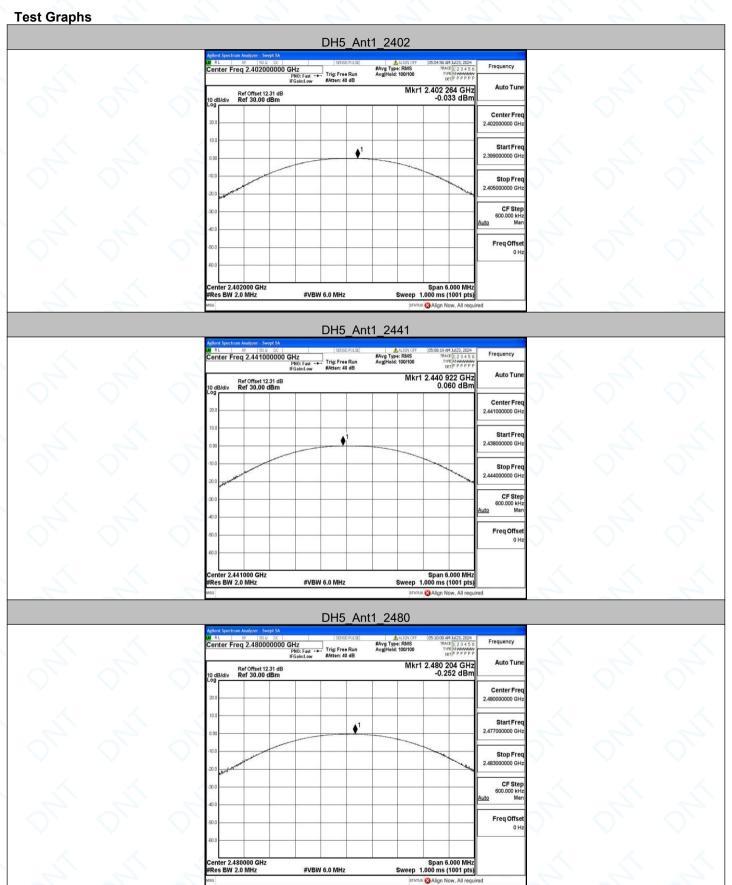
2DH5_Ant1_2402 #Avg Type: RMS AvgiHold: 100/100 Auto Tur Ref Offset 12.31 dB Ref 30.00 dBm Center Fre Start Free enter 2.402000 GHz Res BW 30 kHz Freq Offs 2DH5 Ant1 2441 #Avg Type: RMS Avg|Hold: 100/100 Center Fre 2.441000000 GH Span 3.000 MHz Sweep 3.200 ms (1001 pts) CF Stej 300.000 kH 2DH5_Ant1_2480 Frequency Center Fre Stop Fre 2.481500000 GH CF Stej 300.000 kH Freq Offse

Report No.: DNT2407220

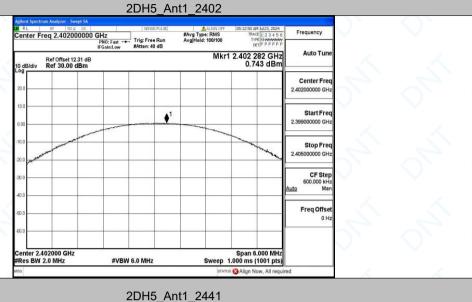

Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 39 / 66

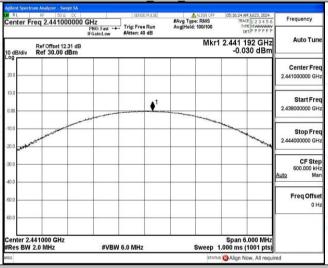
3DH5_Ant1_2441

3DH5_Ant1_2480

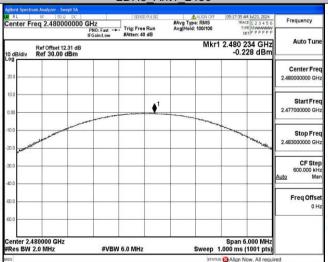

Appendix B: Maximum conducted output power

Test Result

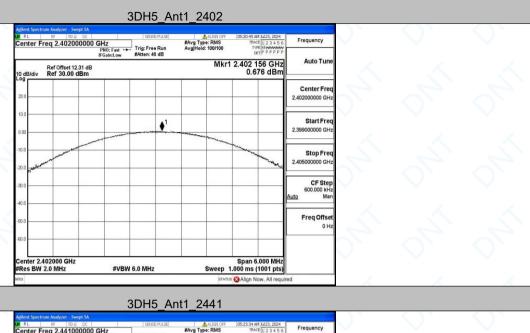

i Cot i Couit					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
	Ant1	2402	-0.03	≤20.97	PASS
DH5		2441	0.06	≤20.97	PASS
		2480	-0.25	≤20.97	PASS
		2402	0.74	≤20.97	PASS
2DH5	Ant1	2441	-0.03	≤20.97	PASS
		2480	-0.23	≤20.97	PASS
		2402	0.68	≤20.97	PASS
3DH5	Ant1	2441	0.70	≤20.97	PASS
		2480	0.37	≤20.97	PASS

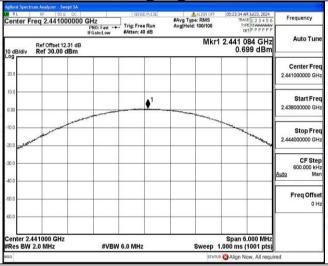


Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 41 / 66

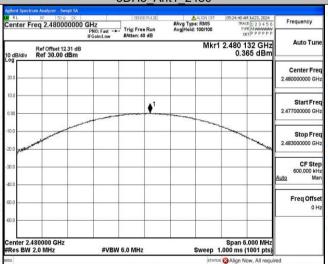


Report No.: DNT2407220165R0389-01227 Page: 42/66 Date: July 24, 2024





2DH5_Ant1_2480



Report No.: DNT2407220165R0389-01227 Date: July 24, 2024 Page: 43 / 66

3DH5_Ant1_2480

Date: July 24, 2024

Page: 44 / 66

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.004	≥0.990	PASS
2DH5	Ant1	Нор	1.164	≥0.880	PASS
3DH5	Ant1	Нор	0.998	≥0.884	PASS