CINCH Systems **RF-MDWS-HP-S** FCC 15.231:2017 **Low Power Transmitter** Report # CINC0007.1 NVLAP Lab Code: 200881-0 # **CERTIFICATE OF TEST** Last Date of Test: February 21, 2017 CINCH Systems Model: RF-MDWS-HP-S # **Radio Equipment Testing** ### **Standards** | Specification | Method | |-----------------|------------------| | FCC 15.231:2017 | ANSI C63.10:2013 | ### Results | Method
Clause | Test Description | Applied | Results | Comments | |------------------|-------------------------------|---------|---------|---| | 6.2 | Powerline Conducted Emissions | No | N/A | Not required for a battery powered EUT. | | 6.5, 6.6 | Field Strength of Fundamental | Yes | Pass | | | 6.5, 6.6 | Spurious Radiated Emissions | Yes | Pass | | | 6.9.2 | Occupied Bandwidth | Yes | Pass | | | 7.5 | Duty Cycle | Yes | Pass | | ### **Deviations From Test Standards** None Approved By: Dean Ghizzone, General Manager Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. # **REVISION HISTORY** | Revision
Number | Description | Date | Page Number | |--------------------|-------------|------|-------------| | 00 | None | | | Report No. CINC0007.1 3/23 # ACCREDITATIONS AND AUTHORIZATIONS ### **United States** FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC. **A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications. NVLAP - Each laboratory is accredited by NVLAP to ISO 17025 ### Canada **ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED. ### **European Union** European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive. ### Australia/New Zealand **ACMA** - Recognized by ACMA as a CAB for the acceptance of test data. ### Korea MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data. ### Japan VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered. #### **Taiwan** **BSMI** – Recognized by BSMI as a CAB for the acceptance of test data. NCC - Recognized by NCC as a CAB for the acceptance of test data. ### **Singapore** **IDA** – Recognized by IDA as a CAB for the acceptance of test data. ### Israel **MOC** – Recognized by MOC as a CAB for the acceptance of test data. ### **Hong Kong** **OFCA** – Recognized by OFCA as a CAB for the acceptance of test data. ### **Vietnam** MIC – Recognized by MIC as a CAB for the acceptance of test data. ### **SCOPE** For details on the Scopes of our Accreditations, please visit: http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html Report No. CINC0007.1 4/23 ## MEASUREMENT UNCERTAINTY ### **Measurement Uncertainty** When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution. A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request. The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report. | Test | + MU | - MU | |---------------------------------------|---------|----------| | Frequency Accuracy (Hz) | 0.0007% | -0.0007% | | Amplitude Accuracy (dB) | 1.2 dB | -1.2 dB | | Conducted Power (dB) | 0.3 dB | -0.3 dB | | Radiated Power via Substitution (dB) | 0.7 dB | -0.7 dB | | Temperature (degrees C) | 0.7°C | -0.7°C | | Humidity (% RH) | 2.5% RH | -2.5% RH | | Voltage (AC) | 1.0% | -1.0% | | Voltage (DC) | 0.7% | -0.7% | | Field Strength (dB) | 5.2 dB | -5.2 dB | | AC Powerline Conducted Emissions (dB) | 2.4 dB | -2.4 dB | Report No. CINC0007.1 5/23 # **FACILITIES** California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255 **Washington**Labs NC01-05 19201 120th Ave NE Bothell, WA 98011 (425)984-6600 | (949) 861-8918 | (612)-638-5136 | (315) 554-8214 | (503) 844-4066 | (469) 304-5255 | (425)984-6600 | | | |--|---|--------------------------|--------------------------|-------------------------|--------------------------|--|--| | | NVLAP | | | | | | | | NVLAP Lab Code: 200676-0 | NVLAP Lab Code: 200881-0 | NVLAP Lab Code: 200761-0 | NVLAP Lab Code: 200630-0 | NVLAP Lab Code:201049-0 | NVLAP Lab Code: 200629-0 | | | | | Innovation, Science and Economic Development Canada | | | | | | | | 2834B-1, 2834B-3 | 2834E-1 | N/A | 2834D-1, 2834D-2 | 2834G-1 | 2834F-1 | | | | VCCI | | | | | | | | | A-0029 | A-0109 | N/A | A-0108 | A-0201 | A-0110 | | | | Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA | | | | | | | | | US0158 | US0175 | N/A | US0017 | US0191 | US0157 | | | Report No. CINC0007.1 6/23 # **Test Setup Block Diagrams** ### **Antenna Port Conducted Measurements** ### **Near Field Test Fixture Measurements** ### **Spurious Radiated Emissions** Report No. CINC0007.1 7/23 # PRODUCT DESCRIPTION ### **Client and Equipment Under Test (EUT) Information** | Company Name: | CINCH Systems | |--------------------------------|---------------------------------| | Address: | 12075 43rd Street NE, Suite 300 | | City, State, Zip: | St. Michael, MN 55376 | | Test Requested By: | Jibril Aga | | Model: | RF-MDWS-HP-S | | First Date of Test: | February 21, 2017 | | Last Date of Test: | February 21, 2017 | | Receipt Date of Samples: | February 21, 2017 | | Equipment Design Stage: | Production | | Equipment Condition: | No Damage | | Purchase Authorization: | Verified | ### **Information Provided by the Party Requesting the Test** ### **Functional Description of the EUT:** Low power Transmitter used in Door/Window sensor. Operates at 319.5 MHz frequency and utilizes AM modulation (OOK) ### **Testing Objective:** To demonstrate compliance of the periodic radio to FCC 15.231(b) requirements Report No. CINC0007.1 8/23 # **CONFIGURATIONS** ### **Configuration CINC0007-1** | Software/Firmware Running during test | | | | |---------------------------------------|--------------|--|--| | Description | Version | | | | MPLabX | Not Provided | | | | EUT | | | | | |-------------------|---------------|-------------------|---------------|--| | Description | Manufacturer | Model/Part Number | Serial Number | | | RF-MDWS-HP-S (DC) | CINCH Systems | RF-MDWS-HP-S | H11 | | # Configuration CINC0007- 2 | Software/Firmware Running during test | | | | |---------------------------------------|--------------|--|--| | Description | Version | | | | MPLabX | Not Provided | | | | EUT | | | | | |-------------------|---------------|-------------------|---------------|--| | Description | Manufacturer | Model/Part Number | Serial Number | | | RF-MDWS-HP-S (CW) | CINCH Systems | RF-MDWS-HP-S | H9 | | ### **Configuration CINC0007-3** | Software/Firmware Running during test | | | |---------------------------------------|--------------|--| | Description | Version | | | MPLabX | Not Provided | | | EUT | | | | | |-------------------|---------------|-------------------|---------------|--| | Description | Manufacturer | Model/Part Number | Serial Number | | | RF-MDWS-HP-S (OB) | CINCH Systems | RF-MDWS-HP-S | H10 | | Report No. CINC0007.1 9/23 # **MODIFICATIONS** # **Equipment Modifications** | Item | Date | Test | Modification | Note | Disposition of EUT | |------|-----------|-------------|---------------|----------------------------|-----------------------| | | | Field | Tested as | No EMI suppression | EUT remained at | | 1 | 2/21/2017 | Strength of | delivered to | devices were added or | Element following the | | | | Fundamental | Test Station. | modified during this test. | test. | | | | Spurious | Tested as | No EMI suppression | EUT remained at | | 2 | 2/21/2017 | Radiated | delivered to | devices were added or | Element following the | | | | Emissions | Test Station. | modified during this test. | test. | | | | Occupied | Tested as | No EMI suppression | EUT remained at | | 3 | 2/21/2017 | Bandwidth | delivered to | devices were added or | Element following the | | | | Danuwium | Test Station. | modified during this test. | test. | | | | | Tested as | No EMI suppression | Scheduled testing | | 4 | 2/21/2017 | Duty Cycle | delivered to | devices were added or | was completed. | | | | | Test Station. | modified during this test. | was completed. | Report No. CINC0007.1 10/23 ### FIELD STRENGTH OF FUNDAMENTAL PSA-ESCI 2017 01 26 Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit. #### **MODES OF OPERATION** Transmitting Unmodulated 319.5 MHz. ### POWER SETTINGS INVESTIGATED Battery #### **CONFIGURATIONS INVESTIGATED** CINC0007 - 2 #### FREQUENCY RANGE INVESTIGATED | Start Frequency 319 MHz Stop Fre | equency 320 MHz | |----------------------------------|-----------------| |----------------------------------|-----------------| #### **SAMPLE CALCULATIONS** Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation #### **TEST EQUIPMENT** | Description | Manufacturer | Model | ID | Last Cal. | Interval | |------------------------------|--------------------|--------------|-----|-----------|----------| | Analyzer - Spectrum Analyzer | Agilent | N9010A | AFI | 1/6/2017 | 12 mo | | Attenuator | Fairview Microwave | SA18E-10 | TYA | 9/23/2016 | 12 mo | | Antenna - Double Ridge | ETS Lindgren | 3115 | AJA | 6/23/2016 | 24 mo | | Cable | ESM Cable Corp. | Bilog Cables | MNH | 12/1/2016 | 12 mo | ### **MEASUREMENT BANDWIDTHS** | Frequency Range | Peak Data | Quasi-Peak Data | Average Data | |-----------------|-----------|-----------------|--------------| | (MHz) | (kHz) | (kHz) | (kHz) | | 0.01 - 0.15 | 1.0 | 0.2 | 0.2 | | 0.15 - 30.0 | 10.0 | 9.0 | 9.0 | | 30.0 - 1000 | 100.0 | 120.0 | 120.0 | | Above 1000 | 1000.0 | N/A | 1000.0 | #### **TEST DESCRIPTION** To derive average emission measurements, a duty cycle correction factor was utilized: Duty Cycle = On time/100 milliseconds (or the period, whichever is less) Where "On time" = N1L1 +N2L2 +.... Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc. Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.) The measured values for the EUT's pulse train are as follows: Period = 100 mSec Pulsewidth of Type 1 Pulse = 912 uSec Pulsewidth of Type 2 Pulse = 414 uSec Pulsewidth of Type 3 Pulse = 98.8 uSec Number of Type 1 Pulses = 1 Number of Type 2 Pulses = 1 Number of Type 3 Pulses = 78 Duty Cycle = $20 \log [((1)(.912) + (1)(.414) + (78)(.0988))/100] = -20.88 dB$ The duty cycle correction factor of -20.88 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz. Report No. CINC0007.1 11/23 # FIELD STRENGTH OF FUNDAMENTAL | | | | | | | | | | | EmiR5 2017.01.25 | | PSA-ESCI 2017.01.2 | 6 | |--------------------|--------------|--------------|----------------|----------------|----------------------|-------------------------|--------------------|-----------|------------------------|------------------|--------------|----------------------|-------------------------------| | Wo | ork Order: | CINC | C0007 | | Date: | | 21/17 | | _ | | | ^ | Ī | | | Project: | | one | | nperature: | | 5 °C | | ier | my | 13 M | 15 | | | | Job Site: | | V05 | | Humidity: | | % RH | 2)) | an | 0 0 | | | | | Seria | I Number: | | 19 | Barome | tric Pres.: | 1015 | mbar | | Tested by: | Trevor Bul | s, Chris Pa | itterson, Ky | <u>/l</u> e McMullan | | Conf | iguration: | RF-MDWS | 5-HP-5 | | | | | | | | | | = | | | Customer: | | stems | | | | | | | | | | _ | | Ä | Attendees: | Jibirl Aga | otomo | | | | | | | | | | _ | | | JT Power: | Battery | | | | | | | | | | | _ | | Operat | ing Mode: | Transmittir | ng Unmodul | ated 319.5 | MHz. | | | | | | | | _ | | D | eviations: | None | | | | | | | | | | | _ | | С | omments: | None | | | | | | | | | | | | | | 101 .1 | | | | | | | | I | | | | = | | Test Spec | | | | | | | Test Meth | | | | | | _ | | FCC 15.23 | 1:2017 | | | | | | ANSI C63. | 10:2013 | Run # | 3 | Test Dis | stance (m) | 3 | Antenna | Height(s) | | 1 to 4(m) | | Results | Pa | ass | -
- | | 100 T | | | | | | | | | | | | | _ | 90 - | 80 | 1 | | | | | | _ | 70 - | | | | | | • | • | | | | | | | | | 60 | | | | | | | | | | | | | | | 00 | 50 - | 40 | | | | | | | | | | | | | | | 319 | 9.0 | | | | | 319.5 | | | | | | 320.0 | | | | | | | | | MHz | | | | | | | | | | | | | | | | | | | ■ PK | ◆ AV | QP | | | | | | | | Duty Cycle | | Polarity/ | | | | | | | | Freq | Amplitude | Factor | Antenna Height | Azimuth | Correction
Factor | External
Attenuation | Transducer
Type | Detector | Distance
Adjustment | Adjusted | Spec. Limit | Compared to
Spec. | | | (MHz) | (dBuV) | (dB) | (meters) | (degrees) | (dB) | (dB) | Турс | Detector | (dB) | (dBuV/m) | (dBuV/m) | (dB) | | | , , | | | | | | | L | | | | | | Comments | | 319.505
319.505 | 74.8
74.7 | 19.9
19.9 | 1.0
1.0 | 179.0
86.0 | | 0.0
0.0 | Horz
Horz | PK
PK | 0.0
0.0 | 94.7
94.6 | 95.9
95.9 | -1.2
-1.3 | EUT Horizontal
