

TEST REPORT

of

FCC Part 15 Subpart C §15.209, §15.231 IC RSS-210 Issue 9, RSS-Gen Issue 5

FCC ID: TQ8-FOB-4F32 IC Certification: 5074A- FOB4F32

Equipment Under Test	:	Fob Smart Key
Model Name	:	FOB-4F32
Applicant	:	Hyundai Mobis Co., Ltd.
Manufacturer	:	Hyundai Mobis Co., Ltd.
Date of Receipt	:	2019.03.06
Date of Test(s)	:	2019.03.07 ~ 2019.03.20
Date of Issue	:	2019.03.21

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	Kanz	Date:	2019.03.21	
	Patrick Kang			
Technical Manager:	type	Date:	2019.03.21	
Manager:	Jungmin Yang		2013.03.21	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

TABLE OF CONTENTS

1. General Information	3
2. Field Strength of Fundamental and Spurious Emission	6
3. Bandwidth of Operation Frequency	18
4. Occupied Bandwidth	20
5. Transmission Time	22
6. Duty Cycle Correction Factor	24
7. Antenna Requirement	26

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil. Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

Telephone	:	+82 31 688 0901
FAX	:	+82 31 688 0921

1.2. Details of applicant

Applicant:Hyundai Mobis Co., Ltd.Address:203, Teheran-ro, Gangnam-gu, Seoul, South Korea, 06141Contact Person:Choe, Seung-hoonPhone No.:+82 31 260 0098

1.3. Details of manufacturer

Company	:	Same as above
Address	:	Same as above

1.4. Description of EUT

Kind of Product	Fob Smart Key
Model Name	FOB-4F32
Power Supply	DC 3.0 V
Frequency Range	Tx: 433.92 Mz, Rx: 125.00 kb
Modulation Type	FSK
Number of Channel	1
Antenna Type	PCB Pattern Antenna

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMBV100A	255834	Jun. 15, 2018	Annual	Jun. 15, 2019
Spectrum Analyzer	R&S	FSV30	103100	Jun. 21, 2018	Annual	Jun. 21, 2019
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 21, 2018	Annual	Sep. 21, 2019
Preamplifier	H.P.	8447F	2944A03909	Aug. 07, 2018	Annual	Aug. 07, 2019
Preamplifier	Agilent	8449B	3008A01932	Feb. 22, 2019	Annual	Feb. 22, 2020
High Pass Filter	Mini-Circuits	NHP-800+	V8207600724	Mar. 08, 2019	Annual	Mar. 08, 2020
High Pass Filter	Wainwright Instrument GmbH	WHKX1.5/15G-6SS	4	Jun. 14, 2018	Annual	Jun. 14, 2019
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 23, 2017	Biennial	Aug. 23, 2019
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB9163	01126	Mar. 26, 2018	Biennial	Mar. 26, 2020
Horn Antenna	R&S	HF906	100326	Feb. 14, 2018	Biennial	Feb. 14, 2020
Test Receiver	R&S	ESU26	100109	Jan. 31, 2019	Annual	Jan. 31, 2020
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/3 8330516/L	N.C.R.	N/A	N.C.R.
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Antenna Master	Innco systems GmbH	MA4640-XP-ET	MA4640/536/3 8330516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	SUCOFLEX	104 (3 m)	MY3258414	Jan. 04, 2019	Semi- annual	Jul. 04, 2019
Coaxial Cable	SUCOFLEX	104 (10 m)	MY3145814	Jan. 04, 2019	Semi- annual	Jul. 04, 2019
Coaxial Cable	Rosenberger	LA1-C006-1500	131014 01/20	Feb. 28, 2019	Semi- annual	Aug. 28, 2019

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

Applied standard: FCC Part15 subpart C, IC RSS-210 Issue 9, RSS-Gen Issue 5					
Sec	tion	Test Item	Result		
15.209(a) 15.231(b)	RSS-210 Issue 9, A.1, Table A1 RSS-Gen Issue 5, 8.9	Radiated emission, Spurious Emission and Field Strength of Fundamental	Complied		
15.231(c)	-	Bandwidth of Operation Frequency	Complied		
15.231(a)	RSS-210 Issue 9, A.1.1	Transmission Time	Complied		
-	RSS-210 Issue 9, A.1.3 RSS-Gen Issue 5, 6.7	Occupied Bandwidth	Complied		

