

FCC Radio Test Report FCC ID: 2AZUJ-SYS-C60-LMC2

Report No. : BTL-FCCP-2-2404T114 Equipment : Wireless Network Device

Model Name : E.8.006.03

Brand Name : N/A

Applicant: La Marzocco S.R.L

Address : Via La Torre 14/H Scarperia e San Piero Italy 50038

Radio Function : Bluetooth Low Energy

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2024/4/24

Date of Test : 2024/5/13 ~ 2024/6/3

Issued Date : 2024/7/17

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Eddie Lee, Engineer

Ludie Lee, Lingineer

Approved by :

erry Chuang, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2404T114 Page 1 of 38 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2404T114 Page 2 of 38 Report Version: R00

CONTENTS

1	SUMMAR	Y OF TEST RESULTS	5			
1.1		FACILITY	6			
1.2		JREMENT UNCERTAINTY	6			
1.3	_	ENVIRONMENT CONDITIONS	6			
2	GENERAL INFORMATION					
2.1	DESCRIPTION OF EUT					
2.2		MODES	7 9			
2.3	_	C DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10			
2.4		ORT UNITS	10			
3	RADIATE	D EMISSIONS TEST	11			
3.1	LIMIT		11			
3.2	TEST F	PROCEDURE	12			
3.3	DEVIA	TION FROM TEST STANDARD	12			
3.4	TEST S	SETUP	12			
3.5	EUT O	PERATING CONDITIONS	13			
3.6	TEST F	RESULT – BELOW 30 MHZ	14			
3.7	3.7 TEST RESULT – 30 MHZ TO 1 GHZ					
3.8 TEST RESULT – ABOVE 1 GHZ						
4	OUTPUT	POWER TEST	15			
4.1	LIMIT		15			
4.2	TEST F	PROCEDURE	15			
4.3 DEVIATION FROM STANDARD						
4.4	TEST S	SETUP	15			
4.5	EUT O	PERATION CONDITIONS	15			
4.6	TEST F	RESULTS	15			
5	LIST OF N	MEASURING EQUIPMENTS	16			
6	EUT TES	T PHOTO	17			
7	EUT PHO	PTOS	17			
APPEND	IX A	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	18			
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	23			
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	26			
APPEND	APPENDIX D OUTPUT POWER					

Report No.: BTL-FCCP-2-2404T114

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2404T114	R00	Original Report.	2024/7/17	Valid

Project No.: 2404T114 Page 4 of 38 Report Version: R00

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions		N/A	NOTE (3)
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX A APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	NOTE(4)	Pass	
15.247(b)(3)	Output Power	APPENDIX D	Pass	
15.247(e)	Power Spectral Density	NOTE(4)	Pass	
15.247(d)	Antenna conducted Spurious Emission	NOTE(4)	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This is a DC input device.
- (4) This item is demonstrated to full compliance referring to the test report number FR4O0971B of the integrated module (model name: WL18MODGI, FCC ID: Z64-WL18DBMOD), according to KDB 996369 D02 Q1 a) 2).
- (5) The radiated emissions are tested to demonstrate full compliance of both module integrated into the host and host itself.
- (6) The output power of integrated module have been reduced, therefore, the full output power tests are performed and recorded.

Project No.: 2404T114 Page 5 of 38 Report Version: R00

Report No.: BTL-FCCP-2-2404T114

SR11

 \boxtimes

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

 \square C05 \square CB08 \square CB11 \square SR10 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06 ⊠ CB21 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %.

A. Radiated emissions test:

Zimesione test.						
Test Site	Measurement Frequency Range	U (dB)				
	0.03 GHz ~ 0.2 GHz	4.17				
	0.2 GHz ~ 1 GHz	4.72				
CB21	1 GHz ~ 6 GHz	5.21				
CBZT	6 GHz ~ 18 GHz	5.51				
	18 GHz ~ 26 GHz	3.69				
	26 GHz ~ 40 GHz	4.23				

B. Conducted test:

Test Item	U (dB)
Output Power	0.3669

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	Refer to data	DC 24V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	DC 24V	Mark Wang, Sean Huang
Output Power	23 °C, 54 %	DC 24V	Easton Tsai