EUT On Side | | 319.505 | 74.7
74.8 | 19.9 | 1.0 | 179.0 | -20.9 | 0.0 | Horz | AV | 0.0 | 73.8 | 95.9
75.9 | -1.3
-2.1 | EUT Horizontal | | 319.505 | 74.7 | 19.9 | 1.0 | 86.0 | -20.9 | 0.0 | Horz | AV | 0.0 | 73.7 | 75.9 | -2.2 | EUT On Side | | 319.505 | 71.0 | 19.9 | 1.6 | 80.1 | | 0.0 | Vert | PK | 0.0 | 90.9 | 95.9 | -5.0 | EUT Vert | | 319.505
319.505 | 71.0
65.5 | 19.9
19.9 | 1.6
1.4 | 80.1
346.0 | -20.9 | 0.0
0.0 | Vert
Vert | AV
PK | 0.0
0.0 | 70.0
85.4 | 75.9
95.9 | -5.9
-10.5 | EUT Vert
EUT On Side | | 319.505
319.505 | 65.5
65.5 | 19.9
19.9 | 1.4
1.4 | 346.0
346.0 | -20.9 | 0.0 | vert
Vert | AV | 0.0 | 85.4
64.5 | 95.9
75.9 | -10.5
-11.4 | EUT On Side | | 319.505 | 63.2 | 19.9 | 3.5 | 258.9 | | 0.0 | Vert | PK | 0.0 | 83.1 | 95.9 | -12.8 | EUT Horizontal | | 319.505 | 63.2 | 19.9 | 3.5 | 258.9 | -20.9 | 0.0 | Vert | AV | 0.0 | 62.2 | 75.9 | -13.7 | EUT Horizontal | | 319.505
319.505 | 61.6
61.6 | 19.9
19.9 | 1.0
1.0 | 358.0
358.0 | -20.9 | 0.0
0.0 | Horz
Horz | PK
AV | 0.0 | 81.5
60.6 | 95.9
75.9 | -14.4
-15.3 | EUT Vert
EUT Vert | Report No. CINC0007.1 12/23 Horz AV 0.0 75.9 60.6 EUT Vert -15.3 319.505 61.6 19.9 1.0 358.0 -20.9 0.0 # SPURIOUS RADIATED EMISSIONS PSA-ESCI 2017.01.26 Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit. #### **MODES OF OPERATION** Transmitting Unmodulated 319.5MHz. ### **POWER SETTINGS INVESTIGATED** Battery ### **CONFIGURATIONS INVESTIGATED** CINC0007 - 2 #### FREQUENCY RANGE INVESTIGATED | Start Frequency | 30 MHz | Stop Frequency | 4000 MHz | |-----------------|--------|----------------|----------| |-----------------|--------|----------------|----------| #### SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation #### **TEST EQUIPMENT** | Description | Manufacturer | Model | ID | Last Cal. | Interval | |------------------------------|-----------------|--------------------------------|-----|-----------|----------| | Amplifier - Pre-Amplifier | Miteq | AMF-3D-00100800-32-13P | AVT | 3/1/2016 | 12 mo | | Amplifier - Pre-Amplifier | Miteq | AM-1616-1000 | AVO | 12/1/2016 | 12 mo | | Analyzer - Spectrum Analyzer | Agilent | N9010A | AFI | 1/6/2017 | 12 mo | | Cable | ESM Cable Corp. | Double Ridge Guide Horn Cables | MNI | 12/1/2016 | 12 mo | | Cable | ESM Cable Corp. | Bilog Cables | MNH | 12/1/2016 | 12 mo | | Antenna - Double Ridge | ETS Lindgren | 3115 | AJA | 6/23/2016 | 24 mo | | Antenna - Biconilog | Teseq | CBL 6141B | AYD | 1/6/2016 | 24 mo | #### **MEASUREMENT BANDWIDTHS** | Frequency Range | Peak Data | Quasi-Peak Data | Average Data | |-----------------|-----------|-----------------|--------------| | (MHz) | (kHz) | (kHz) | (kHz) | | 0.01 - 0.15 | 1.0 | 0.2 | 0.2 | | 0.15 - 30.0 | 10.0 | 9.0 | 9.0 | | 30.0 - 1000 | 100.0 | 120.0 | 120.0 | | Above 1000 | 1000.0 | N/A | 1000.0 | Report No. CINC0007.1 13/23 #### **TEST DESCRIPTION** The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets. For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report. The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity. Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation: ``` QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector ``` To derive average emission measurements, a duty cycle correction factor was utilized: Duty Cycle = On time/100 milliseconds (or the period, whichever is less) ``` Where "On time" = N1L1 +N2L2 +.... ``` Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc. Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train. The measured values for the EUT's pulse train are as follows: ``` Period = 100 mSec Pulsewidth of Type 1 Pulse = 912 uSec Pulsewidth of Type 2 Pulse = 414 uSec Pulsewidth of Type 3 Pulse = 98.8 uSec Number of Type 1 Pulses = 1 Number of Type 2 Pulses = 1 Number of Type 3 Pulses = 78 ``` Duty Cycle = $20 \log [((1)(.912) + (1)(.414) + (78)(.0988))/100] = -20.88 dB$ The duty cycle correction factor of -20.88 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used. Report No. CINC0007.1 # **SPURIOUS RADIATED EMISSIONS** 1597.550 1597.467 639.010 1597.467 639.010 2236.533 2875.583 72.5 70.7 49.8 70.7 49.8 65.2 63.7 -5.1 -5.1 -5.1 7.0 