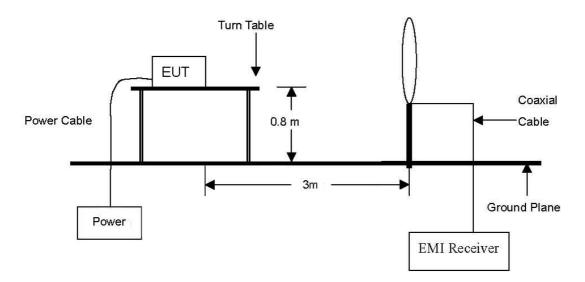
1.7. Measurement Uncertainty

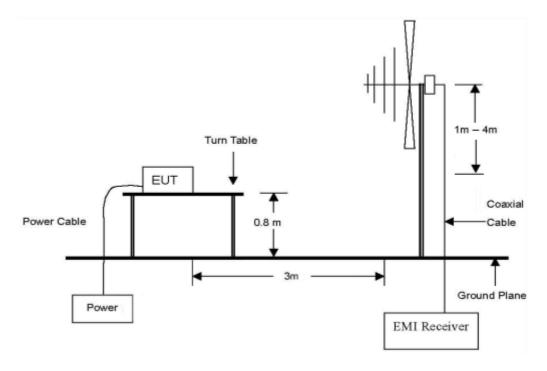
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty (dB)
Radiated Disturbance, 9 kHz to 30 MHz	± 3.59
Radiated Disturbance, below 1 GHz	± 5.88
Radiated Disturbance, above 1 Glz	± 5.94

Uncertainty figures are valid to a confidence level of 95 %.

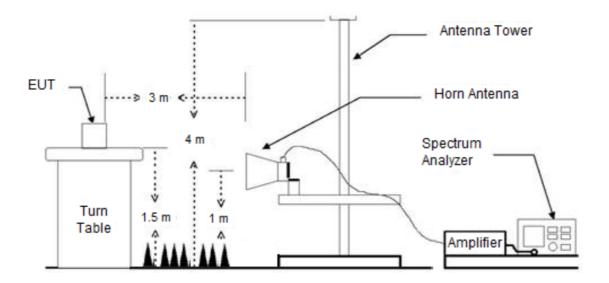
1.8. Test Report Revision


Revision	Report number	Date of issue	Description
0	F690501/RF-RTL013623	2019.03.21	Initial


2. Field Strength of Fundamental and Spurious Emission

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission below 30 $\ensuremath{\mathbb{Mk}}$.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\rm Mz$ to 1 $\,\rm Gz$

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

2.2. Limit

2.2.1. FCC

2.2.1.1. Radiated emission limits; general requirements.

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (Mb)	Field Strength (microvolts/meter)	Measurement Distance (meter)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mz, 76-88 Mz, 174-216 Mz or 470-806 Mz. However, operation within these frequency bands is permitted under other sections of this part, e.g., \S 15.231 and 15.241.

2.2.1.2. Periodic operation in the band 40.66-40.70 Mb and above 70 Mb

According to §15.231(b), in addition to the provisions of Section §15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (账)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹linear interpolations

Where F is the frequency in M/z, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 M/z, μ /m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 M/z, μ /m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

2.2.2. IC

2.2.2.1. Transmitter emission limits

According to RSS-Gen Issue 5, 8.9.

Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Table 5 - General field strength limits at frequencies above 30 Mb

Frequency (账)	Field Strength (<i>µ</i> V/m at 3 m)
30-88	100
88-216	150
216-960	200
Above 960	500

Table 6 - General field strength limits at frequencies below 30 Mb

Frequency	Magnetic Field Strength (H-Field) (μ A/m)	Measurement Distance (m)
9-490 kHz ¹	6.37/F (F in 朏)	300
490-1 705 kHz	63.7/F (F in 址)	30
1.705-30 Mz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2.2.2.2. Momentarily Operated Devices

According to A.1 of RSS-210 Issue 9.

The frequency bands and field strength limits in tables A1 and A2 of this annex are reserved exclusively for the transmission of a control signal, such as that used with alarm systems, door openers, remote switches, etc. Data may be sent with a control signal. Radio control of toys or model aircraft, as well as continuous transmissions, such as voice or video, are not permitted, except as provided in Section A.1.4 below.