Project No.: 2404T114 Page 6 of 38 Report Version: R00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment Wireless Network Device	
Model Name	E.8.006.03
Brand Name	N/A
Model Difference	N/A
Power Source	DC voltage supplied from DC source.
Power Rating	DC 24V, 0.5A
Products Covered	1* Antenna
Floducis Covered	1* Power cord
WIFI+BT Module	Texas Instruments / WL18MODGI
Operation Band 2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz
Maximum Output Power	5.72 dBm (0.0037 W)
Operating Software PuTTY 0.62	
Test Model E.8.006.03	
Sample Status Engineering Sample	
EUT Modification(s) N/A	

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2404T114 Page 7 of 38 Report Version: R00

(3) Table for Filed Antenna:

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)	
					2400-2480	2.7	
	DF	014D 1000D316	OEM MULTIFUNCTION	SMA MALE RP	5150-5250	0.75	
Red		814B_1000R316 SMMRP			5250-5350	0.60	
		_SWIWITT			5470-5725	0.42	
							5725-5850
					2400-2480	2.1	
	DF	044D 4000D040	OEM MULTIFUNCTION		5150-5250	1.74	
Blue	dynaflex*	814B_1000R316 SMMRP			SMA MALE RP	5250-5350	1.76
	_SIVIIVIKE	_SIVIIVITYF			5470-5725	1.12	
					5725-5850	-0.37	

The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

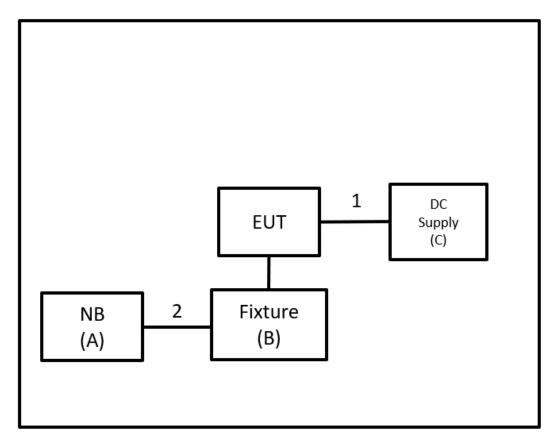
Project No.: 2404T114 Page 8 of 38 Report Version: R00

Report No.: BTL-FCCP-2-2404T114

2.2 TEST MODES

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1 Mbps	00/39	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmonic
Transmitter Radiated Emissions (above 18GHz)	1 Mbps	39	-
Output Power	1 Mbps	00/19/39	-

NOTE:


- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

Project No.: 2404T114 Page 9 of 38 Report Version: R00

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.
В	Fixture	N/A	N/A	N/A	Supplied by test requester.
С	DC Power Supply	UP-BEST	TDS-60-15	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.3m	Power Code	Furnished by test lab.
2	N/A	N/A	2.4m	Console cable	Supplied by test requester.

Project No.: 2404T114 Page 10 of 38 Report Version: R00

Report No.: BTL-FCCP-2-2404T114

3 RADIATED EMISSIONS TEST

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

	Field Ctromath	
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency		Emissions V/m)	Measurement Distance
(MHz)	Peak	(meters)	
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

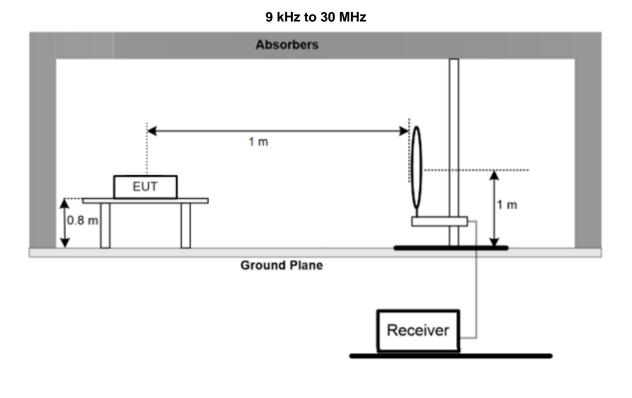
Reading Level		Correct Factor		Measurement Value
(dBµV)		(dB/m)		(dBµV/m)
19.11	+	2.11	=	21.22

