

RF Test Report

For

Applicant Name:

TECNO MOBILE LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Laptop Computer **TECNO T15AA** Series Model Number: Refer to section 2

Issued By

Company Name: Address:	BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Report Number: Test Standards:	BTF230918R00503 47 CFR Part 15.247
Test Conclusion: FCC ID: Test Date: Date of Issue:	Pass 2ADYY-T15AA 2023-08-25 to 2023-09-18 2023-09-19
Prepared By:	Chris Liu / Project Engineer
Date:	2023-09-19
Approved By:	Fron. C] TA *

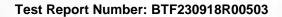
Date:

Ryan.CJ / EMC Manager 2023-09-19

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 96



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-09-19	Original	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 2 of 96

Table of Contents

1	INTR	ODUCTION	.5
	1.1	Identification of Testing Laboratory	.5
	1.2	Identification of the Responsible Testing Location	.5
	1.3	Announcement	.5
2	PRO	DUCT INFORMATION	.6
	2.1	Application Information	6
	2.2	Manufacturer Information	
	2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	.6
3	SUM	MARY OF TEST RESULTS	.7
	3.1	Test Standards	.7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	
4	TEST	CONFIGURATION	.8
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5	EVAL	UATION RESULTS (EVALUATION)	3
•	5.1	Antenna requirement	
	5.1	5.1.1 Conclusion:	
~		O SPECTRUM MATTER TEST RESULTS (RF)	
6			
	6.1	Conducted Emission at AC power line1	
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram: 1 6.1.3 Test Data: 1	
	6.2	Occupied Bandwidth	
	0.2		
		6.2.1 E.U.T. Operation:	
		6.2.3 Test Data:	
	6.3	Maximum Conducted Output Power	
	0.0	6.3.1 E.U.T. Operation:	
		6.3.2 Test Setup Diagram:	
		6.3.3 Test Data:	
	6.4	Power Spectral Density	20
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	20
	6.5	Emissions in non-restricted frequency bands2	21
		6.5.1 E.U.T. Operation:	21
		6.5.2 Test Setup Diagram:	
		6.5.3 Test Data:	
	6.6	Band edge emissions (Radiated) 2	
		6.6.1 E.U.T. Operation:	
		6.6.2 Test Data:	
	6.7	Emissions in restricted frequency bands (below 1GHz) 2	
		6.7.1 E.U.T. Operation:	25

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 96BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8		Test Data: sions in restricted frequency bands (above 1GHz)	
		E.U.T. Operation:	
		Test Data:	
APPENDIX	,		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 4 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 4 of 96

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	GUANGXI SHANCHAUN TECHNOLOGY CO LTD	
Address:	2nd floor of building1 in zone 3、building2 in zone 3, 1st floor of building 2 in zone 4, Guangxi 3nod Smart Industrial Park, No. 3 Gaoke Road, Haicheng District, Beihai City, Guangxi Zhuang Autonomous Region	

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop Computer
Test Model Number:	T15AA
Series Model Number:	N/A
Software Version:	Win 11 home
Hardware Version:	N156EAL01_MB_V11

2.5 Technical Information

	Li-ion Battery: 156	
Power Supply:	Rated Voltage: 11.55V	
	Rated Capacity: 6060mAh/70Wh	
	Typical Capacity: 6160mAh/71.14Wh	
	Limited Charge Voltage: 13.2V	
	Adapter1:TCW-A61S-65W	
	Input: 100-240V~50/60Hz 1.5A Max	
	Output: PD: 5V3A 9V3A 12V3A 15V3A 20V3.25A	
Power Adaptor:	PPS:3.3-11V5A Max	
	Adapter2: DS65-2	
	Input: 100-240V~50/60Hz 1.5A Max	
	Output: 5.0V-3.0A 9.0V-3.0A 12.0V-3.0A 15.0V-3.0A 20.0V-3.25A 65.0W	
Operation Frequency:	802.11b/g/n/ax(HT20): 2412MHz to 2462MHz;	
Operation requency.	802.11n/ax(HT40): 2422MHz to 2452MHz	
Number of Channels; 802.11b/g/n/ax(HT20): 11 Channels;		
Number of Channels.	802.11n/ax(HT40): 7 Channels	
	802.11b: DSSS(CCK, DQPSK, DBPSK);	
Modulation Type:	802.11g/n/ax:	
	OFDM/OFDMA(BPSK,QPSK,16QAM,64QAM,256QAM,1024QAM;	
Antenna Type:	Integral Antenna	
MIAN Antenna Gain [#] :	2.37dBi	
AUX Antenna Gain [#] :	3.49dBi	

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 6 of 96

Summary of Test Results 3

Test Standards 3.1

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Measurement	Value
Occupied Channel Bandwidth	69 KHz
RF output power, conducted	0.87 dB
Power Spectral Density, conducted	0.69 dB
Unwanted Emissions, conducted	0.94 dB
All emissions, radiated(<1GHz)	4.12 dB
All emissions, radiated(>1GHz)	4.16 dB
Temperature	0.82 °C
Humidity	4.1 %

3.3 Summary of Test Result

-			
Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Occupied Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum Conducted Output Power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Power Spectral Density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 96

RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Emissions in non-restricted frequency bands							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Band edge emissions (Radiated)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-26	2024-03-25		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 96

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-26	2024-03-25
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Emissions in restricted frequency bands (below 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-26	2024-03-25	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-26	2024-03-25	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27	

Emissions in restricted frequency bands (above 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-26	2024-03-25		
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 96

POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-26	2024-03-25
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of

duty cycle is 96.45%) The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

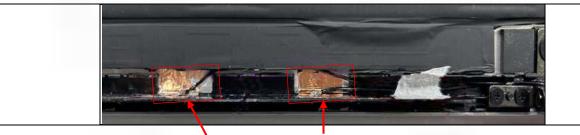
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

	Mode
	802.11b
	802.11g
	802.11n/ax(H20)
	802.11n/ax(H40)
inal Test Mode:	
Operation mode:	Keep the EUT in continuous transmitting with modulation

"worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20).Duty cycle setting during the transmission is 96.45% with maximum power setting for all modulations.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 12 of 96


5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

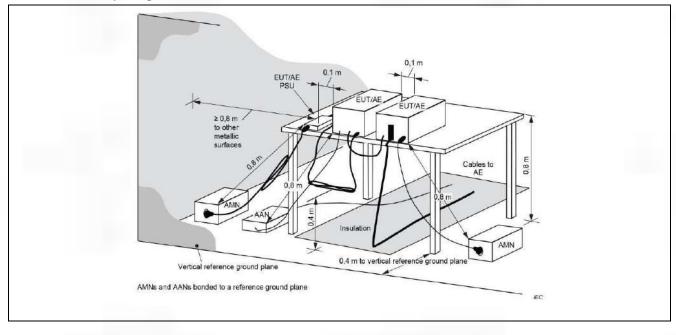
5.1.1 Conclusion:

AUX ANT

MAIN ANT

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 13 of 96 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Radio Spectrum Matter Test Results (RF) 6

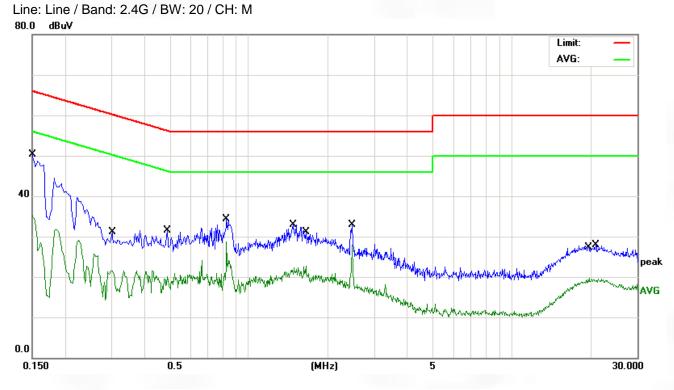

Conducted Emission at AC power line 6.1

Test Requirement:	Except as shown in paragraphs (b that is designed to be connected to frequency voltage that is conducte or frequencies, within the band 15 the following table, as measured u stabilization network (LISN).	b the public utility (AC) p d back onto the AC pow 0 kHz to 30 MHz, shall n	ower line, the radio er line on any frequency ot exceed the limits in
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices		
Frequency of emission (MHz) Conducted limit (dBµV)		V)	
Test Limit:		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of the	ne frequency.	

6.1.1 E.U.T. Operation:

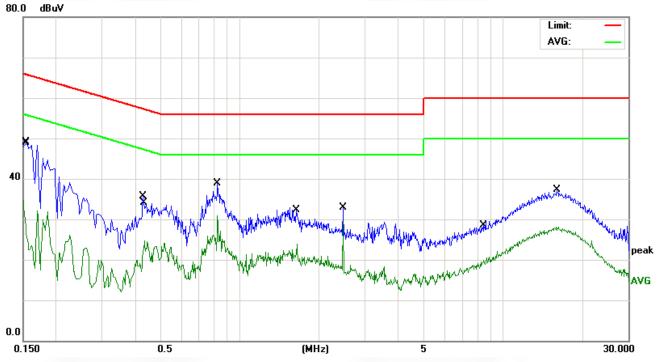
Operating Environment:		
Temperature:	24.8 °C	
Humidity:	52.5 %	
Atmospheric Pressure:	1010 mbar	

6.1.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


6.1.3 Test Data:

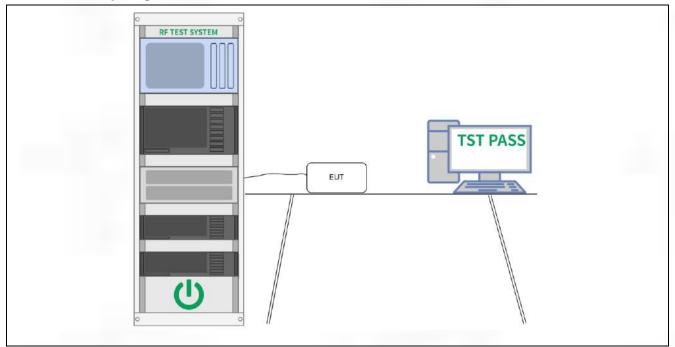
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1500	39.77	10.45	50.22	65.99	-15.77	QP
2		0.1500	24.91	10.45	35.36	55.99	-20.63	AVG
3		0.3020	11.13	10.47	21.60	50.19	-28.59	AVG
4		0.4900	21.03	10.52	31.55	56.17	-24.62	QP
5		0.8220	23.83	10.54	34.37	56.00	-21.63	QP
6		0.8220	18.18	10.54	28.72	46.00	-17.28	AVG
7		1.4780	22.35	10.63	32.98	56.00	-23.02	QP
8		1.6500	12.07	10.65	22.72	46.00	-23.28	AVG
9		2.4700	22.18	10.71	32.89	56.00	-23.11	QP
10		2.4700	17.25	10.71	27.96	46.00	-18.04	AVG
11		19.7220	8.73	11.06	19.79	50.00	-30.21	AVG
12		20.8860	16.89	11.06	27.95	60.00	-32.05	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 15 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Line: Neutral / Band: 2.4G / BW: 20 / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	24.32	10.45	34.77	55.99	-21.22	AVG
2		0.1539	38.61	10.45	49.06	65.78	-16.72	QP
3		0.4300	25.11	10.50	35.61	57.25	-21.64	QP
4		0.4340	14.16	10.50	24.66	47.18	-22.52	AVG
5		0.8220	28.45	10.54	38.99	56.00	-17.01	QP
6	*	0.8220	20.34	10.54	30.88	46.00	-15.12	AVG
7		1.6460	13.31	10.65	23.96	46.00	-22.04	AVG
8		2.4700	22.28	10.71	32.99	56.00	-23.01	QP
9		2.4700	18.82	10.71	29.53	46.00	-16.47	AVG
10		8.4580	17.73	10.80	28.53	60.00	-31.47	QP
11		15.9740	16.86	11.17	28.03	50.00	-21.97	AVG
12		16.0740	26.04	11.17	37.21	60.00	-22.79	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 16 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


6.2 Occupied Bandwidth

Test Requirement:	Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	DTS bandwidth
Test Limit:	Section (a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	23.3 °C
Humidity:	52.5 %
Atmospheric Pressure:	1010 mbar