1.0 1.0 1.0 1.0 1.0 155.1 286.0 301.9 286.0 301.9 153.0 155.1 -20.9 -20.9 -20.9 0.0 0.0 10.0 10.0 0.0 | Work Orde | r: CIN | IC0007 | | Date: | 02/2 | 21/17 | | | | | 0 | | n | | |---|--|---------------------------------|---|--|--|---|----------------------------|--|--------------------------------------|--|--|---|---|---| | Projec | t: N | lone | Ter | mperature: | 23.4 | 4 °C | | | | , | B | | VA | | | Job Sit | | 1N05 | | Humidity: | | % RH | ~ /) | 7005 | 0 | | | M | | | | | | | D | | | | | ~~ | T | - Dud | - 01 | :- D- | | | | Serial Number | r: | H9 | Barome | etric Pres.: | 1015 | mbar | | rested by: | rrevo | Buis | s, Chr | is Pa | illerson, K | <u>/l</u> e McMullar | | | T: RF-MDW | S-HP-S | | | | | | | | | | | | _ | | Configuratio | n: 2 | | | | | | | | | | | | | | | Custome | r: CINCH S | vstems | | | | | | | | | | | | _ | | | s: Jibirl Aga | | | | | | | | | | | | | _ | | EUT Powe | | | | | | | | | | | | | | _ | | EUI POWE | | | | | | | | | | | | | | _ | | Operating Mod | Transmitt | ting Unmodul | ated 319.5 | 5MHz. | | | | | | | | | | | | Operating mod | G. | | | | | | | | | | | | | | | | None | | | | | | | | | | | | | _ | | Deviation | s: Traile | | | | | | | | | | | | | | | | - L | | | | | | | | | | | | | _ | | _ | None | | | | | | | | | | | | | | | Comment | s: | est Specification | S | | | | | Test Metho | od | | | | | | | _ | | CC 15.231:2017 | • | | | | | ANSI C63. | 10.2013 | - | | | | | | | | 00 10.201.2011 | | | | | | | . 0.20.0 | - " | | | | | | | 4 . 4 | | _ | | | | | _ | | Run # 6 | l est D | istance (m) | 3 | Antenna | Height(s) | | 1 to 4(m) | | Res | ults | | Pa | ass | _ | | 80 | | | | | | | | | | | | | | | | 00 | | | | | | | | | | | | | | | | | TT) (| | | | | D 1 80 | | - | п | | | | | | | | IIIII | | | _ | | | | | ——— | | | υμ | 1 40 | | | 70 | | | | | | | | | | | | | | | | 70 | | | | | | | | | | | | | | | | | IIIII | | | | | • | | | | | | | | | | | IIIII | | | | | _ | | | | | | | | | | 60 | | | | _ | | | | | | | | | | | | 00 | | | | | | | | _ | | | | | | | | H I I | ₩₩ | ┥╶┼┼┼ | _ | | | O 1 80 | —ш | ┰┼╥╌ | П | | | u | | | | | IIIII | | | | - | | ш, | _ " - | | | | | 1 40 | | | 50 | | | | - 2 | | | | | | | | | | | | 50 | * | | | | | | | | | | | | | | | U | | | * | | | | | | | | | | | | ט ע | IJ | • | | * | | | | | | | | | | 40 | Ш | | | * | | * | <u> </u> | * | | | | | | | | 40 | Ш | | U | • | | * | * | * | | | | | | | | 40 | | | J | • | | * | * | * | | | | | | | | 40 | | | | • | | ‡ | * | * | | | | | | | | 40 | Ш | | J | • | | * | * | * | | | | | | | | | | | | • | | * | * | * | | | | | | | | | | | U | • | | * | * | * | | | | | | | | 30 | | | U | • | | * | * | * | | | | | | | | | | | | • | | * | * | * | | | | | | | | 30 | | | | • | | * | * | * | | | | | | | | 30 | | | | • | | * | * | * | | | | | | | | 30 | | | | • | | * | * | * | | | | | | | | 30 | | | | • | | * | * | * | | | | | | | | 30 | | | | • | | * | * | * | | | | | | | | 20 | | | | • | | * | * | * | | | | | | | | 20 | | | | • | | * | * | * | | | | | | | | 30
20
10 | | | | • | | * | * | * | | | | | | | | 20 | | | | • | 1000 | * | * | * | | | | | 10000 | | | 30 | | | | • | | * | * | * | | | | | | | | 30 | | | | • | 1000
MHz | * | * | * | | PK | • 1 | AV | | | | 30 | | | | • | | * | * | * | | РК | * / | AV. | 10000
• QP | | | 20 10 0 | | | | * | | | * | * | | PK | * / | AV | | | | 20 10 0 | | | | • | | Polarity/
Transducer | * | Distance | | PK | * / | AV. | | | | 20 10 0 | Factor | Antenna Height | Azimuth | Duty Cycle | MHz | Polarity/ | Detector | Distance Adjustment | Adjust | | ♦ / | | • QP | | | 30 | | Antenna Height (meters) | | Duty Cycle Correction Factor | MHz External Attenuation | Polarity/
Transducer | Detector | Adjustment | Adjust | ted | Spec. | Limit | Ompared to Spec. | | | 30
20
10
0 | Factor (dB) | | Azimuth (degrees) | Duty Cycle
Correction | MHz | Polarity/
Transducer | Detector | | | ted | | Limit | • QP Compared to | | | 30 20 10 100 Freq (MHz) Amplitude (dBuV) | (dB) | (meters) | (degrees) | Duty Cycle Correction Factor | External
Attenuation
(dB) | Polarity/
Transducer
Type | | Adjustment
(dB) | Adjust | ted
/m) | Spec.
