

FCC PART 22 TEST REPORT

Part 22H Subpart E

 Report Reference No.
 HK2304031237-3E

 FCC ID.
 2AVKP-BF-A50G

Compiled by

(position+printedname+signature)..: File administrators Gary Qian

Supervised by

(position+printedname+signature)...: Technique principal Eden Hu

Approved by

(position+printedname+signature)...: Manager Jason Zhou

Date of issue: Apr. 14, 2023

Testing Laboratory Name Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Address.....: Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong,

China

Applicant's name SHENZHEN BOVISION TECHNOLOGY CO.,LTD.

street, longgang district, shenzhen, China

Test specification::

Standard FCC CFR Title 47 Part 2, Part 22H

TRF Originator Shenzhen HUAK Testing Technology Co., Ltd.

Shenzhen HUAK Testing Technology Co., Ltd.All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd.as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd.takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description....: Solar 4G LTE Cellular Security Camera

Trade Mark.....: N/A

Manufacturer SHENZHEN BOVISION TECHNOLOGY CO.,LTD.

Model/Type reference.....: BF-A50G

BF-A40G, BF-A60G, BF-A70G, BF-A80G, BF-B10G, BF-B20G, BF-B30G, BF-B40G, BF-B50G, BF-B60G, BF-B70G, BF-B80G,

6100C-4G

Modulation Type: QPSK,16QAM

Rating...... DC 5V from Type-C or 3.7V from Battery

Hardware version.....: V1.0
Software version....: V1.0

Result · PASS

Page 2 of 27

TESTREPORT

10000	March County	1000
Test Report No. :	HK2304031237-3E	Apr. 14, 2023
rest Report No	11K2304031237-3L	Date of issue

Equipment under Test : Solar 4G LTE Cellular Security Camera

Model /Type : BF-A50G

: BF-A40G, BF-A60G, BF-A70G, BF-A80G, BF-B10G, BF-

Report No.: HK2304031237-3E

Series Models B20G, BF-B30G, BF-B40G, BF-B50G, BF-B60G, BF-B70G, BF-B80G, S2-4G, C20, C20US, C20EU, C20JP,

000ALL 0A 00000 40 0A 04000 40

C20AU, CA-6000C-4G, CA-6100C-4G

Applicant : SHENZHEN BOVISION TECHNOLOGY CO.,LTD.

Address : 2nd floor, building G, no. 8, shangxue industrial park,

bantian street, longgang district, shenzhen, China

Manufacturer SHENZHEN BOVISION TECHNOLOGY CO.,LTD.

Address 2nd floor, building G, no. 8, shangxue industrial park,

bantian street, longgang district, shenzhen, China

TNG	TING	TING	TING	-m ^G	TING
Ep.	Test Result:	"LIKTES"		PASS	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 27

** Modified History **

Report No.: HK2304031237-3E

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Apr. 14, 2023	Jason Zhou

Contents

TNG	No.	3 3 3 3 3 3	-101
General Remarks			
Product Description			
Equipment under Test			
Normal Accessory Setting	TING		
EUT Configuration	CTES THE		
Related Submittal(s) / Grai	nt (s)		
Modifications	HUMINA		
GeneralTest Conditions/Co	onfigurations		
General rest Conditions/Co	omigurations		
TEST ENVIRONMEN	<u> IT51^{MC}</u>	<u></u>	
Information of the Test Lal	boratory		
Environmental Conditions			
Test Description			
Equipments Used During	The Test		
THAK IL			
TEST CONDITIONS	AND DECILITE		
TEST CONDITIONS	AND RESULTS	Din	 • • •
Output Power	TESTIVE		
Peak-to-Average Ratio (PA			
Occupied Bandwidth and	Emission Bandwidth		
Band Edge Compliance			
Spurious Emssionon Ante			
Radiated Spurious Emssion	on Estime		
Frequency Stability			

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REGULATIONS.

FCC Part 22Subpart H:PRIVATE LAND MOBILE RADIO SERVICES.

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.