Fundamental Frequency (朑), Excluding Restricted Frequency Bands Specified in RSS-Gen	Field Strength of the Fundamental Emissions (ﷺ at 3 m)
70-130	1,250
130-174	1,250 to 3,750*
174-260 ^(Note 1)	3,750
260-470 ^(Note 1)	3,750 to 12,500*
Above 470	12,500

* Linear interpolation with frequency, f, in Mt:

For 130-174 Mb: Frequency Strength $(\mu N/m) = (56.82 \text{ x f}) - 6136$ For 260-470 Mb: Frequency Strength $(\mu N/m) = (41.67 \text{ x f}) - 7083$

Note 1: Frequency bands 225-328.6 Mb and 335.4-399.9 Mb are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2017.07.10)(0)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013

2.3.1. Test Procedures for emission below 30 $\,{\rm Me}$

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from 30 Mb to 1 000 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

2.3.3. Test Procedures for emission above 1 🕀

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mz for Peak detection at frequency above 1 Gz.

2.4. Test Result

Ambient temperature	:	:	(23	± 1) °C
Relative humidity	:	:	47	% R.H.

2.4.1. Field Strength of Fundamental

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Frequency (Mb)	Detect Mode	Ant. Pol.	Reading (dBµV)	AF (dB/m)	CL (dB)	Result (dBµN/m)	Limit (dBµN/m)	Margin (dB)
433.96	Peak	н	59.21	16.40	5.37	80.98	100.83	19.85
433.96	Average	Н	51.58	16.40	5.37	73.35	80.83	7.48

Remark;

1. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes (X, Y, Z). Worst orthogonal plan of EUT is X - axis.

Definition of DUT for three orthogonal planes is described in the test setup photos.

- 2. $3 \text{ m Limit } (dB\mu N/m) = 20 \log[41.67(F_{(Mz)}) - 7083] = 80.83$
- 3. Result
- = Reading + Antenna Factor + Cable Loss Average Reading = Peak Reading + Duty Cycle Correction Factor 4.
- 5. Duty Cycle Correction Factor: $20\log(T_{on} / 100 \text{ ms}) = 20\log(41.62 / 100) = -7.63$
 - $-T_{on} = 41.53$ ms.
 - $-T_{on+off} = 100 \text{ ms}$ (pulse train is 100 ms instead of 168 ms).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2017.07.10)(0) Tel. +82 31 428 5700 / Fax. +82 31 427 2370 A4(210 mm × 297 mm)

2.4.2. Spurious Emission

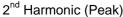
The following table shows the highest levels of radiated emissions. The frequency spectrum from 9 klb to 4 400 Mb was investigated.

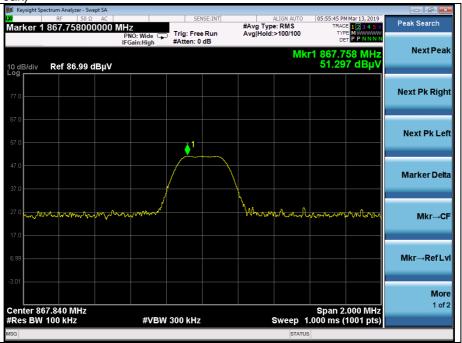
Radi	ated Emissi	ons	Ant.	Correctio	Correction Factors		Lim	it
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
867.76	51.30	Peak	Н	21.78	-21.94	51.14	80.83	29.69
867.76	43.67	Average	Н	21.78	-21.94	43.51	60.83	17.32
*1 301.92	54.65	Peak	Н	25.00	-27.65	52.00	74.00	22.00
*1 301.92	47.02	Average	Н	25.00	-27.65	44.37	54.00	9.63
1 735.47	49.70	Peak	Н	26.35	-25.64	50.41	80.83	30.42
1 735.47	42.07	Average	Н	26.35	-25.64	42.78	60.83	18.05
2 603.37	44.21	Peak	Н	28.60	-23.97	48.84	80.83	31.99
2 603.37	36.58	Average	Н	28.60	-23.97	41.21	60.83	19.62
3 037.62	43.97	Peak	Н	29.95	-23.55	50.37	80.83	30.46
3 037.62	36.34	Average	Н	29.95	-23.55	42.74	60.83	18.09
3 471.73	46.88	Peak	Н	30.91	-23.51	54.28	80.83	26.55
3 471.73	39.25	Average	Н	30.91	-23.51	46.65	60.83	14.18
*3 905.76	41.23	Peak	Н	32.17	-22.99	50.41	74.00	23.59
*3 905.76	33.60	Average	Н	32.17	-22.99	42.78	54.00	11.22
*4 338.88	39.01	Peak	Н	31.74	-22.49	48.26	74.00	25.74
*4 338.88	31.38	Average	Н	31.74	-22.49	40.63	54.00	13.37