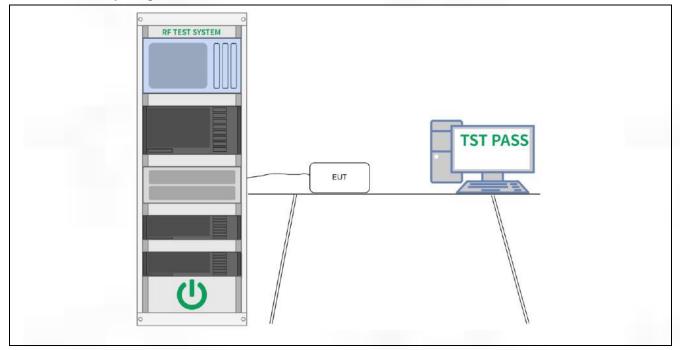
6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

Maximum Conducted Output Power 6.3

Test Requirement:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals
	during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	Maximum peak conducted output power
Test Limit:	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power
631 EUT Operation:	


6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	23.6 °C
Humidity:	52.9 %
Atmospheric Pressure:	1010 mbar

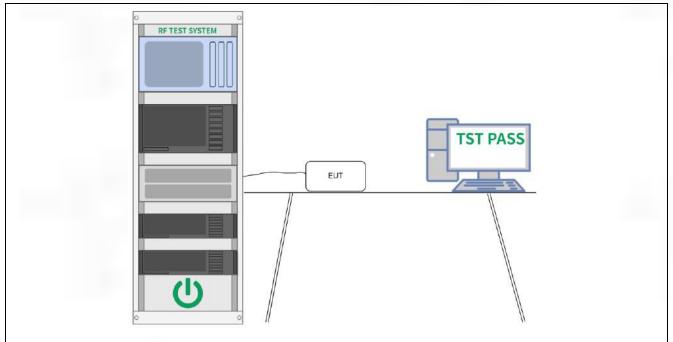
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 18 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Power Spectral Density 6.4

Test Requirement:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	Maximum power spectral density level in the fundamental emission
Test Limit:	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

6.4.1 E.U.T. Operation:

Operating Environment:		
Temperature:	23.6 °C	
Humidity:	52.9 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

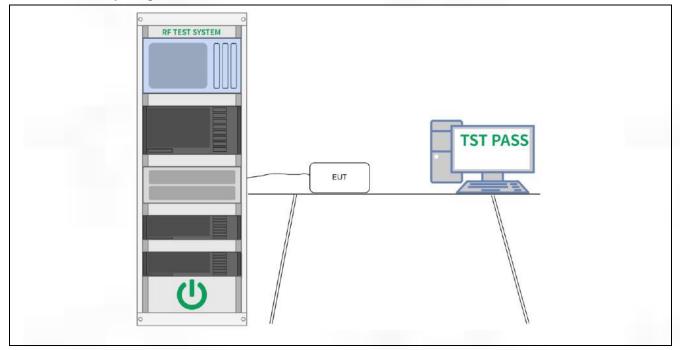
Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 20 of 96

6.5 Emissions in non-restricted frequency bands

Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Emissions in nonrestricted frequency bands
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3


6.5.1 E.U.T. Operation:

Operating Environment:	
Temperature:	23.6 °C
Humidity:	52.9 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 22 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Band edge emissions (Radiated) 6.6

Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Method:	Radiated emissions test	Radiated emissions tests					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
Test Limit:	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g.,					
	§§ 15.231 and 15.241.						
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4					
6.6.1 E.U.T. Operation	1 .						

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.8 °C
Humidity:	51.2 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 23 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.2 Test Data:

Test result for 802.11b Mode (the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Cha	nnel			
2390	65.01	-8.73	56.28	74	-17.72	Н	PK
2390	51.57	-8.73	42.84	54	-11.16	Н	AV
2390	65.55	-8.73	56.82	74	-17.18	V	PK
2390	50.98	-8.73	42.25	54	-11.75	V	AV
			High Cha	innel			
2483.5	68.86	-8.17	60.69	74	-13.31	Н	PK
2483.5	48.56	-8.17	40.39	54	-13.61	Н	AV
2483.5	66.76	-8.17	58.59	74	-15.41	V	PK
2483.5	45.30	-8.17	37.13	54	-16.87	V	AV

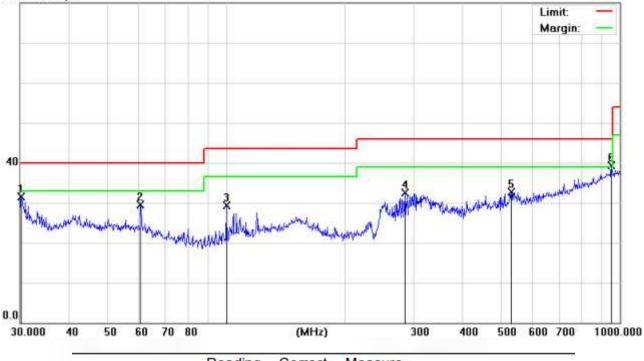
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 24 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 24 of 96

Emissions in restricted frequency bands (below 1GHz) 6.7

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Method:	Radiated emissions tests	5			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
Test Limit:	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.				
Procedure:	ANSI C63.10-2013 secti	on 6.6.4			

6.7.1 E.U.T. Operation:


Operating Environment:	
Temperature:	25.8 °C
Humidity:	51.2 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.2 Test Data:


Note: All the mode have been tested, and only the worst case of 802.11n mode are in the report TM4 / Polarization: Horizontal / Band: 2.4G / BW: 40 / CH: L 80.0 dBuV/m

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	30.2111	29.23	2.19	31.42	40.00	- <mark>8.5</mark> 8	QP
	60.7044	27.74	1.79	29.53	40.00	-10.47	QP
2	100.2286	29.85	-0.50	29.35	43.50	-14.15	QP
	284.9767	30.62	1.79	32.41	46.00	-13.59	QP
	530.1014	25.87	6.80	32.67	46.00	-13.33	QP
*	952.0937	24.36	15.03	39.39	46.00	-6.61	QP
		MHz 30.2111 60.7044 100.2286 284.9767 530.1014	Mk. Freq. Level MHz dBuV 30.2111 29.23 60.7044 27.74 100.2286 29.85 284.9767 30.62 530.1014 25.87	Mk. Freq. Level Factor MHz dBuV dB 30.2111 29.23 2.19 60.7044 27.74 1.79 100.2286 29.85 -0.50 284.9767 30.62 1.79 530.1014 25.87 6.80	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 30.2111 29.23 2.19 31.42 60.7044 27.74 1.79 29.53 100.2286 29.85 -0.50 29.35 284.9767 30.62 1.79 32.41 530.1014 25.87 6.80 32.67	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 30.2111 29.23 2.19 31.42 40.00 60.7044 27.74 1.79 29.53 40.00 100.2286 29.85 -0.50 29.35 43.50 284.9767 30.62 1.79 32.41 46.00 530.1014 25.87 6.80 32.67 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 30.2111 29.23 2.19 31.42 40.00 -8.58 60.7044 27.74 1.79 29.53 40.00 -10.47 100.2286 29.85 -0.50 29.35 43.50 -14.15 284.9767 30.62 1.79 32.41 46.00 -13.59 530.1014 25.87 6.80 32.67 46.00 -13.33

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

TM4 / Polarization: Vertical / Band: 2.4G / BW: 40 / CH: L 80.0 dBuV/m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		30.3173	49.39	-16.60	32.79	40.00	-7.21	QP
2		80.3619	46.08	-16.67	29.41	40.00	-10.59	QP
3	8	119.8556	45.94	-16.83	29.11	43.50	-14.39	QP
4		332.5187	48.10	-17.11	30.99	46.00	-15.01	QP
5	1	545.1826	53.18	-17.01	36.17	46.00	-9.83	QP
6	*	952.0937	53.85	-14.37	39.48	46.00	- <mark>6</mark> .52	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Method:	Radiated emissions tests	3			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
Test Limit:	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.				
Procedure:	ANSI C63.10-2013 secti	on 6.6.4			

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.8 °C
Humidity:	51.2 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 28 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8.2 Test Data:

20MHz(802.11b)-The worst

Fred	Low channel: 2412MHz							
Freq. (MHz)		Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4824	V	62.88	42.97	74	54	-11.12	-11.03	
7236	V	71.24	50.98	74	54	-2.76	-3.02	
4824	Н	64.51	46.17	74	54	-9.49	-7.83	
7236	Н	69.99	49.95	74	54	-4.01	-4.05	

Free	Middle channel: 2437MHz							
Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4874	V	64.31	47.57	74	54	-9.69	-6.43	
7311	V	64.76	45.19	74	54	-9.24	-8.81	
4874	Н	70.70	44.60	74	54	-3.30	-9.40	
7311	Н	69.85	49.79	74	54	-4.15	-4.21	

Freq. (MHz)	High channel: 2462MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4924	V	71.46	51.69	74	54	-2.54	-2.31	
7386	V	66.84	47.53	74	54	-7.16	-6.47	
4924	Н	63.60	46.52	74	54	-10.40	-7.48	
7386	Н	62.04	43.49	74	54	-11.96	-10.51	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 29 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

40MHz(802.11ax)-The worst

F ree n	Low channel: 2422MHz							
Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4844	V	62.16	47.54	74	54	-11.84	-6.46	
7266	V	71.47	48.39	74	54	-2.53	-5.61	
4844	Н	63.06	43.28	74	54	-10.94	-10.72	
7266	Н	71.56	48.71	74	54	-2.44	-5.29	

Freq. (MHz)	Middle channel: 2437MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4874	V	68.24	44.09	74	54	-5.76	-9.91	
7311	V	69.85	46.91	74	54	-4.15	-7.09	
4874	Н	63.41	46.21	74	54	-10.59	-7.79	
7311	Н	66.51	46.06	74	54	-7.49	-7.94	

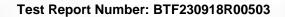
Freq. (MHz)	High channel: 2452MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4904	V	62.59	48.28	74	54	-11.41	-5.72	
7356	V	62.58	51.38	74	54	-11.42	-2.62	
4904	Н	64.35	51.35	74	54	-9.65	-2.65	
7356	Н	64.44	48.42	74	54	-9.56	-5.58	

Note:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. 1.

Emission Level= Reading Level+ Probe Factor +Cable Loss. 2.

Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 31 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 31 of 96

1. Bandwidth

1.1 BW

1.1.1 Test Result

Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
b	2412	10.085	0.5	Pass
b	2437	10.083	0.5	Pass
b	2462	10.072	0.5	Pass
g	2412	15.132	0.5	Pass
g	2437	15.086	0.5	Pass
g	2462	15.115	0.5	Pass
n20	2412	15.121	0.5	Pass
n20	2437	15.107	0.5	Pass
n20	2462	15.098	0.5	Pass
n40	2422	35.09	0.5	Pass
n40	2437	35.064	0.5	Pass
n40	2452	35.041	0.5	Pass
ax20	2412	15.088	0.5	Pass
ax20	2437	15.117	0.5	Pass
ax20	2462	15.122	0.5	Pass
ax40	2422	35.092	0.5	Pass
ax40	2437	35.074	0.5	Pass
ax40	2452	35.063	0.5	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 32 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