Measurement Value (dBµV/m)		Limit Value (dBµV/m)		Margin Level (dB)
21.22	-	54	=	-32.78

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RBW / VBW	1MHz / 3MHz for Peak,				
(Emission in restricted band)	1MHz / 1/T for Average				

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

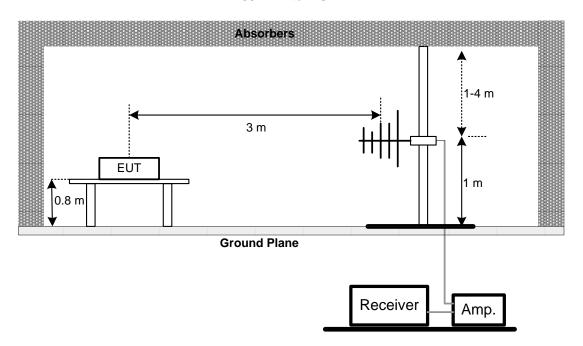
Project No.: 2404T114 Page 11 of 38 Report Version: R00

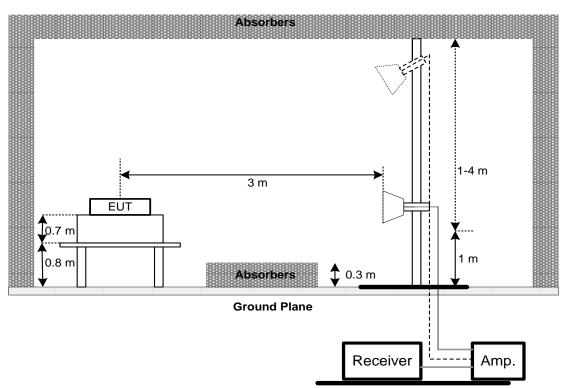

3.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

3.3 DEVIATION FROM TEST STANDARD

No deviation.


3.4 TEST SETUP


Project No.: 2404T114 Page 12 of 38 Report Version: R00

30 MHz to 1 GHz

Above 1 GHz

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

Report No.: BTL-FCCP-2-2404T114

3.6 TEST RESULT – 9kHz TO 30 MHz

Please refer to the APPENDIX A.

3.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

3.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

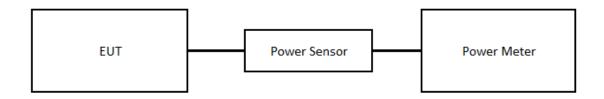
(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2404T114 Page 14 of 38 Report Version: R00

4 OUTPUT POWER TEST

4.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS


4.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9 b) of FCC KDB 558074 D01 DTS Meas Guidance.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2404T114 Page 15 of 38 Report Version: R00

5 LIST OF MEASURING EQUIPMENTS

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2023/9/6	2024/9/5
2	Preamplifier	EMCI	EMC118A45SE	980819	2024/3/6	2025/3/5
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20
4 Preamplifier EMCI		EMC001340	980579	2023/9/6	2024/9/5	
5	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22
9			EMCI-LPA600	291	2023/9/12	2024/9/11
10	Horn Antenna	DECDINI			2023/5/12	2024/5/11
10	Hom Antenna	RFSPIN DRH18-E		211202A18EN	2024/5/9	2025/5/8
11	Horn Ant	Schwarzbeck	BBHA 9170	1136	2023/6/28	2024/6/27
12	TRILOG Broadband Antenna	TRILOG Broadband Schwarzbeck		1371	2023/8/8	2024/8/7
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2023/8/8	2024/8/7
14	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2024/3/13	2025/3/12
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2024/3/13	2025/3/12
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Output Power	•		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2024/5/11	2025/5/10
2	Power Sensor	Anritsu	MA2411B	1126001	2024/5/11	2025/5/10

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2404T114 Page 16 of 38 Report Version: R00

Report No.: BTL-FCCP-2-2404T114

6 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2404T114-FCCP-1 (APPENDIX-TEST PHOTOS).
7 EUT PHOTOS
Please refer to document Appendix No.: EP-2404T114-2 (APPENDIX-EUT PHOTOS).