FCC KDB 971168D01 v03r01 Power Meas License Digital Systems.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TESTING TESTING

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Apr. 03, 2023
STING STING		STING STING
M. MAKIL	10	The same of the sa
Testing commenced on	(E).	Apr. 03, 2023
TUBE	16	Lunc
Testing concluded on	HINEY.	Apr. 14, 2023

2.2 Product Description

Solar 4G LTE Cellular Security Camera BF-A50G	(6)
BF-A50G	
B30G, BF-B40G, BF-B50G, BF-B60G, BF-B70G, BF-B80G, S2-4G,	
All model's the function, software and electric circuit are the same, of model named different. Test sample model: BF-A50G.	nly
DC 5V from Type-C or 3.7V from Battery	
QPSK,16QAM	
External Antenna	
LTE BAND 5	
LTE BAND 5:824~849 MHz	
R8	
-30°C to +50°C	
4.5VDC to 5.5VDC (nominal: 5.0VDC)	
	BF-A40G, BF-A60G, BF-A70G, BF-A80G, BF-B10G, BF-B20G, BF-B30G, BF-B40G, BF-B50G, BF-B60G, BF-B70G, BF-B80G, S2-4G, C20, C20US, C20EU, C20JP, C20AU, CA-6000C-4G, CA-6100C-4C All model's the function, software and electric circuit are the same, o model named different. Test sample model: BF-A50G. DC 5V from Type-C or 3.7V from Battery QPSK,16QAM External Antenna LTE BAND 5 LTE BAND 5 LTE BAND 5:824~849 MHz R8 -30°C to +50°C

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	(120V/ 60 Hz	0	115V/60Hz	. 147
W How		12 V DC	0	24 V DC	(B)
		Other (specified in blan	k below)	

DC 5V from Type-C or 3.7V from Battery

2.4 Normal Accessory Setting

Fully charged battery was used during the test.

AHOA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.5 EUT Configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	/	
LILIN	TESTIN	Shield :	/	TESTING
	CATING THUMP	Detachable :	1	THAK!
0	Multimeter	Manufacturer:	/	WAKTE WAKTE
		Model No.:	/	

2.6 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended filing to comply with FCC Part 22H, Rules.

2.7 Modifications

No modifications were implemented to meet testing criteria.

2.8 GeneralTest Conditions/Configurations

2.10.1 Test Environment

EnvironmentParameter	SelectedValuesDuringTests			
Relative Humidity	Amb	ient		
Temperature	TN	Ambient		
THE THE PHO	VL MG MHO	4.5V		
Voltage	VN WEST	5.0V		
HUAR. HUM	VH	5.5V		

NOTE:VL=lowerextreme testvoltageVN=nominalvoltage VH=upperextreme testvoltageTN=normaltemperature

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3 TEST ENVIRONMENT

3.1 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

3.2 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
STING	STING
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.3 Test Description

Band 5 (824~849 MHz)

Test Item	FCCRuleNo.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913(a)(2)	EIRP ≤ 2W	Pass
Peak-Average Ratio	§24.232(d)	FCC:Limit≤13dB	Compliance *
Modulation Characteristics	§2.1047	Digital modulation	Compliance *
Bandwidth	§2.1049	OBW: Nolimit. EBW: Nolimit.	Compliance *
Band Edges §2.1051, Compliance §24.238		≤ -13dBm/1%*EBW, In1MHz bands immediately outside and adjacent to Thefrequency block.	Compliance *
Spurious Emission at \$2.1051, AntennaTerminals \$24.238		≤-13dBm/1MHz, from9kHz to 10th harmonics but outside authorized Operating frequency ranges.	Compliance *
Field Strength of Spurious Radiation Clause 7of KDB971168 D01 v02r02		≤ -13dBm/1MHz.	Pass
\$2.1055, Frequency Stability \$22.355, \$24.235		FCC:within authorized frequency block.	Compliance *

NOTE 1:For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested", the "compliance * Test data refers to FCC ID: XMR201909EC25AFX, and report number is: R1907A0408-R1V1.