(dBu' | Limit
V/m) | Compared to Spec. (dB) | Comments | | 30 20 100 Freq (MHz) Amplitude (dBuV) 639.010 55.3 | (dB)
7.0 | (meters) | (degrees) | Duty Cycle Correction Factor | External Attenuation (dB) | Polarity/
Transducer
Type | PK | Adjustment (dB) | Adjust
(dBuV | ted
/m) | Spec.
(dBu' | Limit
V/m) | Compared to Spec. (dB) | Comments
EUT Horizo | | 30 20 100 Amplitude (dBuV) 639.010 55.3 639.010 55.1 | 7.0
7.0 | (meters)
1.4
1.3 | (degrees)
173.1
169.0 | Duty Cycle Correction Factor (dB) | External Attenuation (dB) 10.0 10.0 | Polarity/
Transducer
Type
Horz
Horz | PK
PK | Adjustment (dB) 0.0 0.0 | Adjust
(dBuV
72. | ted
//m)
3 | Spec.
(dBu ²
75 | Limit
V/m)
i.9
i.9 | Compared to Spec. (dB) | Comments
EUT Horizo
EUT On Sig | | 30 | 7.0
7.0
7.0
7.0 | 1.4
1.3
1.4 | (degrees)
173.1
169.0
173.1 | Duty Cycle Correction Factor (dB) | External Attenuation (dB) 10.0 10.0 10.0 | Polarity/
Transducer
Type Horz Horz Horz | PK
PK
AV | Adjustment (dB) 0.0 0.0 0.0 0.0 | Adjust
(dBuV
72.
72.
51. | ted
//m)
3
1 | Spec.
(dBu'
75
75 | Limit
V/m)
i.9
i.9 | • QP Compared to Spec. (dB) -3.6 -3.8 -4.5 | Comments EUT Horizo EUT On Sig | | 30 20 100 S5.3 639.010 55.3 639.010 55.3 639.010 55.3 | 7.0
7.0 | (meters)
1.4
1.3 | (degrees)
173.1
169.0 | Duty Cycle Correction Factor (dB) | External Attenuation (dB) 10.0 10.0 | Polarity/
Transducer
Type
Horz
Horz | PK
PK | Adjustment (dB) 0.0 0.0 | Adjust
(dBuV
72. | ted
//m)
3
1 | Spec.
(dBu ²
75 | Limit
V/m)
i.9
i.9 | Compared to Spec. (dB) | Comments EUT Horizo EUT On Sid EUT Horizo EUT On Sid | | 30 20 100 S5.3 639.010 55.3 639.010 55.3 639.010 55.3 | 7.0
7.0
7.0
7.0 | 1.4
1.3
1.4 | 173.1
169.0
173.1
169.0 | Duty Cycle Correction Factor (dB) | External Attenuation (dB) 10.0 10.0 10.0 | Polarity/
Transducer
Type Horz Horz Horz | PK
PK
AV | Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 | 72.
72.
51. | ted
//m)
3
1
4
2 | Spec.
(dBu'
75
75
55 | Limit
V/m)
i.9
i.9
i.9 | • QP Compared to Spec. (dB) -3.6 -3.8 -4.5 | Comments EUT Horizo EUT On Sid EUT Horizo | | 30 | 7.0
7.0
7.0
7.0
7.0
7.0 | 1.4
1.3
1.4
1.3
1.0 | 173.1
169.0
173.1
169.0
174.1 | Duty Cycle Correction Factor (dB) -20.9 -20.9 | External Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 10.0 | Polarity/
Transducer
Type Horz
Horz
Horz
Horz
Vert | PK
PK
AV
AV
PK | 0.0
0.0
0.0
0.0
0.0
0.0 | 72.
72.
72.
51.
51. | 3
1
4
2
5 | Spec.
(dBu'
75
75
55
55 | Limit
V/m)
i.9
i.9
i.9
i.9 | Ompared to Spec. (dB) -3.6 -3.8 -4.5 -4.7 -5.4 | Comments EUT Horizo EUT On Sid EUT Horizo EUT On Sid EUT Vert | | 30 20 100 S5.3 639.010 55.3 639.010 55.1 639.010 55.1 639.010 55.1 639.010 55.1 639.010 55.1 639.010 55.1 | 7.0
7.0
7.0
7.0
7.0 | 1.4
1.3
1.4
1.3 | 173.1
169.0
173.1
169.0 | Duty Cycle Correction Factor (dB) | External Attenuation (dB) 10.0 10.0 10.0 10.0 10.0 | Polarity/
Transducer
Type Horz Horz Horz Horz | PK
PK
AV
AV | Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 | 72.