Project No.: 2404T114 Page 17 of 38 Report Version: R00

APPENDIX A	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

Project No.: 2404T114 Page 18 of 38 Report Version: R00

	Test Mod			0 (1 Mbps)		Test Date			1-5-13	
Test Frequency		2480MHz 23°C		I	Polarization		Vertical 66%			
150.0 dE	Temp		2	23°C		Hum.		6	0%	
130.0 ul	7477111									\neg
140										_
130										
										
20										_
10										-
100										4
10										
:0										1
70 <u> </u>				1						+
io				×						
io										
10										1
30										+
20.0										
0.009	0.02	0.04	0.05	0.07	0.08 0.0	0.11	0.12		0.15	МН
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	0.0610	41.26	21.90	63.16	130.98	-67.82	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

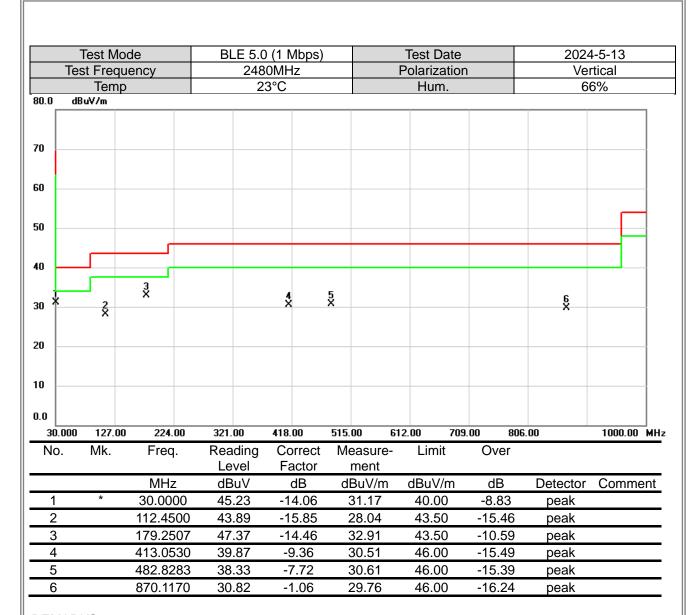
	Test Mo	de	Bl	E 5.0) (1 Mbps	;)		Test Date		2024	1-5-13	
Т	est Frequ	iency			0MHz			Polarization	ì	Ve	rtical	
	Temp			2	3°C			Hum.		6	6%	
130.0	dBuV/m											_
120 110 100 90 80 1 70	Y											
60 — 50 — 40 — 30 —	2 X	2 X			4 ×			5 X	6 ×			
20 — 10 — 0.0												
0.150	3.14	6.12	9.10		12.09	15.0	8 1	8.06 21.	04 24.0	03	30.00	 MHz
No.	Mk.	Freq.		ding vel	Correc Factor		easure- ment	Limit	Over			
		MHz	dB	uV	dB	d	BuV/m	dBuV/m	dB	Detector	Comm	nent
1		0.3947	66	.80	6.68		73.48	114.76	-41.28	QP		
2	*	2.9996	65	.64	-3.75		61.89	88.62	-26.73	QP		
3		8.0004	62	.78	-3.66		59.12	88.62	-29.50	QP		
4		11.0004	60	.13	-3.26	ļ	56.87	88.62	-31.75	QP		
5		20.5733	57	.36	-3.82		53.54	88.62	-35.08	QP		
6		22.8568	57	.07	-2.73		54.34	88.62	-34.28	QP		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mod	de) (1 Mbps)		Test Date			1-5-13	
Te	st Frequ	ency		80MHz		Polarization			zontal	
	Temp		2	3°C		Hum.		6	6%	
50.0 dE	3uV/m									_
40										
30										
20										-
10										
00										4
0										4
o										4
o		1.								4
0		X								-
0										\dashv
0 -										\perp
:0										\parallel
:0.0										
0.009	0.02	0.04	0.05	0.07		09 0.11	0.12		0.15	MI
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	0.0305	38.72	28.16	66.88	137.00	-70.12	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BL	E 5.0) (1 N	lbps)			Tes	t Date			2024	l-5-13	
Te	st Frequ				омн					rization	1			zontal	
	Temp			2	3°C				Н	lum.			6	6%	
130.0 d	BuV/m														_
120 110 100 90 80 1 2 70 80 50	3 X		4 ×						5 X				6 X		
30 20 10															
0.0															
0.150	3.14	6.12	9.10		12.09)	15.08	3 1	8.06	21.		.03		30.00	MHz
No.	Mk.	Freq.	Rea Le			rrect ctor		asure- nent	L	imit	Over				
		MHz	dB	uV		ΙB	dE	BuV/m	dBı	uV/m	dB	Dete	ector	Comn	nent
1		0.3948	68.			68		4.87		4.76	-39.89		Р		
2		0.9440	70.			37		1.55		7.18	-15.63	Q			
3	*	1.4206	68.			.23		8.36		3.63	-15.27	Q			
4		7.5050	52.			.79		9.01		3.62	-39.61	Q			
5		17.9048	47.			.90		3.88		3.62	-44.74	Q	Р		
6		26.3185	42.	15	-1	.10	4	1.05	88	3.62	-47.57	C	Р		


- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2404T114 Page 23 of 38 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

-	Test Mo	de		BLE :	5.0 (1	Mbps)			Test Date		2024	1-5-13	
Tes	st Frequ	ency		2	480MI	Ηz			Polarizatio	n		zontal	
	Temp				23°C				Hum.		60	6%	
BO.O dB	uV/m												٦
70													
60													
50		_											
40	<u></u>	Ž X					-			6 X			
30			X		*		5 X			×			
20													
10													
0.0													
30.000	127.00	224.	00	321.00	418	.00	515.	00 6	12.00 70	9.00 806	.00	1000.00	_ MH
No.	Mk.	Freq		Readin Level		orrect actor		easure- ment	Limit	Over			
		MHz		dBuV		dB	dl	BuV/m	dBuV/m	dB	Detector	Comme	ent
1		105.69	23	53.71	-1	16.74		36.97	43.50	-6.53	peak		
2	*	211.84	26	56.39	-1	16.19		40.20	43.50	-3.30	QP		
3		249.99		46.48		14.17		32.31	46.00	-13.69	peak		
4		396.01		41.98		9.89		32.09	46.00	-13.91	peak		
5		476.91		40.02		7.80	;	32.22	46.00	-13.78	peak		
6		721.77	16	36.95	-	3.33	(33.62	46.00	-12.38	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2404T114 Page 26 of 38 Report Version: R00

	est Mod		В) (1 Mbps))		Test Da			24/6/1	
ies	t Freque	ency			2MHz			Polarizat			rizontal	
130.0 dB	Temp				1°C			Hum.			60%	
- GO.G - GD.	477111											٦
120												-
110												1
100						\$ *						-
30						$-\mathbb{A}$						-
30						-+						
70						3						
50					_	-11						-
50	La L	unterproduction p	hat a satter	k tool at an	1	January II	anteriorado do	لد لد المدينة	lana maratah a Mi	ensentano esta de la constitución de la constitució	S X	
10	on-tr. Hissoricili	All March	1 delever and a set	A STATE OF PARTY.	X	MALLEN A	at (a naturitari mendina	Marcha Lindleston in	erraditivitation laboration	7 ×	
30												
												-
20												
10.0												
0.0 2302.000	2322.00) 2342.0	0 236	2.00	2382.00	2402.0	10 24		2442.00	2462.00	2502.00	MH
0.0) 2322.00 Mk.	23 4 2.0 Freq.	Rea	2.00 ading	2382.00 Correct Factor	Mea	00 24 asure- ent	122.00 Limit	2442.00 Ove		2502.00	MI
0.0 2302.000			Rea Le	ading	Correct	Mea m	sure-		Ove	er		
0.0 2302.000		Freq.	Rea Le	ading evel	Correct Factor	Mea m dBı	sure- ent	Limit	Ove	er B Detector		
0.0 2302.000 No.		Freq. MHz	Rea Le dE 3 58	ading evel BuV	Correct Factor dB	Mea m dBu 53	asure- ent uV/m	Limit dBuV/r	Ove n dB	er B Detector 92 peak		
0.0 2302.000 No.		Freq. MHz 2376.893	Rea Le dE 3 58 3 50	ading evel BuV 3.10	Correct Factor dB -5.02	Mea m dBu 53	asure- ent uV/m 3.08	Limit dBuV/n 74.00	Ove n dB -20.9	Detector 92 peak 55 AVG		ent
2302.000 No.		Freq. MHz 2376.893 2376.893	Rea Le dE 3 58 3 50 0 71	ading evel BuV 3.10	Correct Factor dB -5.02 -5.02	Mea m dBu 53 45	asure- ent uV/m 3.08 5.45	Limit dBuV/r 74.00 54.00	Ove n dB -20.9	Detector peak AVG peak	r Comme	ent
2302.000 No.	Mk.	MHz 2376.893 2376.893 2400.000	Rea Le dE 3 58 3 50 0 71 0 10	ading evel BuV 3.10 0.47	Correct Factor dB -5.02 -5.02 -4.99	Mea m dBi 53 45 66	ent uV/m 3.08 5.45 6.58	Limit dBuV/r 74.00 54.00 74.00	Ove n dB -20.9 -8.5 -7.4	Detector Det	r Comme	ent nit
0.0 2302.0000 No. 1 2 3 4	Mk.	MHz 2376.893 2376.893 2400.000 2402.000	Rea dE dB 3 58 3 50 0 71 0 10	ading evel 3uV 3.10 0.47 1.57 2.55	Correct Factor dB -5.02 -5.02 -4.99 -5.00	Mea m dBu 53 45 66 97	asure- ent uV/m 3.08 5.45 5.58 7.55	dBuV/r 74.00 54.00 74.00 74.00	Ove n dB -20.9 -8.5 -7.4 23.5	Detector peak AVG peak peak peak AVG AVG	No Lim	ent nit