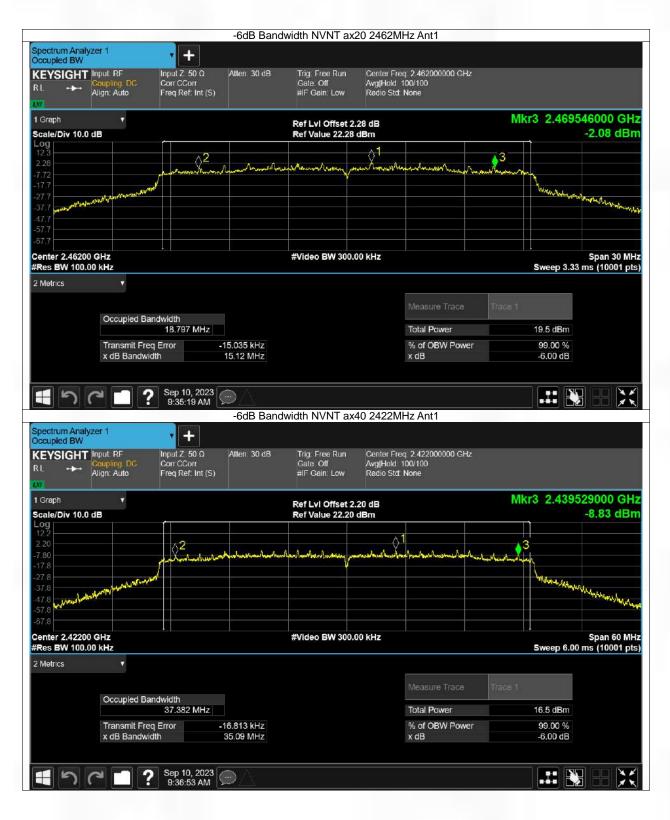
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

pectrum Analyze		1772	-6dB Ban	dwidth NVNT n2	20 2462MH	Hz Ant1		
iccupied BW	1 1	• +						
	put: RF bupling: DC ign: Auto	Input Z 50 Ω Corr CCorr Freq Ref: Int (S)	Atten 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold Radio Std:			
Graph	~			Ref LvI Offset 2	.28 dB		Mkr3 2.4	9537000 GI
cale/Div 10.0 dE	3			Ref Value 22.28				-1.63 dB
12.3 2.28 7.72		pour home	Auronan	marking a	mann	un human	3 milinnez	
17.7 27.7 37.7 xmm/w/w/w/	North March Marker	-/~~					human	ward white white
17.7 57.7 57.7								
enter 2.46200 G Res BW 100.00		1		#Video BW 300.	00 kHz		Sweep :	Span 30 M 3.33 ms (10001 p
Metrics	•							
	Occupied Ba	indwidth				Measure Trace	Trace 1	
		17.561 MHz				Total Power	19.7 dBr	
	Transmit Fre x dB Bandwi		-11.871 kHz 15.10 MHz			% of OBW Power x dB	99.00 9 -6.00 d	
150		Sep 10, 2023 9:26:54 AM	\odot					X
			-6dB Ban	idwidth NVNT n₄	0 2422M	Hz Ant1		
pectrum Analyze occupied BW	r 1	• +						
	put: RF oupling: DG ign: Auto	Input Z 50 Ω Corr CCorr Freq Ref: Int (S)	Atten 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold Radio Std:			
// Graph	Ŧ						Mkr3 24	39544000 GI
cale/Div 10.0 dl				Ref LvI Offset 2 Ref Value 22.20			111110 2.4	-9.27 dB
.og 12.2			-					
2.20 7.80 17.8		2 Menhohmt	New prove And	alankanhanna s	operotrovlovelov	almannan an a		
7.8 7.8 7.8	war would war w	New AV					and a first production of the	monorman
57.8 57.8								
enter 2.42200 G Res BW 100.00				#Video BW 300.	00 kHz		Sweep	Span 60 N 6.00 ms (10001 p
Metrics	-							
	Occupied Ba	Indwidth				Measure Trace	Trace 1	
	occupied Da	35.831 MHz				Total Power	16.8 dBi	n
	Transmit Fre x dB Bandwi		-830 Hz 35.09 MHz			% of OBW Power x dB	99.00 99.00 99.00 99.00 9	

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

bectrum Analyzer	1		-oub ban	dwidth NVNT n	40 2437 101	12 Ant I			
ccupied BW	ut RF	Input Ζ' 50 Ω	Atten: 30 dB	Trig: Free Run	Contor Fro	1 2 437000000 GHz			
Col	upling DC in: Auto	Freq Ref: Int (S)	Allen Suide	Gate: Off #IF Gain: Low	Avg Hold 1 Radio Std	00/100			
Graph	*			Ref LvI Offset 2	2.22 dB		Mkr	3 2.45452	
cale/Div 10.0 dB				Ref Value 22.22	2 dBm				-7.89 dB
2.2		{ ²			0				
.78		particulture los	palameterservices have been	Montentining	provide and have been	Marchan Marchan	The second s		
7.8		A		¥			h.	month many	
7.8 7.8	manufunnya							- warden work	WWALK .
7.8 M/W/W									A MAN WAY
7.8				-					
enter 2.43700 GH	lz			#Video BW 300	.00 kHz				Span 60 N
Res BW 100.00 k	Hz							Sweep 6.00 n	ns (10001 p
Metrics	▼								
	One unless Deep	ale dates							
	Occupied Ban	35.875 MHz				Total Power		20.5 dBm	
	Transmit Freq		-4.226 kHz			% of OBW Power		99.00 %	
2	x dB Bandwid	th	35.06 MHz			x dB		-6.00 dB	
50	2 ?	Sep 10, 2023 9:29:45 AM	$\bigcirc \triangle$						
ectrum Analyzer		Sep 10, 2023 9:29:45 AM	~	dwidth NVNT n	40 2452MF	łz Ant1		.:: 💦	
ectrum Analyzer ccupied BW EYSIGHT Inpu L Alig		9:29:45 AM	~	dwidth NVNT n Trig: Free Run Gate: Off #IF Gain: Low		1 2 452000000 GHz 00/100			
ectrum Analyzer xxupied BW EYSIGHT L Alig Graph	1 ut RF upling DC in: Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2	Center Free AvgjHold 1 Radio Std 2.27 dB	1 2 452000000 GHz 00/100	Mkr	3 2.46948	
Coupled BW EYSIGHT Inpu L ++ Alig Graph cale/Div 10.0 dB	1 ut RF upling DC in: Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low	Center Free AvgjHold 1 Radio Std 2.27 dB	1 2 452000000 GHz 00/100	Mkr	3 2.46948	
ectrum Analyzer coupled BW EYSIGHT L Alig Graph cale/Div 10.0 dB 9 2	1 ut RF upling DC in: Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None		3 2.46948	
Coupled BW EYSIGHT Input Coupled BW EYSIGHT Input Coupled BW Coupled BW Co	1 ut RF upling DC in: Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std 2.27 dB 7 dBm	1 2 452000000 GHz 00/100	3	3 2.46948	-5.28 dE
Coupled BW EYSIGHT Inp Coupled BW EYSIGHT Cou Alig Graph cale/Div 10.0 dB 09 2.3 2.7 7 7 7 7 7	1 ut RF upling DC m. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	3	3 2.46948	-5.28 dB
ectrum Analyzer ccupied BW EYSIGHT Inp Cou Alig Sraph cale/Div 10.0 dB 99 2.3 2.7 7 7 7 7 7 7	1 ut RF upling DC m. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	3	3 2.46948	-5.28 dE
Coupled BW EYSIGHT L → Coupled BW EYSIGHT Coupled BW Coupled	1 ut RF upling DC m. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	3	3 2.46948	-5.28 dB
Coupled BW EYSIGHT Inp Coupled BW EYSIGHT Cou Alig Graph cale/Div 10.0 dB 09 2.3 2.7 7 7 7 7 7	1 ut RF upling DC m. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	3	3 2.46948	-5.28 dB
ectrum Analyzer cupied BW EYSIGHT L Con Alig Sraph cale/Div 10.0 dB 22 27 73 77 77 77 77 77 77 77 77 7	1 ut RF upling DC m. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref Lvl Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	Automber 1	3 2.46948	-5.28 dE
Becklum Analyzer coupled BW EYSIGHT Coupled BW EYSIGHT Graph Graph Sale/Div 10.0 dB 22 7 <td>1 ut RF upling DC m. Auto</td> <td>9:29:45 AM</td> <td>-6dB Band</td> <td>Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27</td> <td>Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm</td> <td>1 2.452000000 GHz 00/100 None</td> <td>Automber 1</td> <td>3 2.46948</td> <td>-5.28 dE</td>	1 ut RF upling DC m. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	Automber 1	3 2.46948	-5.28 dE
Becklum Analyzer coupled BW EYSIGHT Coupled BW EYSIGHT Graph Graph Sale/Div 10.0 dB 22 7 <td>1 ut. RF upling. DC n. Auto</td> <td>9:29:45 AM</td> <td>-6dB Band</td> <td>Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27</td> <td>Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm</td> <td>1 2.452000000 GHz 00/100 None</td> <td>Automber 1</td> <td>3 2.46948</td> <td>-5.28 dE</td>	1 ut. RF upling. DC n. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	Automber 1	3 2.46948	-5.28 dE
Graph Corped BW EYSIGHT Imp Corped BW EYSIGHT Imp Cor Cor Cor Cor Cor Cor Cor Cor	1 ut. RF upling. DC n. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	3 Ambantanta Trace 1	3 2.46948	-5.28 dE
Coraph Coraph	1 ut: RF upling: DC n: Auto	9:29:45 AM Input Z 50 Ω Corr CCorr Freq Ref: Int (S)	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm	1 2 452000000 GHz O0/100 None	3 Ambantanta Trace 1	3 2.46948	-5.28 dE
Coupled BW EYSIGHT Inp Coupled BW EYSIGHT Inp Cou Alig 2.3 2.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	1 ut: RF upling DC n: Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm	1 2.452000000 GHz 00/100 None	3 Ambantanta Trace 1	3 2.46948	-5.28 dE
Coupled BW EYSIGHT Inp Coupled BW EYSIGHT Inp Cou Alig Graph cale/Div 10.0 dB 2.3 2.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	1 ut RF upling DC n. Auto	9:29:45 AM	-6dB Band	Trig: Free Run Gate: Off #IF Gain: Low Ref LvI Offset 2 Ref Value 22.27	Center Free Avg Hold 1 Radio Std: 2.27 dB 7 dBm	1 2 452000000 GHz O0/100 None Very State of the second	3 Ambantanta Trace 1	3 2.46948	-5.28 dE


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

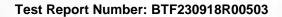
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Maximum Conducted Output Power 2.

2.1 Power

2. 1.1 Test Result


MAIN ANT1

Mode	Frequency (MHz)	Total Power (dBm)	Limit (dBm)	Verdict
b	2412	15.83	30	Pass
b	2437	15.9	30	Pass
b	2462	15.95	30	Pass
g	2412	18.17	30	Pass
g	2437	18.42	30	Pass
g	2462	18.22	30	Pass
n20	2412	18.07	30	Pass
n20	2437	18.28	30	Pass
n20	2462	18.02	30	Pass
n40	2422	15.22	30	Pass
n40	2437	18.65	30	Pass
n40	2452	17.19	30	Pass
ax20	2412	18.54	30	Pass
ax20	2437	18.8	30	Pass
ax20	2462	18.53	30	Pass
ax40	2422	15.7	30	Pass
ax40	2437	19.09	30	Pass
ax40	2452	17.54	30	Pass

AUX ANT2

Mode	Frequency (MHz)	Total Power (dBm)	Limit (dBm)	Verdict
b	2412	16.4	30	Pass
b	2437	16.14	30	Pass
b	2462	16.1	30	Pass
g	2412	18.61	30	Pass
g	2437	18.73	30	Pass
g	2462	17.85	30	Pass
n20	2412	18.55	30	Pass
n20	2437	18.5	30	Pass
n20	2462	17.76	30	Pass
n40	2422	15.71	30	Pass
n40	2437	18.93	30	Pass
n40	2452	18.47	30	Pass
ax20	2412	19.05	30	Pass
ax20	2437	19.03	30	Pass
ax20	2462	18.22	30	Pass
ax40	2422	15.64	30	Pass
ax40	2437	18.97	30	Pass
ax40	2452	18.44	30	Pass

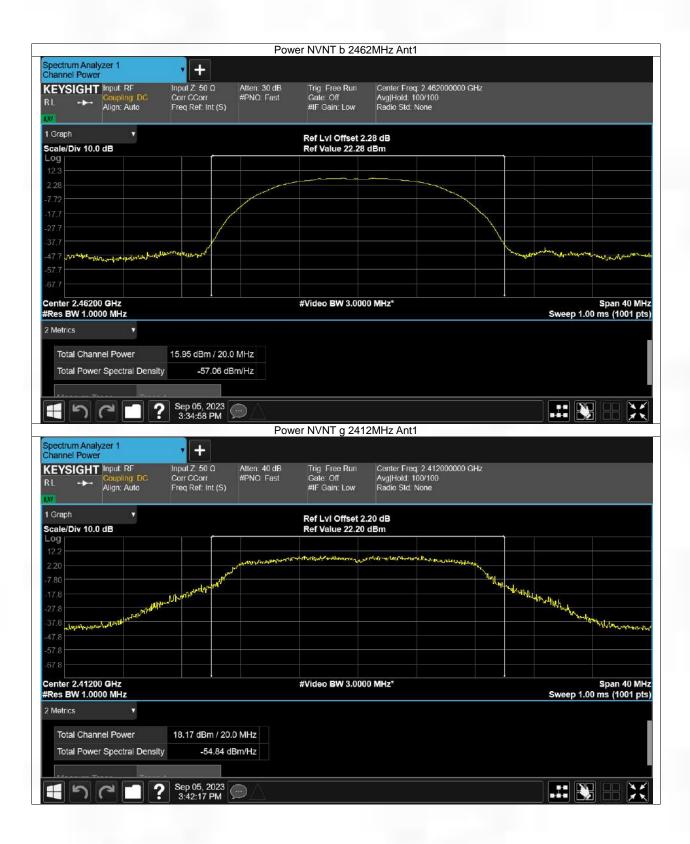
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