Remark:

1. The measurement uncertainty is not included in the test result.

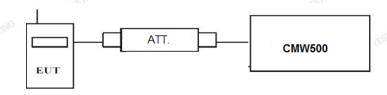
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3.4 Equipments Used During The Test

MALIN _ MAKE		JAK TE JUAK		LOK TES	MAK
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibratior Due Date
LISN	R&S	ENV216	HKE-059	2023/02/17	2024/02/16
LISN	R&S	ENV216	HKE-002	2023/02/17	2024/02/16
Receiver	R&S	ESCI 7	HKE-010	2023/02/17	2024/02/16
Spectrum analyzer	R&S	FSP40	HKE-025	2023/02/17	2024/02/16
Spectrum analyzer	Agilent	N9020A	HKE-048	2023/02/17	2024/02/16
RF automatic control unit	Tonscend	JS0806-1	HKE-060	2023/02/17	2024/02/16
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	2023/02/17	2024/02/16
Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	2023/02/17	2024/02/10
Horn antenna	Schwarzbeck	9120D	HKE-013	2023/02/17	2024/02/10
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	2023/02/17	2024/02/1
Preamplifier	EMCI	EMC051845SE	HKE-015	2023/02/17	2024/02/1
Preamplifier	Agilent	83051A	HKE-016	2023/02/17	2024/02/1
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	2023/02/17	2024/02/1
Temperature and humidity meter	Boyang	HTC-1	HKE-075	2023/02/17	2024/02/1
High-low	aNG	TNG.	TNG	an/G	THE
temperature chamber	Guangke	HT-80L	HKE-118	2023/02/17	2024/02/1
High pass filter unit	Tonscend	JS0806-F	HKE-055	2023/02/17	2024/02/1
RF Cable(below1GHz)	Times	9kHz-1GHz	HKE-117	2023/02/17	2024/02/1
RF Cable(above	Times	1-40G	HKE-034	2023/02/17	2024/02/1
Power meter	Agilent	E4419B	HKE-085	2023/02/17	2024/02/1
Power Sensor	Agilent	E9300A	HKE-086	2023/02/17	2024/02/1
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A
RF test software	Tonscend	JS1120-4	HKE-113	N/A	N/A
RF test software	Tonscend	JS1120-3	HKE-114	N/A	N/A
RF test software	Tonscend	JS1120-1	HKE-115	N/A	N/A
Wireless Communication Test Set	R&S	CMW500	HKE-026	2023/02/17	2024/02/1
Wireless Communication Test Set	R&S	CMU200	HKE-029	2023/02/17	2024/02/1
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	2023/02/17	2024/02/1
Horn antenna	Schwarzbeck	9120D	HKE-135	2023/02/17	2024/02/1
					2024/02/1
<u> </u>					2024/02/1
					2024/02/1
	•				2024/02/1
High gain antenna Broadband antenna Signal generator Signal generator	Schwarzbeck Schwarzbeck Agilent Agilent	LB-180400KF VULB 9163 E4433B E4421B	HKE-128 HKE-087 HKE-120 HKE-121	2023/02/17 2023/02/17 2023/02/17 2023/02/17	2024/02 2024/02

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

4.1.1 Coducted Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

TEST CONFIGURATION

TEST PROCEDURE

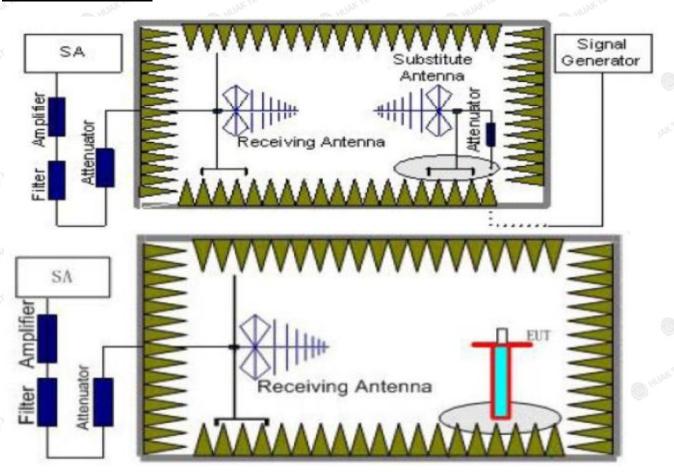
Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display CMW500, and then test.

TEST RESULTS

Test data refers to FCC ID: XMR201909EC25AFX, and report number is: R1907A0408-R1V1.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



4.1.2. Radiated Output Power

LIMIT

This is the test for the maximum radiated power from the EUT. Rule Part 22H.232(b) specifies, "Mobile/portable stations are limited to 7 watts e.i.r.p.

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.1 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 0.1m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver.