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1 Mbps)		Test Date			4/6/1
Tes	st Frequ			30MHz		Polarization	1		zontal
	Temp)	2	21°C		Hum.		60	0%
30.0 dB	uV/m								
20									
10									
00									
10					$ \parallel$				
30									
70									
io									
in U						5 X			
io 2	ofor definition for the second	gent all the southly have proper and appropriate	anggayar-tafa daga gala.	-symples have been been been been been been been be	-ph-h	MANANA SAMPANAHANA SAMPANAHANAH	sentrous and Alpentra May	handredphorphonocomes of the	an mark and a
50 X	of political profits on the	periodistroniffication per tradegeneralis	raggerger-bl/sadepselve.	-stylphick apol tradistration	what was	harana majahan karana B	southern model from the many	haptaapiatian	way/~yelapak.waxaayaya
50 X X X X X X X X X X X X X X X X X X X	afrikkirtusporturaski	gent of the conflict construction of the const	raggerger-14 parkets solve	-stylpher hypotherists be	were and the state of the state	harana majahan karana B	soulton a more deposit a may	haphabhahannannan militer	and free to grant and the second desired
	afrikkin de vide	gerindestron and the company of the	e majori per-tifi sadajiriyi ku	tripoples to good breakings to	approximately and a second sec	harana majahan karana B	and the control of th	lymphological phone of the second profit for	and agent of the contribution
0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	φνωννή 0 2400.0		2440.00	2460.00		×		haphanphanpanananin'ilan	-4/-√√-√-4/
0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2440.00 Reading	2460.00 Correct	2480.00 25 Measure-	×			
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 2400.0	00 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 25 Measure- ment	500.00 252 Limit	0.00 25 4 Over	0.00	2580.00 M
0 2 2 2 2 2 2 2 2 2 2 3 8 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2400.0	00 2420.00 Freq.	2440.00 Reading Level dBuV	2460.00 Correct Factor dB	2480.00 25 Measure- ment dBuV/m	500.00 252 Limit	0.00 254 Over dB	0.00 Detector	
0 2 2 2 2 2 2 2 2 3 8 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2400.0	00 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 25 Measure- ment	500.00 252 Limit	0.00 25 4 Over	0.00	2580.00 M
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 2400.0	00 2420.00 Freq. MHz 2381.167	2440.00 Reading Level dBuV 54.72	2460.00 Correct Factor dB -5.02	2480.00 25 Measure- ment dBuV/m 49.70	500.00 252 Limit dBuV/m 74.00	0.00 254 Over dB -24.30	0.00 Detector peak	2580.00 M
0 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2400.0 Mk.	00 2420.00 Freq. MHz 2381.167 2381.167	2440.00 Reading Level dBuV 54.72 44.64	2460.00 Correct Factor dB -5.02 -5.02	2480.00 25 Measure- ment dBuV/m 49.70 39.62	600.00 252 Limit dBuV/m 74.00 54.00	0.00 254 Over dB -24.30 -14.38	Detector peak AVG	2580.00 M
0 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 3 3 3	0 2400.0 Mk.	MHz 2381.167 2480.000	2440.00 Reading Level dBuV 54.72 44.64 103.11	2460.00 Correct Factor dB -5.02 -5.02 -4.89	2480.00 25 Measure- ment dBuV/m 49.70 39.62 98.22	600.00 252 Limit dBuV/m 74.00 54.00 74.00	0.00 254 Over dB -24.30 -14.38 24.22	Detector peak AVG peak	2580.00 M Commen