MIMO Mode

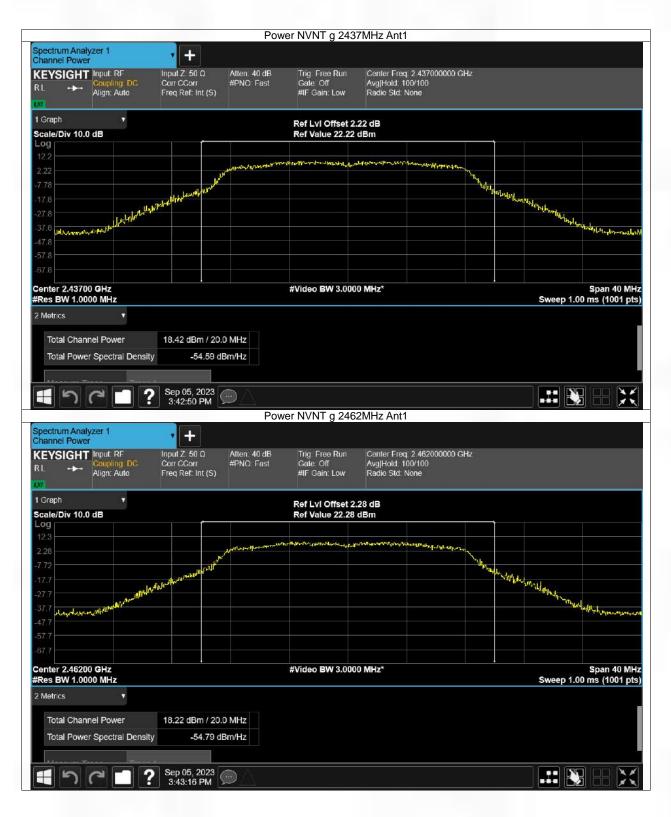
Mode	Frequency (MHz)	Total Power (dBm)	Limit (dBm)	Verdict
n20	2412	21.33	30	Pass
n20	2437	21.40	30	Pass
n20	2462	20.90	30	Pass
n40	2422	18.48	30	Pass
n40	2437	21.80	30	Pass
n40	2452	20.89	30	Pass
ax20	2412	19.13	30	Pass
ax20	2437	19.03	30	Pass
ax20	2462	19.04	30	Pass
ax40	2422	21.41	30	Pass
ax40	2437	21.59	30	Pass
ax40	2452	21.05	30	Pass

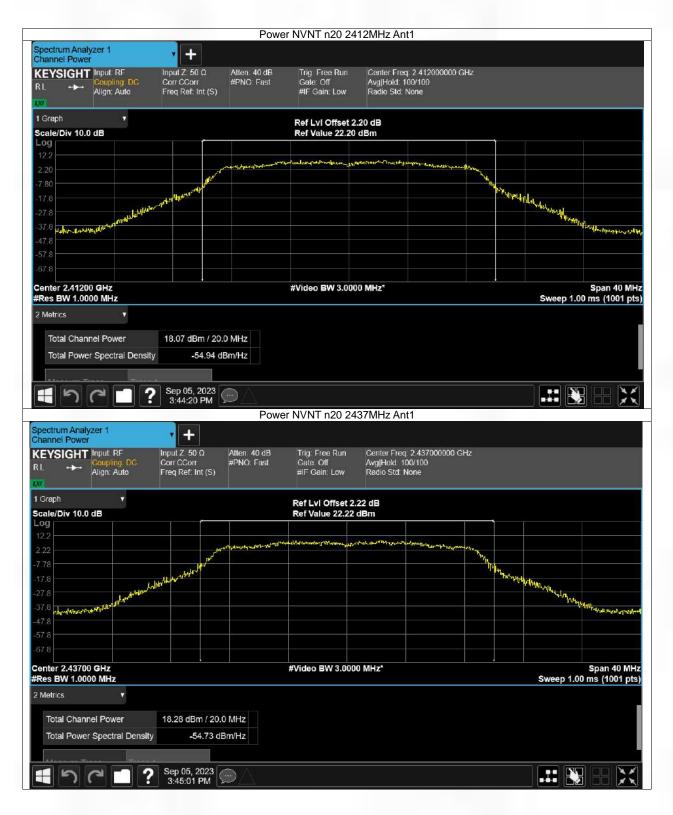
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