Remark;

- To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal 1. planes (X, Y, Z). Worst orthogonal plan of EUT is X - axis.
- Definition of DUT for three orthogonal planes is described in the test setup photos.
- 2. = $20\log[41.67(F_{(Mz)}) - 7083] - 20 \text{ dB}\mu N/m = 60.83 \text{ dB}\mu N/m$ 3 m Limit (dBµV/m)
- **Correction Factors** = AF + AMP + CL 3. 4. Actual
 - = Reading + AF + AMP + CL
- = Peak Reading + Duty Cycle Correction Factor 5. Average Reading
- 6. Duty Cycle Correction Factor: $20\log(T_{on} / 100 \text{ ms}) = 20\log(41.62 / 100) = -7.63$
 - $-T_{on} = 41.53$ ms.

- T_{on+off} = 100 ms (pulse train is 100 ms instead of 168 ms).


- "*" means the restricted band. 7.
- Spurious Emission test results meet both peak and average limit. 8.
- 9. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.


SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2017.07.10)(0) Tel. +82 31 428 5700 / Fax. +82 31 427 2370 A4(210 mm × 297 mm)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

The Plots of Spurious Emission

3rd Harmonic (Peak)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

4th Harmonic (Peak)

6th Harmonic (Peak)


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

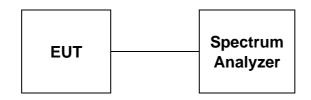
7th Harmonic (Peak)

8th Harmonic (Peak)


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

9th Harmonic (Peak)

10th Harmonic (Peak)



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

3. Bandwidth of Operation Frequency

3.1. Test Setup

3.2. Limit

According to \$15.231(c), the bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 Mb and below 900 Mb. For devices operating above 900 Mb, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

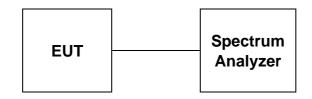
3.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 x RBW.
- 3. The bandwidth of fundamental frequency was measured and recorded.

3.4. Test Result

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Carrier Frequency (账)	Bandwidth of Operation Frequency (胐)	Limit (朏)	Remark
433.92	97.9	1 084.80	The point 20 dB down from the modulated carrier


Ref Level 10.00 d	iBm 😑	RBW 3 kHz			(🛆
	dB SWT 11.2 ms 🖷		ode Sweep		
TDF			F		
∋1Pk Max					
			D1[1]		0.64 dE
0 dBm		M2			97.900 kH:
o abiii		The second se	M1[1]		-23.13 dBn
-10 dBm					433.870000 MH:
-20 dBm		MA	Д.		
D1 -22.	.050 dBm	Therefore			
-30 dBm					
-40 dBm			<u> </u>		
		marken	June .	A	
-50 dBm	-man and a marked			Knoballa brances Laboren	Maria I.
· · · · ·					
-60 dBm					
-70 dBm					
, o abiii					
-80 dBm					
CF 433.92 MHz		1001 p	ts		Span 1.0 MHz
/larker					
Type Ref Trc	X-value	Y-value	Function	Function I	Result
M1 1	433.87 MHz	-23.13 dBm			
D1 M1 1	97.9 kHz	0.64 dB			
M2 1	433.878 MHz	-2.05 dBm			
			Me	asuring	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

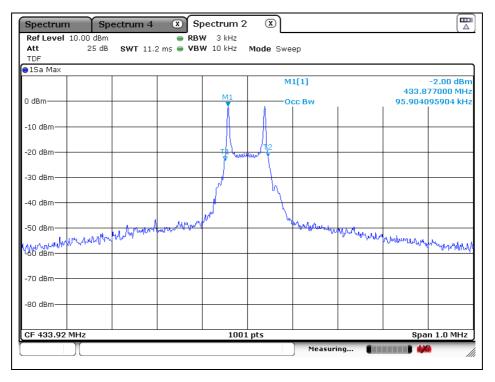
4. Occupied Bandwidth

4.1. Test Setup

4.2. Limit

According to A.1.3 of RSS-210 Issue 9, the 99 % bandwidth of momentarily operated devices shall be less or equal to 0.25 % of the centre frequency for devices operating between 70 Mb and 900 Mb. For devices operating above 900 Mb, the 99 % bandwidth shall be less or equal to 0.5 % of the centre frequency.