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

		st Mo			BL		(1 Mbr	os)			Test D				24/6/3
	rest	Frequ					2MHz				Polariza				rtical
30.0	dBu∖	Temp					0°C				Hum	1.			9%
- T	ubu.														
120 _															
10															
00															
ıo															
30															
o															
;o _															
io				1											
.0				1 X											
:0				2 X											
20															
0.0															
1000	0.000	2700.0	0 4400	0.00	6100	.00	7800.00	9	500.00	11	200.00	1290	0.00	14600.00	18000.00 MH
No.		Mk.	Freq		Rea Le	ding vel	Corre Facto		Measu men		Limi	t	Ove	r	
			MHz	<u>.</u>	dB		dB	-	dBuV		dBuV/	/m	dB	Detector	Comment
1			4804.0	00	43.	.56	0.88	}	44.4		74.0	0	-29.5		
2		*	4804.0	000	33.	26	0.88	3	34.1	4	54.0	0	-19.8	6 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1 Mbps)		Test Date			4/6/3
Te	est Frequ			02MHz		Polarization	า		zontal
100.0	Temp)	2	20°C		Hum.		69	9%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		2							
30		×							
20									
10.0									
	000 2700.0			7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	43.82	0.88	44.70	74.00	-29.30	peak	
2	*	4804.000	33.32	0.88	34.20	54.00	-19.80	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			BL) (1 Mt					Test E					4/6/3
		Frequ					<u>0MHz</u> 0°C					Polariz		1			rtical
130.0	dBuV	Temp					0-0					Hur	n.			0:	9%
120 _																	
10																	
00																	
90 <u> </u>																	
30																	
70																	
io _																	
50																	
ю				1 X 2													
30 L				×													
20																	
10.0																	
		2700.0			6100		7800.0		9500).00	11	200.00		00.00		00.00	18000.00 MI
No.	N	Лk.	Freq			ding vel	Corr Fac			easu ment		Lim	it	Ov	er		
			MHz	_		uV	dE			BuV/		dBuV	//m	dE	3	Detector	Comment
1			4880.0	00	43	.42	1.0)3		14.45		74.0	00	-29.	55	peak	
2		*	4880.0	000	34	.46	1.0)3	(35.49)	54.0	00	-18.	51	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode Test Frequency			(1 Mbps)		Test Date			4/6/3
				0MHz		Polarization	1		zontal
130.0	Temp)	2	0°C		Hum.		6	9%
130.0	UBU¥7III								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		2							
30		×							
20									
10.0									
	.000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	44.27	1.03	45.30	74.00	-28.70	peak	
2	*	4880.000	34.33	1.03	35.36	54.00	-18.64	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