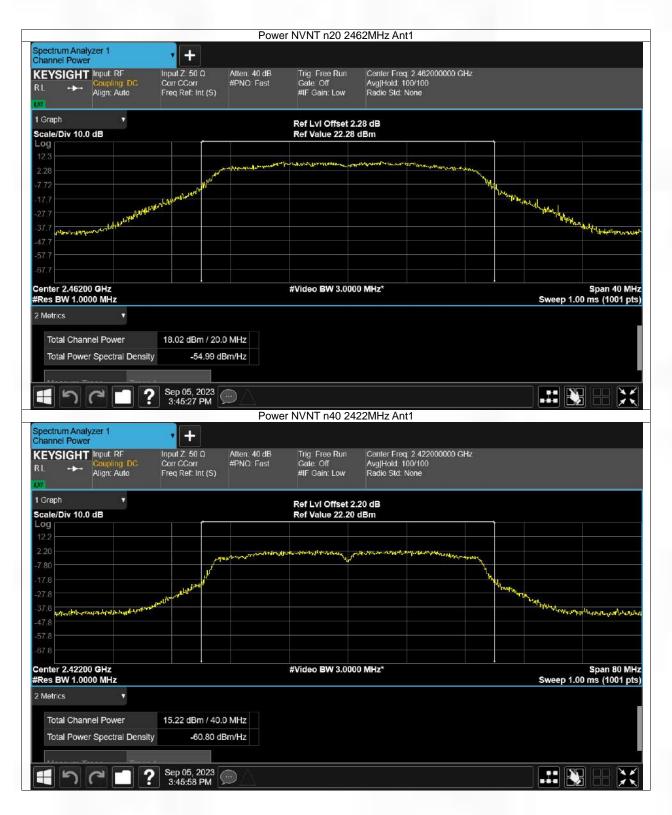
Page 43 of 96

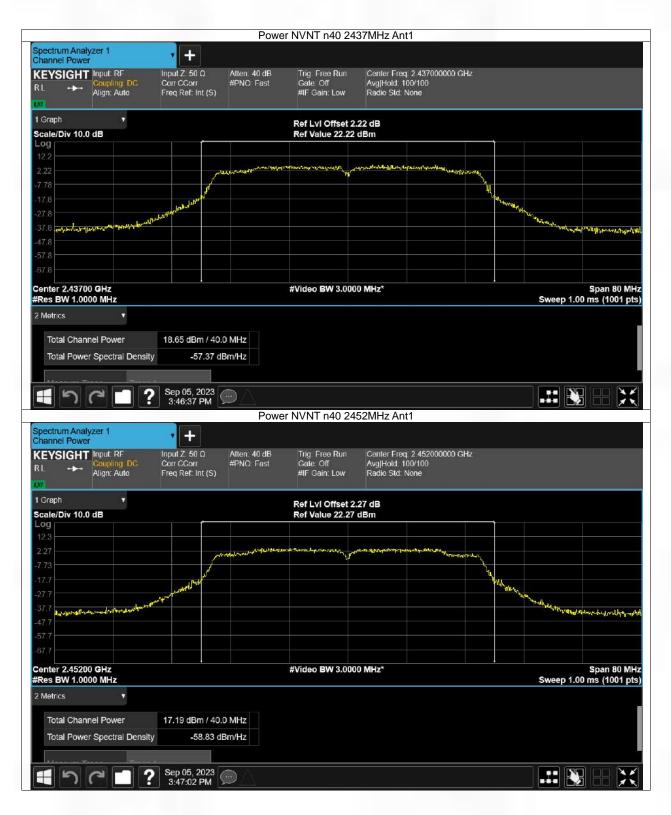

2. 1.2 Test Graph

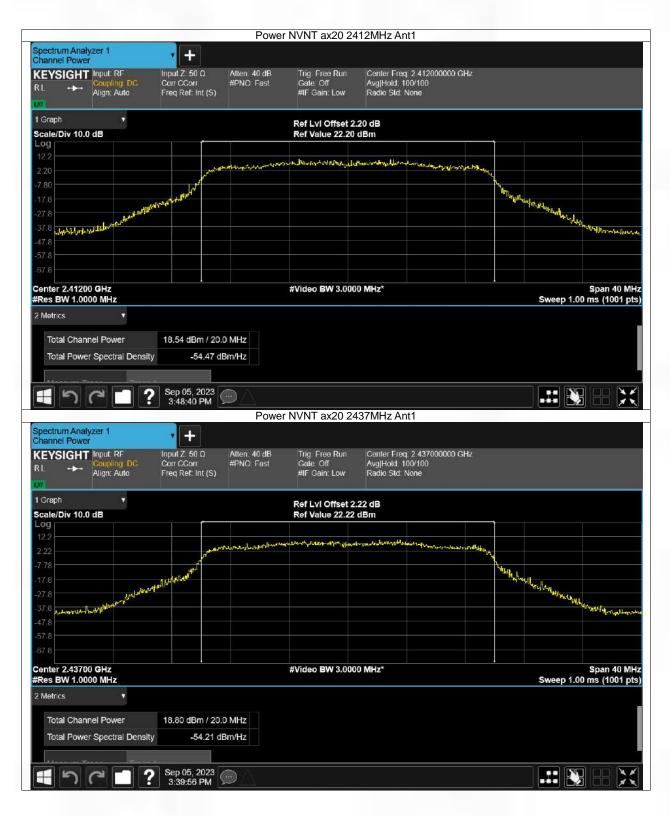
ANT1

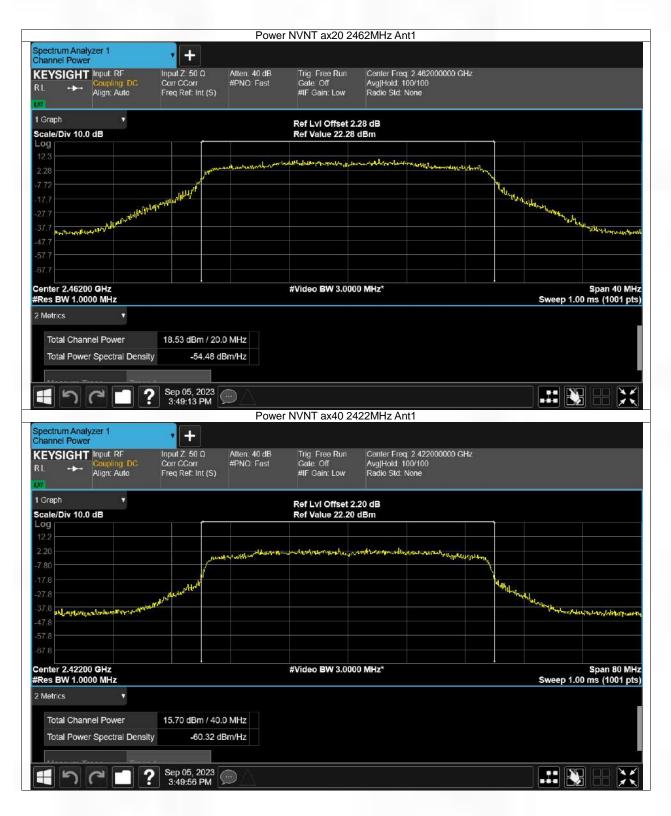

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

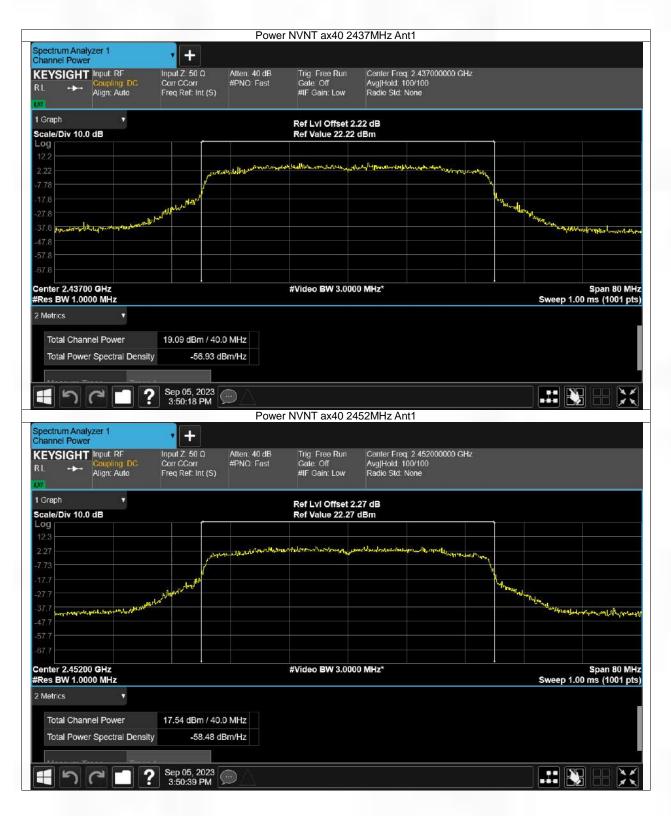

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

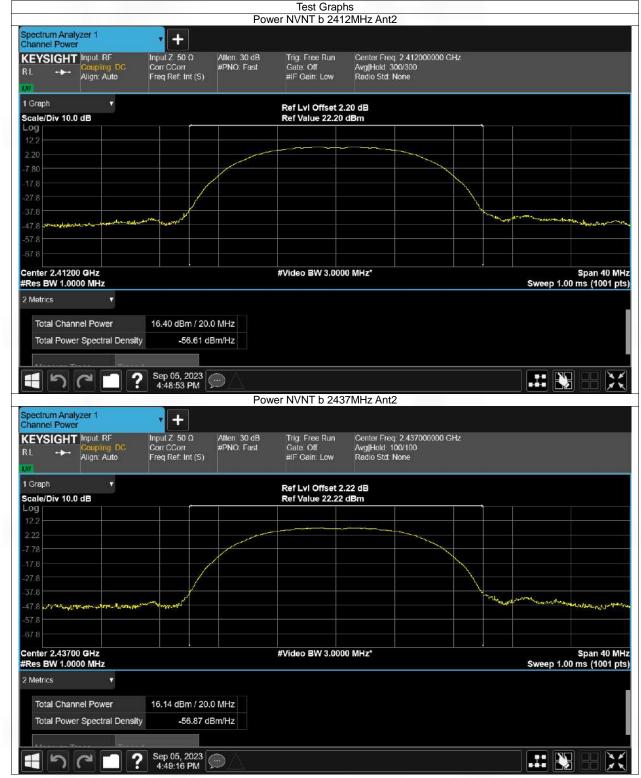

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

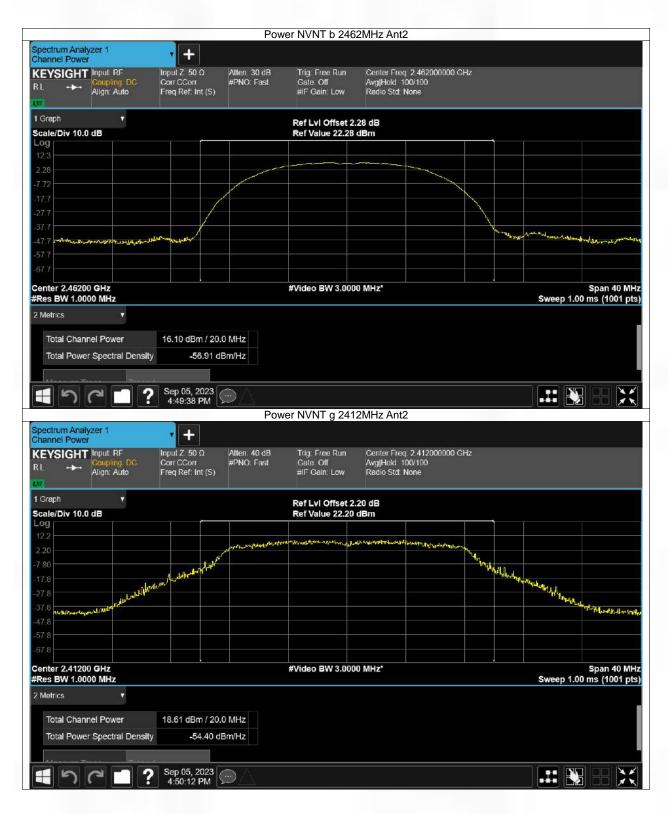

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

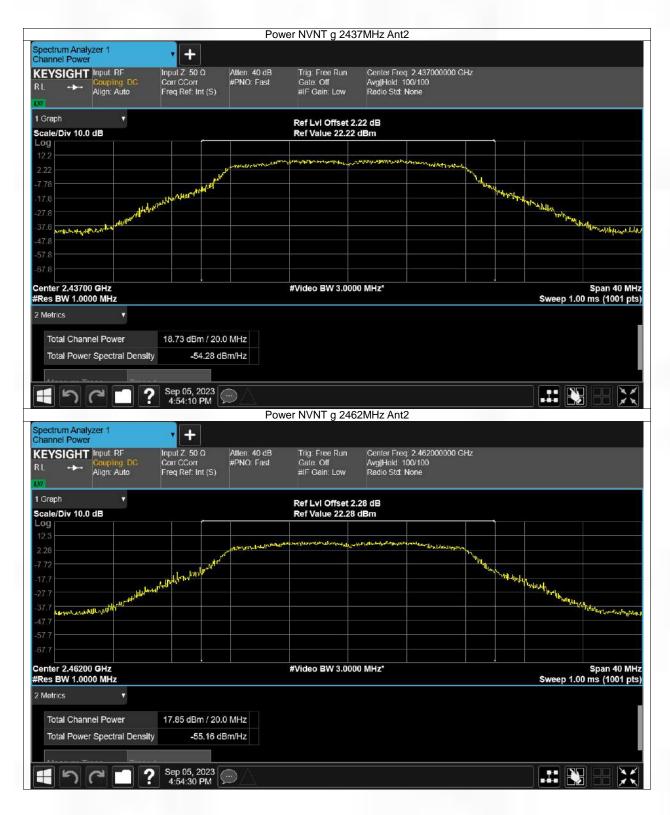
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

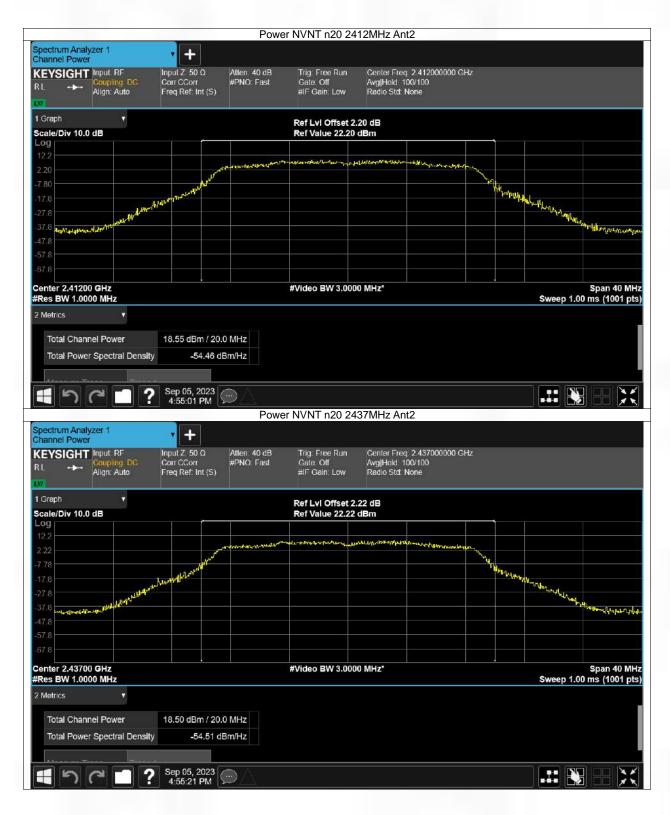


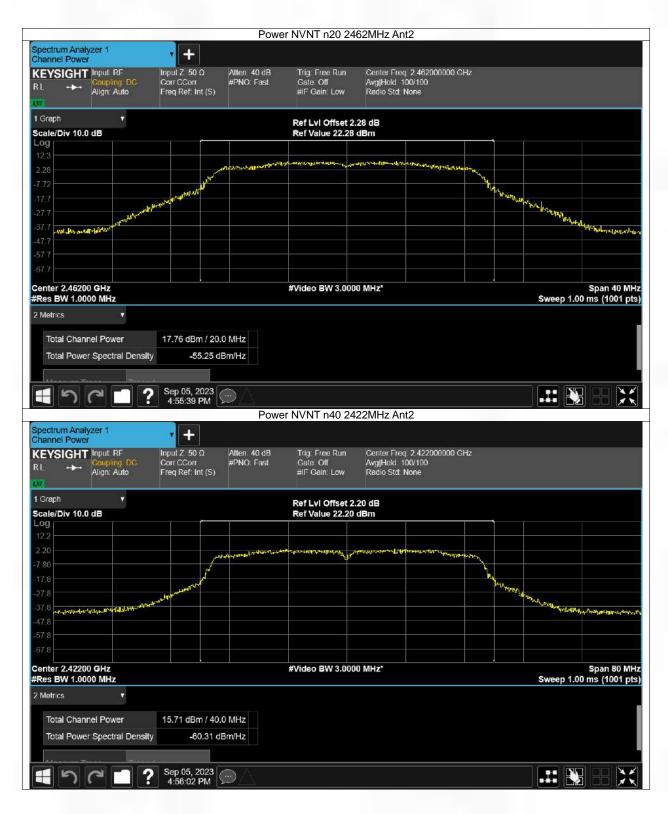
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