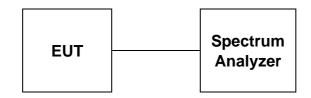
4.3. Test Procedure


- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 x RBW.
- 3. The bandwidth of fundamental frequency was measured and recorded.

4.4. Test Result

Ambient temperature	:	(2	23 ± 1) °C
Relative humidity	:	4	7 % R.H.

Carrier Frequency	Occupied Bandwidth	Limit	Remark
(账)	(朏)	(朏)	
433.92	95.90	1 084.80	99 % Occupied bandwidth



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

5. Transmission Time

5.1. Test Setup

5.2. Limit

5.2.1. FCC

According to \$15.231(a)(1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

5.2.2. IC

According to A1.1 (a) of RSS-210 Issue 9, a manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all times during transmission. When released, the transmitter shall cease transmission within no more than 5 seconds of being released.

5.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 1 Mb, VBW = 1 Mb, Span = 0 Hz, Sweep Time = 10 sec.
- 3. The bandwidth of fundamental frequency was measured and recorded.

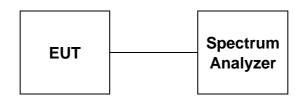
 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2017.07.10)(0)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

5.4. Test Result

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Carrier Frequency	Transmission Time	Limit	Remark
(雁)	(sec)	(sec)	
433.92	0.37	Same or less than 5	Pass


SGL TDF		
1Pk Clrw		
	D1[1]	0.03 dE 370.00 ms
) dBm M1	M1[1]	-1.92 dBm
		1.82000 9
-10 dBm		
-20 dBm		
-30 dBm-		
lighter all and the second second the second the second second second second second second second second second	www.www.thelastation.com/http://www.	and all and the state of the st
-40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
-80 dBm		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

6. Duty Cycle Correction Factor

6.1. Test Setup

6.2. Limit

None (No dedicated Limit specified in the Rules)

6.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW = 1 $\,$ Mz, VBW = Auto, Span = 0 $\,$ Hz, Sweep Time = 0.5 sec.

6.4. Test Result

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

CALCULATION:

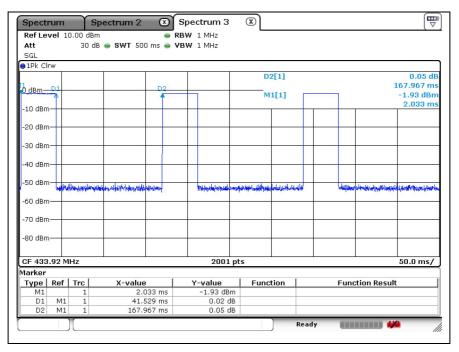
Average Reading = Peak Reading (dBµN/m) + 20log(Duty Cycle)

In order to determine possible Maximum Modulation percentage, alternations are made to the EUT. We measured;

T _{on+off}	T _{on}	M % = $(T_{on} / T_{on+off}) * 100 \%$	Duty Correction Factor
100 ms	41.53 ms	41.53	-7.63

 $T_{on+off} = 100$ ms

 $T_{on} = 41.53 \text{ ms}$ Duty Cycle = 20log(T_{on} / T_{on+off}) = 20log(0.4153) = -7.63


Remark:

- T_{on} = 41.53 ms.

- T_{on+off} = 100 ms (pulse train is 100 ms instead of 168 ms).

6.5. Test Plot

-Duty Cycle of Continuous EUT

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

7. Antenna Requirement

7.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2. Antenna Connected Construction

Antenna used in this product is PCB Pattern Antenna with gain of -21.53 $\,\mathrm{dB}\,i$.

- End of the Test Report -

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>