72.
51. | tted
//m)
3
1
4
2
5
6 | Spec.
(dBu'
75
75
55 | Limit V/m) i.9 i.9 i.9 i.9 i.9 i.9 | • QP Compared to Spec. (dB) -3.6 -3.8 -4.5 -4.7 | Comments EUT Horizor EUT On Side EUT Horizor EUT On Side | Report No. CINC0007.1 15/23 Vert Horz Vert Vert Vert ΑV PΚ PΚ AV AV PΚ PK 0.0 0.0 0.0 0.0 0.0 0.0 46.5 65.6 66.8 44.7 45.9 63.0 62.6 54.0 74.0 75.9 54.0 55.9 74.0 74.0 -7.5 -8.4 -9.1 -9.3 -10.0 -11.0 -11.4 **EUT** Vert EUT Vert EUT Vert **EUT** Horizontal EUT Horizontal EUT On Side EUT On Side | Freq
(MHz) | Amplitude
(dBuV) | Factor
(dB) | Antenna Height (meters) | Azimuth
(degrees) | Duty Cycle
Correction
Factor
(dB) | External
Attenuation
(dB) | Polarity/
Transducer
Type | Detector | Distance
Adjustment
(dB) | Adjusted
(dBuV/m) | Spec. Limit
(dBuV/m) | Compared to
Spec.
(dB) | Comments | |---------------|---------------------|----------------|-------------------------|----------------------|--|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|-----------------------| | 639.005 | 47.3 | 7.0 | 1.0 | 43.0 | | 10.0 | Vert | PK | 0.0 | 64.3 | 75.9 | -11.6 | EUT Horizontal | | 2236.533 | 65.2 | -2.2 | 1.0 | 153.0 | -20.9 | 0.0 | Vert | AV | 0.0 | 42.1 | 54.0 | -11.9 | EUT Vert | | 2875.583 | 63.7 | -1.1 | 1.0 | 155.1 | -20.9 | 0.0 | Vert | AV | 0.0 | 41.7 | 54.0 | -12.3 | EUT Vert | | 639.005 | 47.3 | 7.0 | 1.0 | 43.0 | -20.9 | 10.0 | Vert | AV | 0.0 | 43.4 | 55.9 | -12.5 | EUT Horizontal | | 639.005 | 46.0 | 7.0 | 1.2 | 232.0 | | 10.0 | Horz | PK | 0.0 | 63.0 | 75.9 | -12.9 | EUT Vert | | 2875.425 | 61.9 | -1.1 | 1.0 | 254.9 | | 0.0 | Horz | PK | 0.0 | 60.8 | 74.0 | -13.2 | EUT Horizontal | | 2236.492 | 62.9 | -2.2 | 1.0 | 277.9 | | 0.0 | Horz | PK | 0.0 | 60.7 | 74.0 | -13.3 | EUT Horizontal | | 639.005 | 46.0 | 7.0 | 1.2 | 232.0 | -20.9 | 10.0 | Horz | AV | 0.0 | 42.1 | 55.9 | -13.8 | EUT Vert | | 2875.425 | 61.9 | -1.1 | 1.0 | 254.9 | -20.9 | 0.0 | Horz | AV | 0.0 | 39.9 | 54.0 | -14.1 | EUT Horizontal | | 2236.492 | 62.9 | -2.2 | 1.0 | 277.9 | -20.9 | 0.0 | Horz | AV | 0.0 | 39.8 | 54.0 | -14.2 | EUT Horizontal | Report No. CINC0007.1 # **OCCUPIED BANDWIDTH** XMit 2017.01.26 Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. #### **TEST EQUIPMENT** | Description | Manufacturer | Model | ID | Last Cal. | Cal. Due | |------------------------------|-----------------|--------------|-----|-----------|-----------| | Cable | ESM Cable Corp. | Bilog Cables | MNH | 12/1/2016 | 12/1/2017 | | Antenna - Biconilog | Teseq | CBL 6141B | AYD | 1/6/2016 | 1/6/2018 | | Analyzer - Spectrum Analyzer | Agilent | N9010A | AFI | 1/6/2017 | 1/6/2018 | #### **TEST DESCRIPTION** The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate. The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Report No. CINC0007.1 # **OCCUPIED BANDWIDTH** | | | | | | | | Alwiit 2017.01.20 | |------------------------|---------------------------|---------------------|-------------------|------------------|--------------|----------|-------------------| | EUT: | RF-MDWS-HP-S | | | | Work Order: | CINC0007 | | | Serial Number: | H10 | | | | Date: | 02/21/17 | | | Customer: | CINCH Systems | | | | Temperature: | 23.3 °C | | | Attendees: | Jibirl Aga | | | 32.2% RH | | | | | Project: | | | Barometric Pres.: | | , | | | | Tested by: | Trevor Buls, Chris Patter | rson, Kyle McMullan | Power: | Battery | Job Site: | MN05 | | | TEST SPECIFICATION | IONS | | | Test Method | | | | | FCC 15.231:2017 | | | | ANSI C63.10:2013 | | | | | | | | | | | | | | COMMENTS | | | | | | | | | Transmitting 319.5M | | | | | | | | | DEVIATIONS