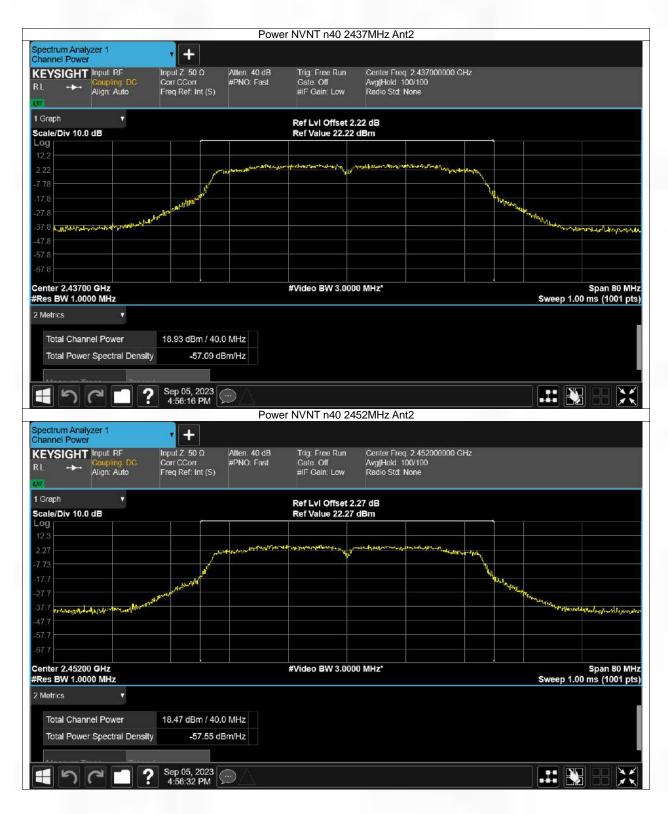


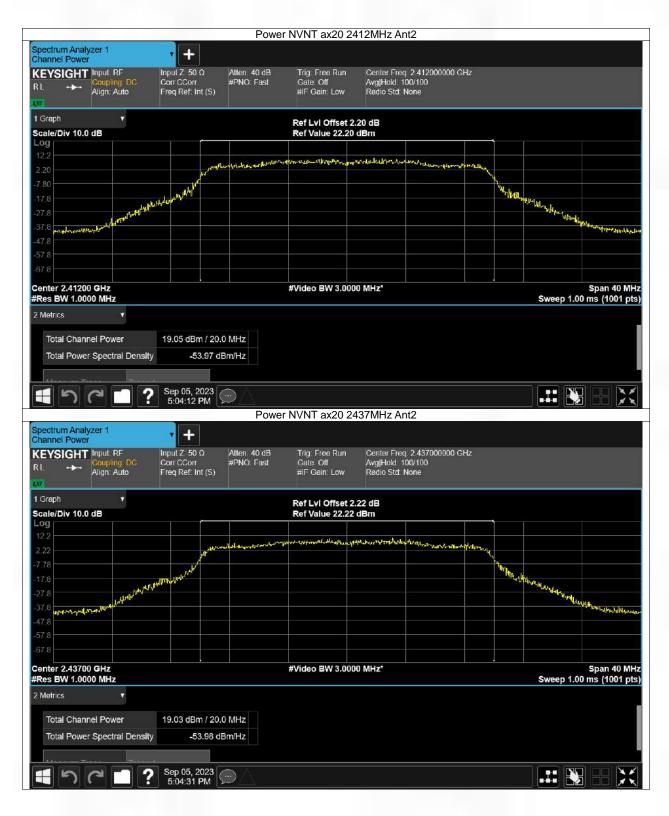
ANT2

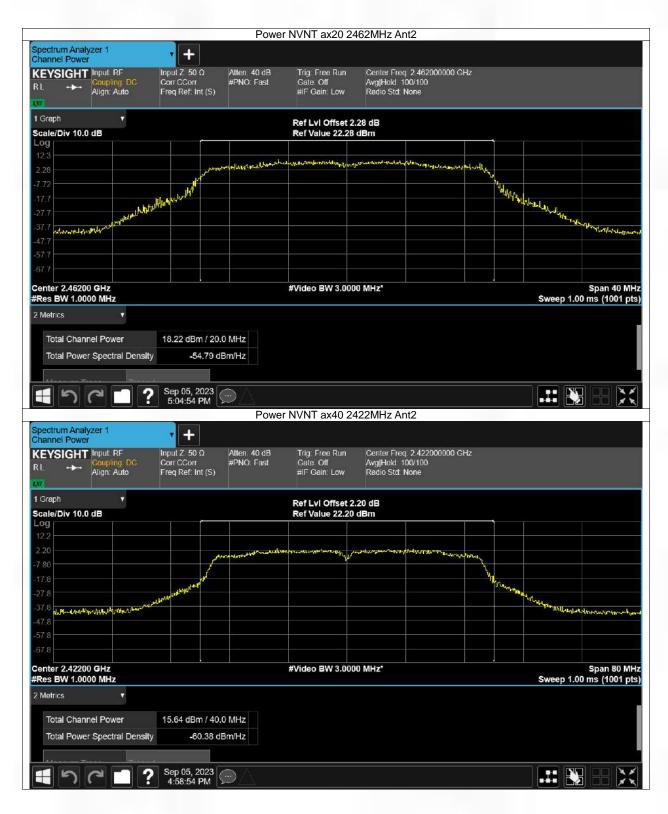

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

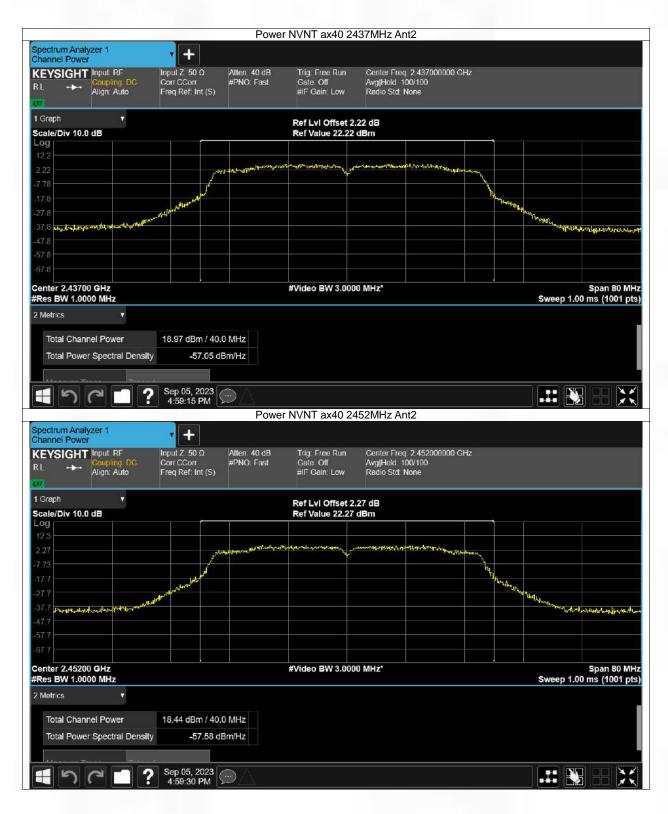

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

3. Maximum Power Spectral Density

3.1 PSD

3.1.1 Test Result

ANT1

Mode	Frequency (MHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
b	2412	-9.05	8	Pass
b	2437	-9.06	8	Pass
b	2462	-9.41	8	Pass
g	2412	-10.69	8	Pass
g	2437	-10.06	8	Pass
g	2462	-10.34	8	Pass
n20	2412	-11.48	8	Pass
n20	2437	-11.24	8	Pass
n20	2462	-11.53	8	Pass
n40	2422	-17.2	8	Pass
n40	2437	-13.48	8	Pass
n40	2452	-15.04	8	Pass
ax20	2412	-12.47	8	Pass
ax20	2437	-12.25	8	Pass
ax20	2462	-12.5	8	Pass
ax40	2422	-19.05	8	Pass
ax40	2437	-15.29	8	Pass
ax40	2452	-16.87	8	Pass

ANT2

Mode	Frequency (MHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
b	2412	-8.65	8	Pass
b	2437	-8.8	8	Pass
b	2462	-8.37	8	Pass
g	2412	-9.53	8	Pass
g	2437	-9.74	8	Pass
g	2462	-10.39	8	Pass
n20	2412	-10.77	8	Pass
n20	2437	-10.63	8	Pass
n20	2462	-11.48	8	Pass
n40	2422	-16.21	8	Pass
n40	2437	-12.99	8	Pass
n40	2452	-13.4	8	Pass
ax20	2412	-11.67	8	Pass
ax20	2437	-11.62	8	Pass
ax20	2462	-12.47	8	Pass
ax40	2422	-16.1	8	Pass
ax40	2437	-12.96	8	Pass
ax40	2452	-13.43	8	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 62 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 62 of 96

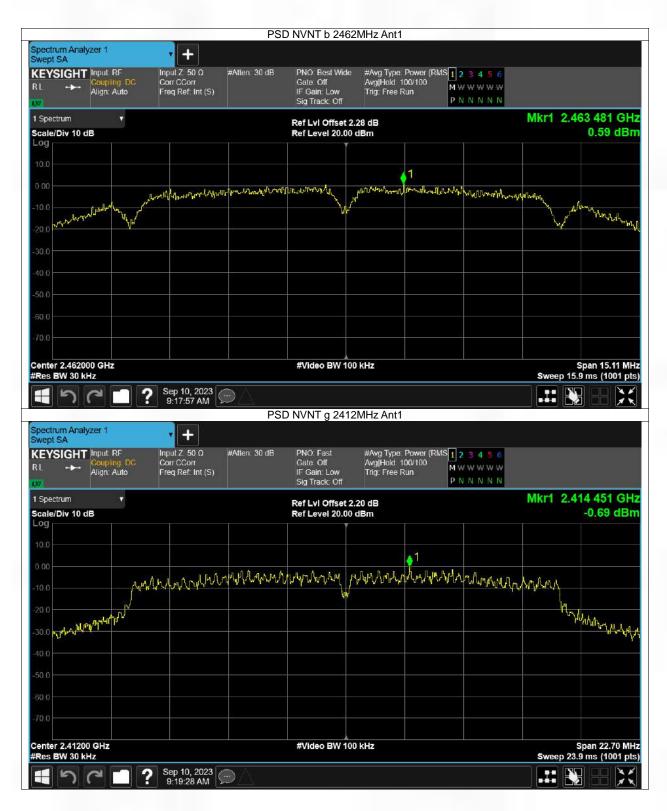
MIMO Mode


Mode	Frequency (MHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
n20	2412	-8.10	8	Pass
n20	2437	-7.91	8	Pass
n20	2462	-8.49	8	Pass
n40	2422	-13.67	8	Pass
n40	2437	-10.22	8	Pass
n40	2452	-11.13	8	Pass
ax20	2412	-9.04	8	Pass
ax20	2437	-8.91	8	Pass
ax20	2462	-9.47	8	Pass
ax40	2422	-14.32	8	Pass
ax40	2437	-10.96	8	Pass
ax40	2452	-11.81	8	Pass

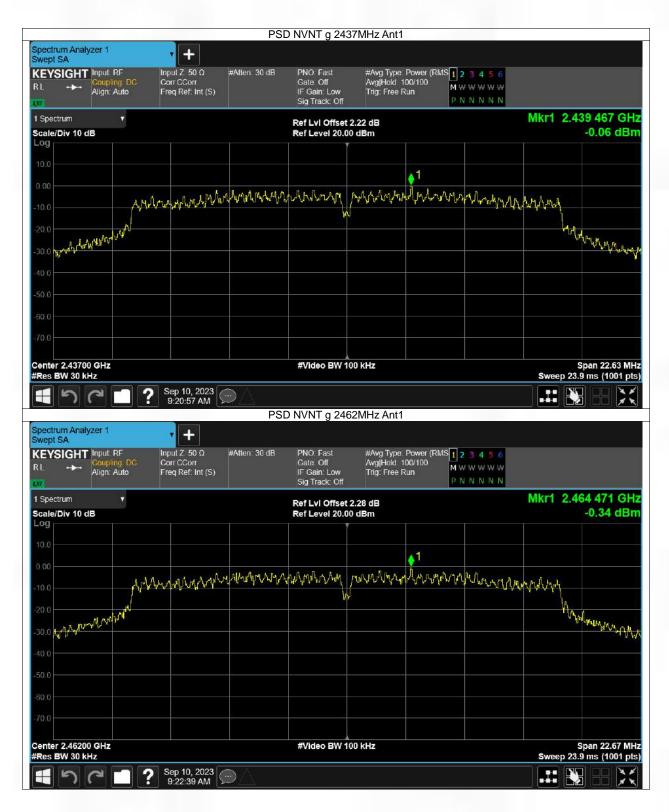
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 63 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