-		st Mo			BL		(1 Mbp	os)			Test D					4/6/3
		Frequ Temp					<u>0MHz</u> 0°C				Polariza Hum					rtical 9%
130.0	dBuV						0 0				Hull	<u>I.</u>			O.	9 70
120 🗕																
110																
00																
30																
30																
o F																
SO																
50				-												
10				1 X												
				2 X												
30																
20																
10.0																
1000	0.000	2700.0	0 4400	.00	6100	.00	7800.00	9!	500.00	11	200.00	129	00.00	1460	0.00	18000.00 MI
No.	N	Лk.	Freq		Rea Le		Corre Facto		Measu men		Limi	t	Ove	er		
			MHz		dB		dB		dBuV		dBuV	/m	dB	}	Detector	Comment
1			4960.0	00	44.	.73	1.21		45.9	4	74.0	0	-28.0	06	peak	
2		*	4960.0	00	34.	.83	1.21		36.0	4	54.0	0	-17.9	96	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Т	Test				Bl) (1 M					Test D		<u> </u>			24/6/3 zontal	
Test Frequency Temp				2480MHz 20°C					Polarization Hum.						69%			
130.0	dBuV/n						0 0					Tiui	11.				<i>570</i>	
120																		
110																		
100																		
90 <u> </u>																		
30																		
o 🗀																		
io —																		
50				1 X														
10 <u> </u>				2 X														
30				^														
20																		
10.0	000 27	700 00	4400	1 00	6100) NN	7800.	nn	9500	1 00	11	200.00	129	00.00	146	00.00	18000.00 M	4H
No.	MI		Freq		Rea	ding vel	Coi	rect	Me	easu ment	re-	Lim		Ov			70000.00 P	
			MHz	<u> </u>		uV		B		BuV/		dBuV	//m	dE	3	Detector	Commen	nt
1			4960.0	00	44	.01	1.	21	4	45.22	2	74.0	00	-28.	78	peak		
2	*		4960.0	000	34	.43	1.	21	- ;	35.64	1	54.0	00	-18.	36	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode				BLE 5.0 (1 Mbps)					Test Date						2024/5/13			
Test Frequency Temp				2480MHz 23°C					Polarization Hum.						Vertical 66%			
130.0	dBuV/m	ıp					3.0					Hun	11.			Ю	0%	
	ub u 1 1 1 1 1																	
120 _																		
110																		
100																		!
90																		
30																		!
'o																		!
io																		
io 📙																		
10 <u> </u>		X X																
30 L		2 X																
20																		
10.0																		
1800	00.000 1885	0.00	1970	0.00	205	50.00	2140	0.00	2225	0.00	23	00.00		50.00	2480	00.00	26500.00	мн
No.	Mk.		Freq			ding vel		rrect ctor		easur ment		Limi	it	Ov	er			
			MHz			uV		B		3uV/r		dBuV	/m	dE	3	Detector	Commer	nt
1		1	9216.			.30	-6	.96		12.34		74.0		-31.	66	peak		_
2	*	1:	9216.	.00	38	.60	-6	.96	(31.64		54.0	0	-22.	36	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				Bl) (1 M					Test D					4/5/13	
Test Frequency Temp				2480MHz 23°C					Polarization Hum.						Horizontal 66%			
130.0	dBuV/m	ıρ					3 C					Hui	II.			0	0%	
120																		
10																		
00																		
.																		
80																		
ا الأ																		
0																		
io																		
io																		
		1	:															
		2	!															
io -			-															
20																		
0.0	00.000 1885	0.00	1070	00.00	2055	i0.00	21400	1 00	าาาเ	50.00	22	100.00	220	50.00	2400	00.00	26500.00 M	411
No.	Mk.	00.00	Freq			ding		rect		easur		Lim		Ov		JU.UU	26300.00 M	111
110.	IVIA.		1 104	•		vel		ctor		ment		LIIII		OV	0 1			
			MHz	<u>-</u>		uV	d	В	dl	3uV/r	n	dBuV	/m	dE	3	Detector	Commen	nt
1		1	9216.	.00	50	.20	-6	.96		13.24		74.0	0	-30.	76	peak		
2	*	1	9216.	.00	39	.40	-6	.96	(32.44		54.0	0	-21.	56	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

3 L L		Report No.: BTL-FCCP-2-2404T114
	A DDENDIV D	
	APPENDIX D	OUTPUT POWER

Project No.: 2404T114 Page 37 of 38 Report Version: R00

Report No.: BTL-FCCP-2-2404T114

Test Mode :	BLE 5.0 (1Mbps)	Tested Date	2024/5/20
	` ' '		

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	5.63	0.0037	30.00	1.0000	Pass
2440	5.72	0.0037	30.00	1.0000	Pass
2480	5.35	0.0034	30.00	1.0000	Pass

End of Test Report

Project No.: 2404T114 Page 38 of 38 Report Version: R00