FROM | I TEST STANDARD | | | | | | | | None | | | | | | | , | | Configuration # | 3 | Signature | Trevor | Buls | | | | | | · | | | | Value | Limit | Result | | 319.5MHZ | | <u> </u> | | <u> </u> | 25.92 | 798.7 | Pass | Report No. CINC0007.1 18/23 ### **OCCUPIED BANDWIDTH** XMit 2017.01.2 Report No. CINC0007.1 19/23 XMit 2017.01.26 Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. #### **TEST EQUIPMENT** | | v. = 40= | | | | | | | | | | |------------------------------|-----------------|--------------|-----|------------|------------|--|--|--|--|--| | Description | Manufacturer | Model | ID | Last Cal. | Cal. Due | | | | | | | Analyzer - Spectrum Analyzer | Keysight | N9010A (EXA) | AFQ | 12/22/2016 | 12/22/2017 | | | | | | | Probe - Near Field Set | ETS Lindgren | 7405 | IPO | NCR | NCR | | | | | | | Antenna - Biconilog | Teseq | CBL 6141B | AYD | 1/6/2016 | 1/6/2018 | | | | | | | Cable | ESM Cable Corp. | Bilog Cables | MNH | 12/1/2016 | 12/1/2017 | | | | | | | Analyzer - Spectrum Analyzer | Agilent | N9010A | AFI | 1/6/2017 | 1/6/2018 | | | | | | #### **TEST DESCRIPTION** The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class. Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer. To derive average emission measurements, a duty cycle correction factor was utilized: Duty Cycle = On time/100 milliseconds (or the period, whichever is less) Where "On time" = N1L1 +N2L2 +.... Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc. Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.) The measured values for the EUT's pulse train are as follows: Period = 100 mSec Pulsewidth of Type 1 Pulse = 912 uSec Pulsewidth of Type 2 Pulse = 414 uSec Pulsewidth of Type 3 Pulse = 98.8 uSec Number of Type 1 Pulses = 1 Number of Type 2 Pulses = 1 Number of Type 3 Pulses = 78 Duty Cycle = $20 \log [((1)(.912) + (1)(.414) + (78)(.0988))/100] = -20.88 dB$ The duty cycle correction factor of -20.88 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz. Report No. CINC0007.1 | | | | | | | | XMit 2017.01.26 | | | | | | | |---------------------------------|--|-----------|------------------|---------------------------------------|---|----------|-----------------|--|--|--|--|--|--| | EUT: | EUT: RF-MDWS-HP-S | | | | | CINC0007 | | | | | | | | | Serial Number: | erial Number: H11 | | | | | 02/21/17 | | | | | | | | | Customer: | Customer: CINCH Systems | | | | | 23.3 °C | | | | | | | | | Attendees: | Attendees: Jibirl Aga | | | | | 31.9% RH | | | | | | | | | Project: | None | | Barometric Pres. | 1015 mbar | | | | | | | | | | | Tested by: | d by: Trevor Buls, Chris Patterson, Kyle McMullan Power: Battery | | | | Job Site | MN05 | | | | | | | | | TEST SPECIFICATIONS Test Method | | | | | | | | | | | | | | | FCC 15.231:2017 | COMMENTS | | | | | | | | | | | | | | | Transmitting 319.5MHz | DEVIATIONS FROM TEST STANDARD | | | | | | | | | | | | | | | None | | | | | | | | | | | | | | | | | | | 2 0 | | | | | | | | | | | Configuration # | 1 | | Trevor | Bullo | | | | | | | | | | | | | Signature | estero c | · · · · · · · · · · · · · · · · · · · | Value | Limit | Result | | | | | | | | 10 seconds | | | | | See Test Description | N/A | N/A | | | | | | | | 1 second | | | | | See Test Description | N/A | N/A | | | | | | | | 30 milliseconds | | | | | See Test Descritption | N/A | N/A | | | | | | | | | | | | | • | | | | | | | | | Report No. CINC0007.1 21/23 | 10 seconds | Value | Limit | Result | | See Test Description | N/A | N/A | Report No. CINC0007.1 22/23 XMit 2017.01.2 Report No. CINC0007.1 23/23