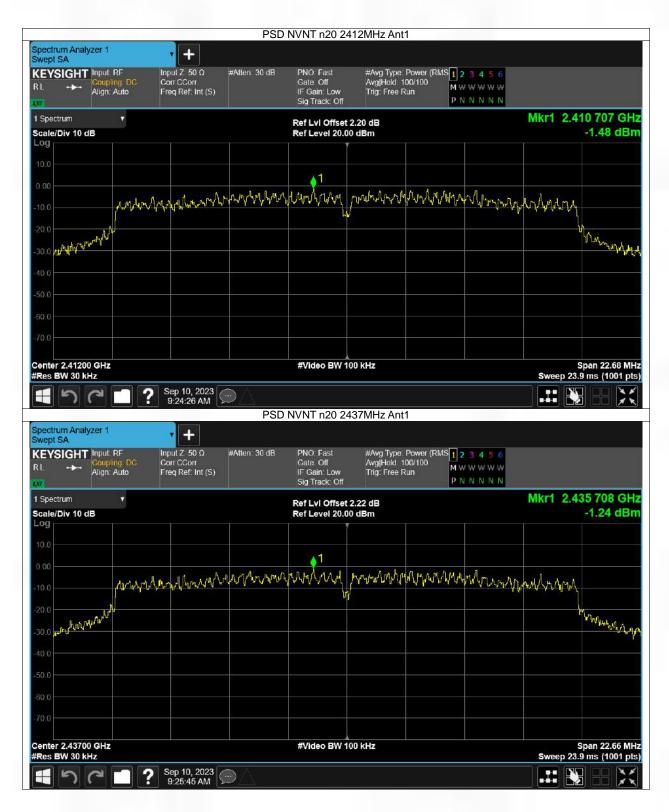
3.1.2 Test Graph

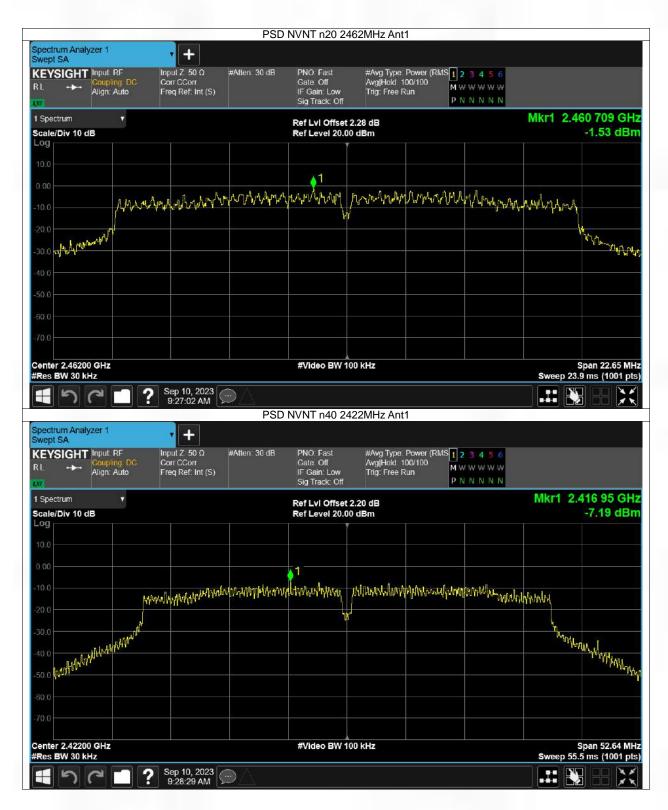
ANT1

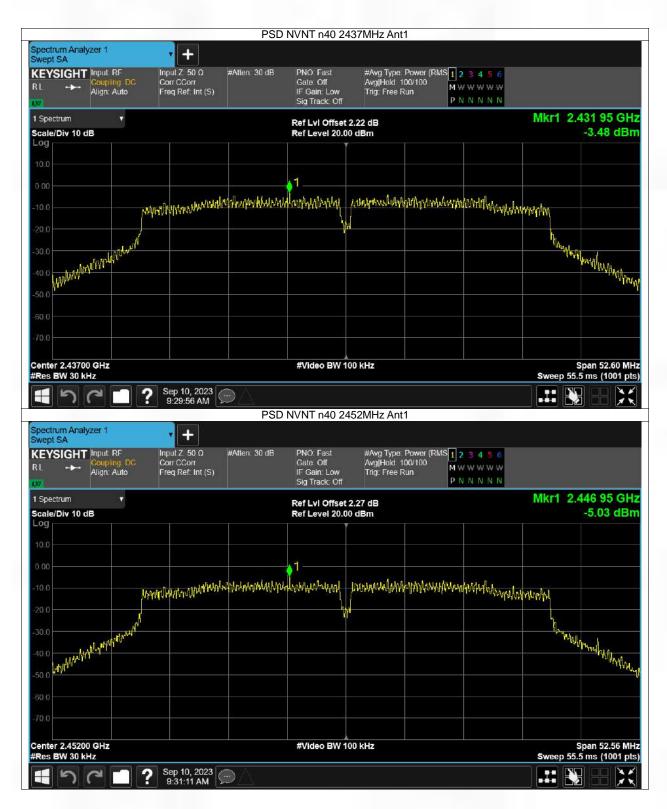

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 65 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Page 65 of 96

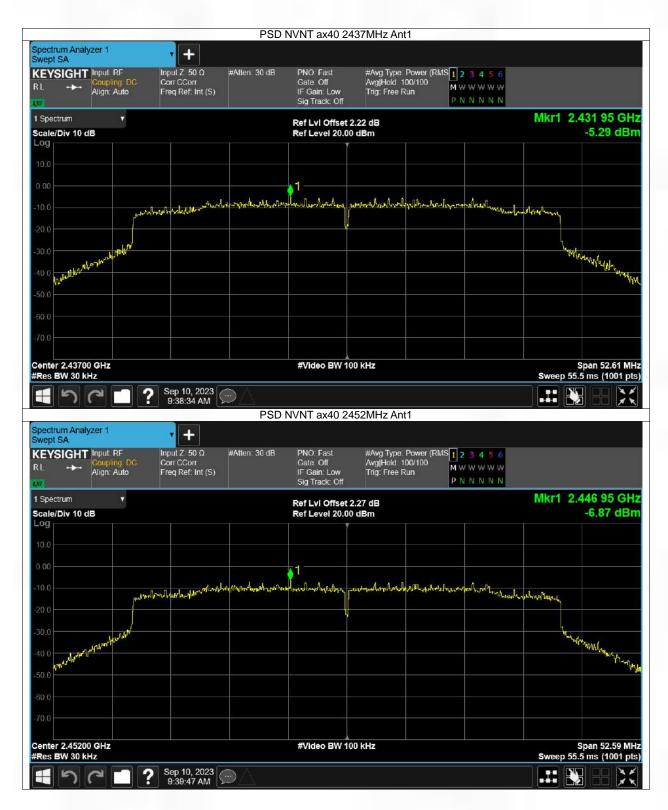

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

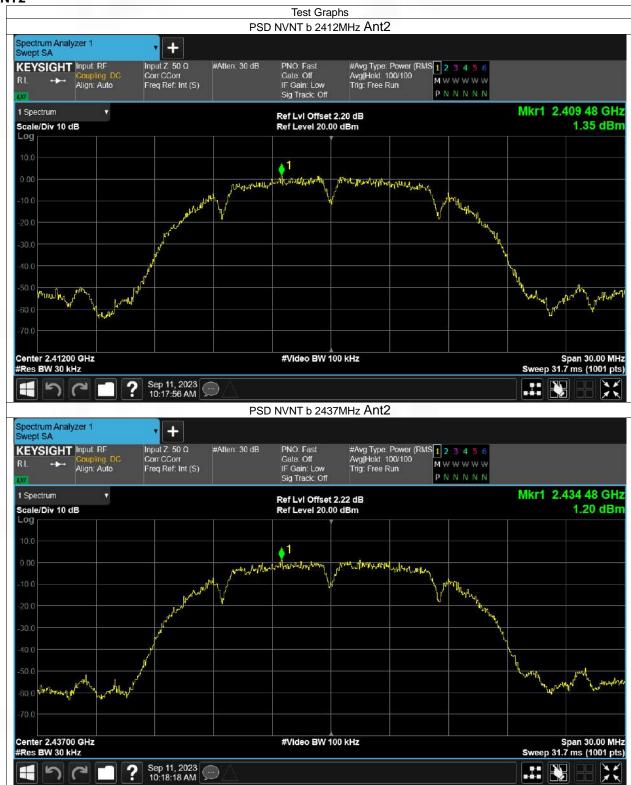

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

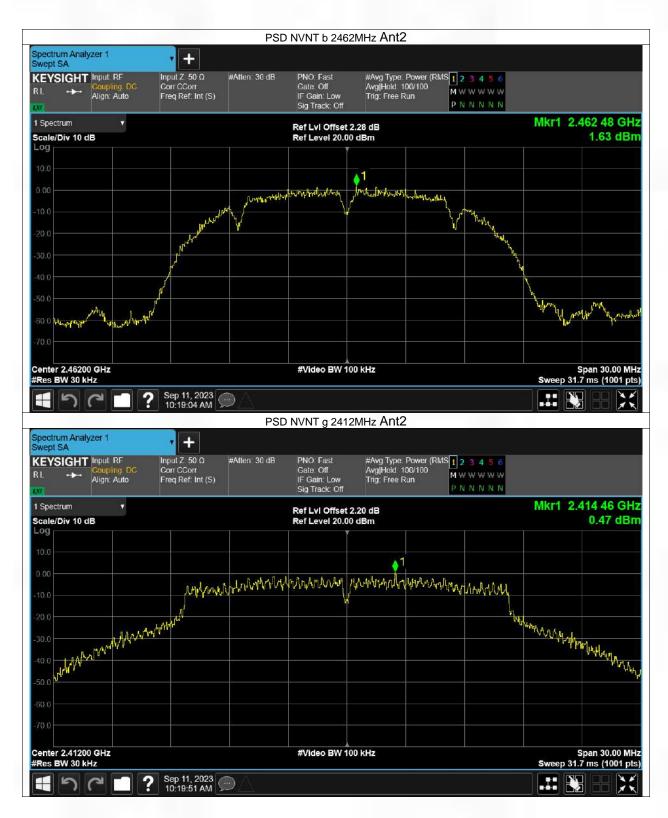
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

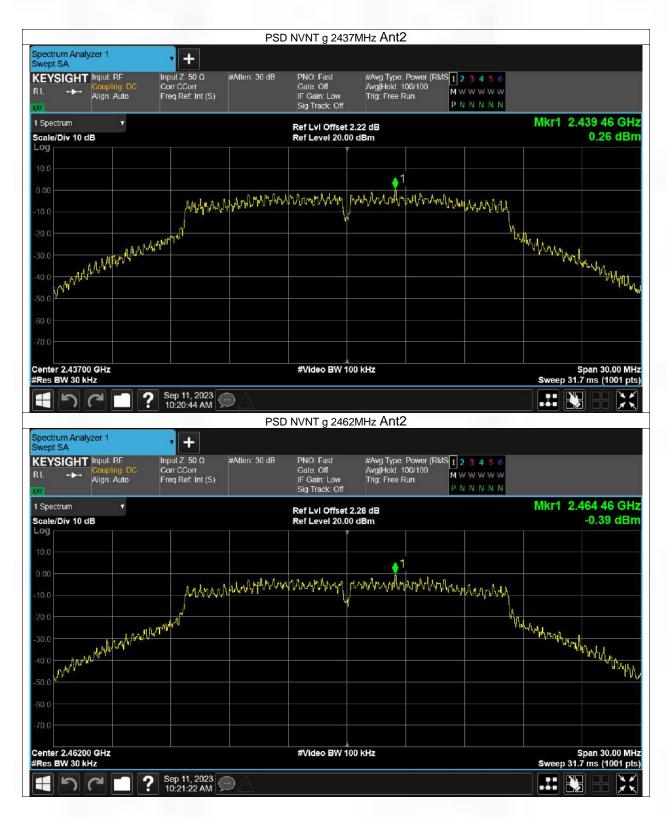
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

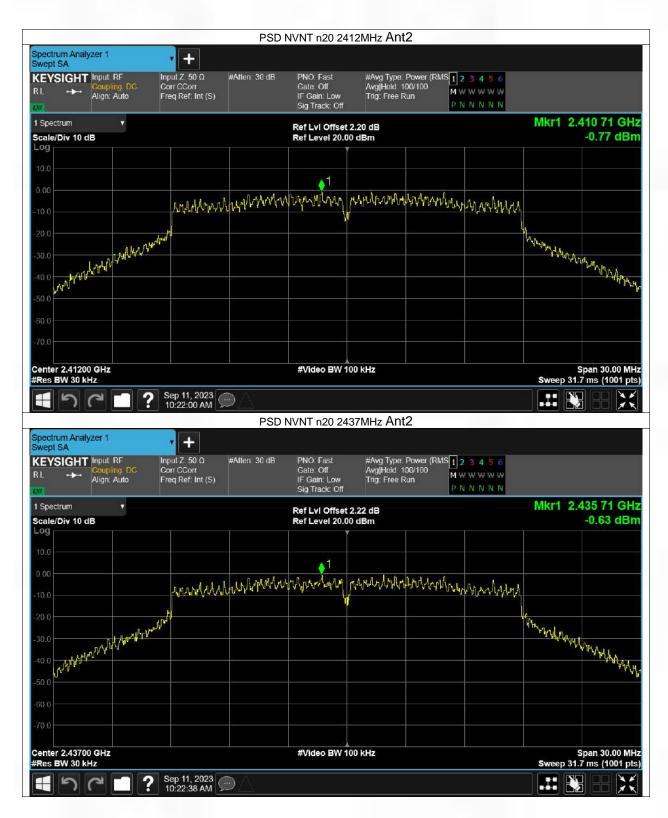


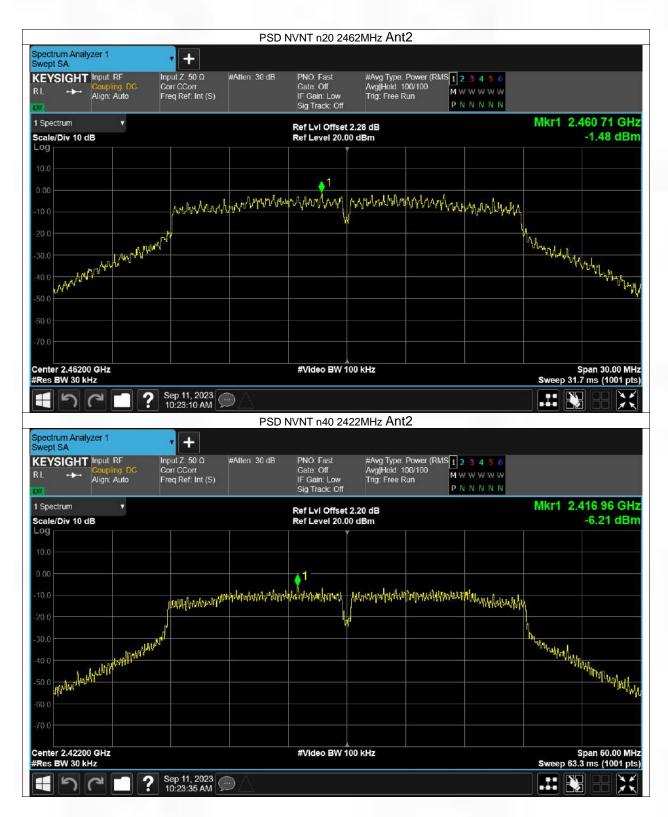
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

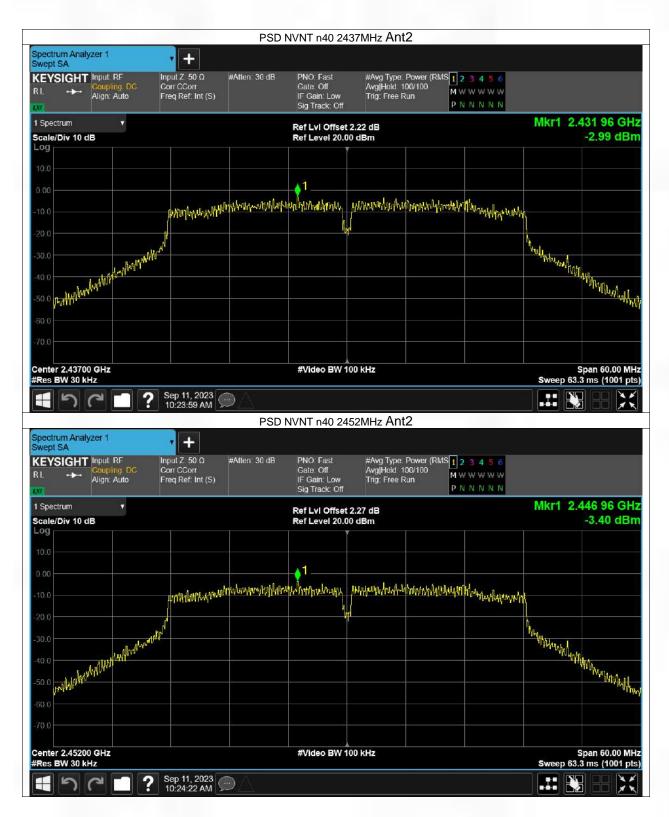


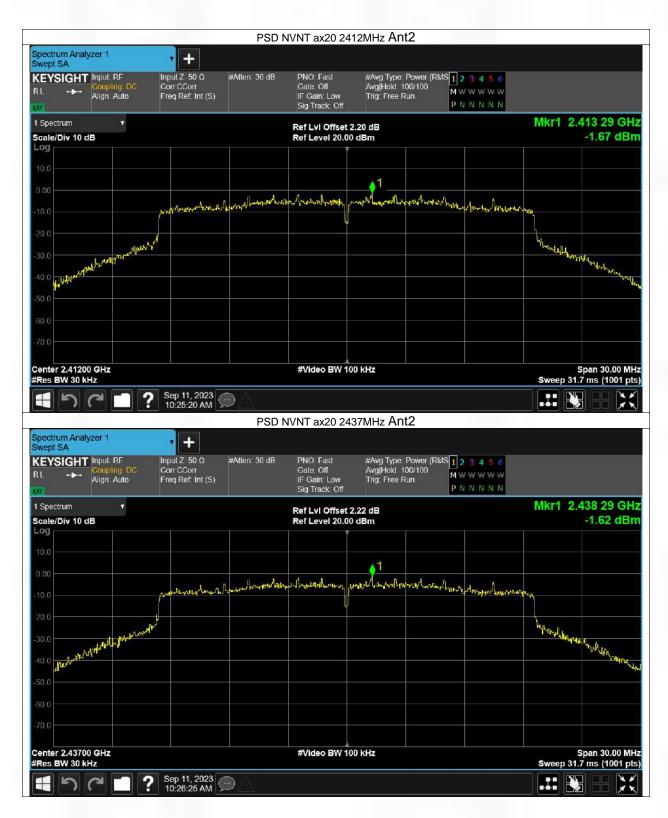
ANT2

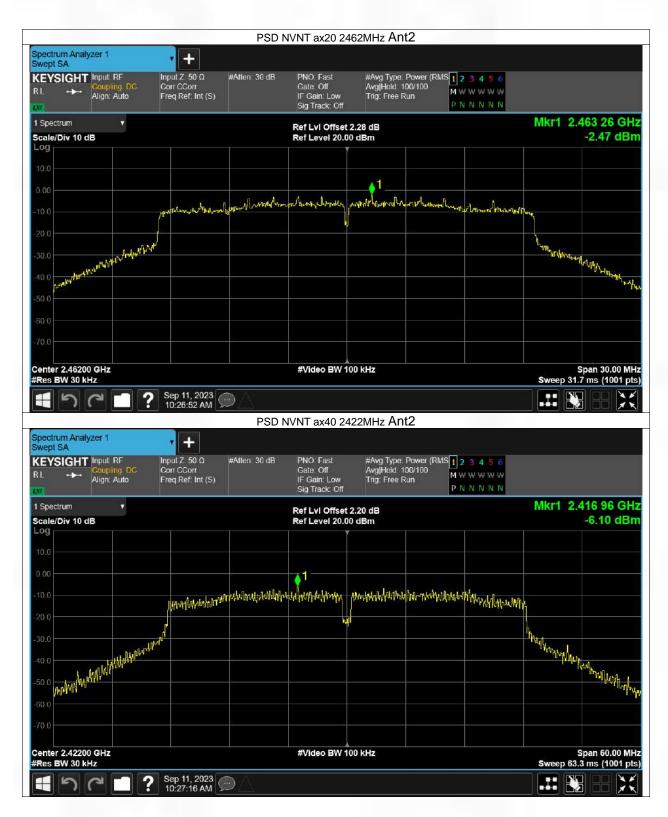

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

- 4. Unwanted Emissions In Non-restricted Frequency Bands
- 4.1 Test Result(pass)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 83 of 9BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

4.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

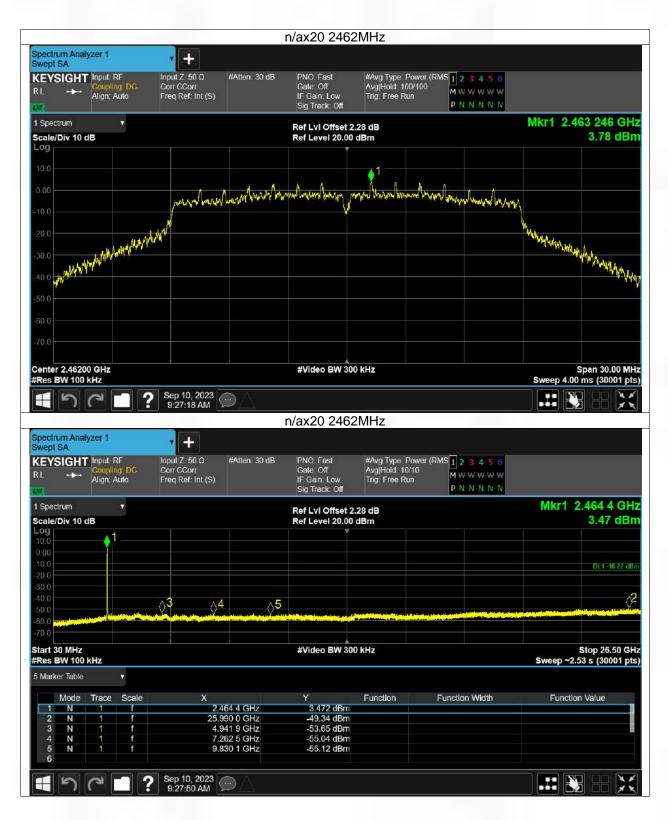
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

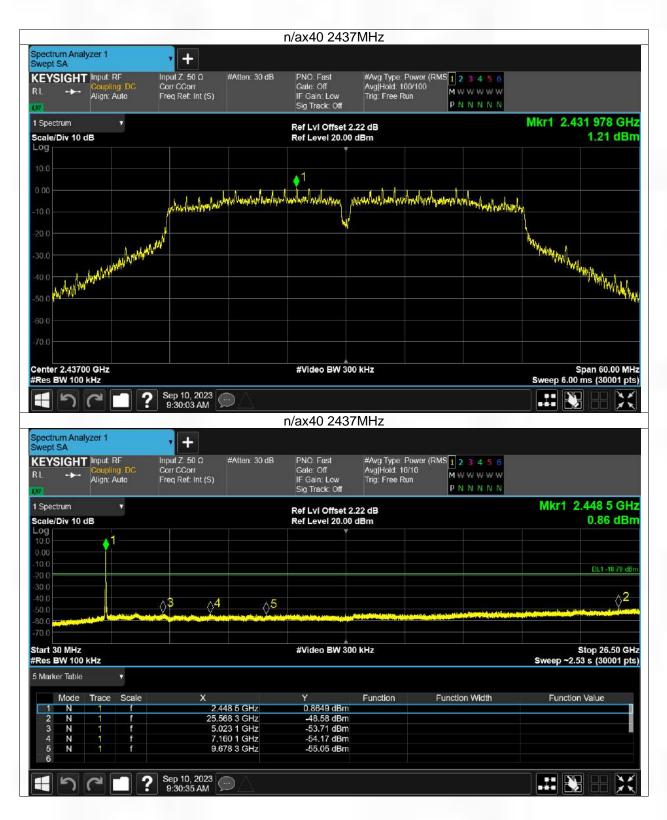
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

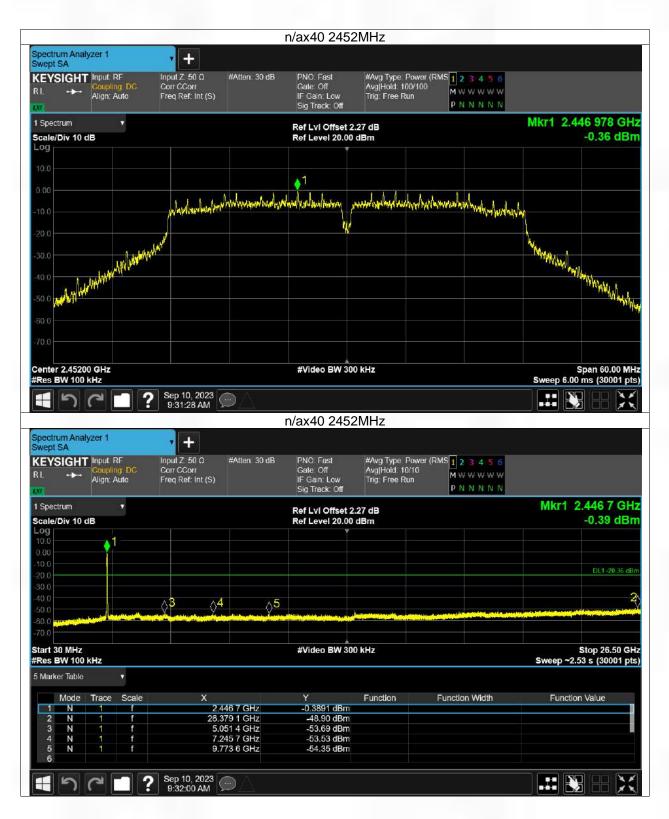
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 96 of 96