- 5. reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

 The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} P_{cl}+ G_a

 We used SMF100A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=P_{Mea}- P_{cl}+ G_a
- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Radiated Measurement:

Remark:

- 1. We measured all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5; recorded worst case for each Channel Bandwidth of LTE FDD Band 5.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Aq}(dB)+G_a(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. We measured both Horizontal and Vertical direction, recorded worst case direction.

LTE FDDBand 5_Channel Bandwidth 1.4MHz_QPSK

TE	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Aq} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	824.7	-18.79	2.42	8.45	36.82	24.06	21.91	38.45	14.39	V
	836.5	-17.15	3.46	8.45	36.82	24.66	22.51	38.45	13.79	V
3	848.3	-18.69	2.53	8.36	36.82	23.96	21.81	38.45	14.49	V

LTE FDDBand 5_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Aq} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
825.5	-19.04	2.42	8.45	36.82	23.81	21.66	38.45	14.64	V
836.5	-15.67	3.46	8.45	36.82	26.14	23.99	38.45	12.31	V
847.5	-18.89	2.53	8.36	36.82	23.76	21.61	38.45	14.69	V

LTE FDD Band 5 Channel Bandwidth 5MHz QPSK

16	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	826.5	-18.25	2.42	8.45	36.82	24.6	22.45	38.45	13.85	V
	836.5	-16.66	3.46	8.45	36.82	25.15	23	38.45	13.3	V
	846.5	-18.33	2.53	8.36	36.82	24.32	22.17	38.45	14.13	V

LTE FDD Band 5 Channel Bandwidth 10MHz QPSK

	aa. <u></u> a.		macri Tomm	~. •			- 43	A	. 11. 1
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.0	-13.99	2.42	8.45	36.82	28.86	26.71	38.45	9.59	V
836.5	-17.59	3.46	8.45	36.82	24.22	22.07	38.45	14.23	VG
844.0	-18.38	2.53	8.36	36.82	24.27	22.12	38.45	14.18	V

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

LTE FDD Band 5_Channel Bandwidth 1.4MHz_16QAM

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Aq} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	824.7	-17.29	2.42	8.45	36.82	25.56	23.41	38.45	12.89	V
X	836.5	-16.86	3.46	8.45	36.82	24.95	22.8	38.45	13.5	WAKTO
	848.3	-17.32	2.53	8.36	36.82	25.33	23.18	38.45	13.12	V

LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Aq} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
>	825.5	-18.13	2.42	8.45	36.82	24.72	22.57	38.45	13.73	V
	836.5	-16.77	3.46	8.45	36.82	25.04	22.89	38.45	13.41	V
	847.5	-17.9	2.53	8.36	36.82	24.75	22.6	38.45	13.7	TESTINY (III)

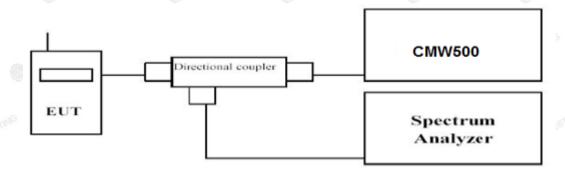
LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Aq} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	826.5	-17.15	2.42	8.45	36.82	25.7	23.55	38.45	12.75	V
H	836.5	-16.75	3.46	8.45	36.82	25.06	22.91	38.45	13.39	AUPAGE V
	846.5	-16.89	2.53	8.36	36.82	25.76	23.61	38.45	12.69	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM

,,_,					4000	DO.	-0.00		
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Aq} (dB)	EIRP (dBm)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.0	-17.02	2.42	8.45	36.82	25.83	23.68	38.45	12.62	V
836.5	-16.86	3.46	8.45	36.82	24.95	22.8	38.45	13.5	V M
844.0	-17	2.53	8.36	36.82	25.65	23.5	38.45	12.8	NKTES! V

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



4.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

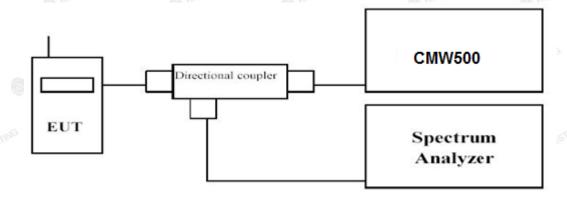
TEST PROCEDURE

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function:
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms;
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Test data refers to FCC ID: XMR201909EC25AFX, and report number is: R1907A0408-R1V1.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



4.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

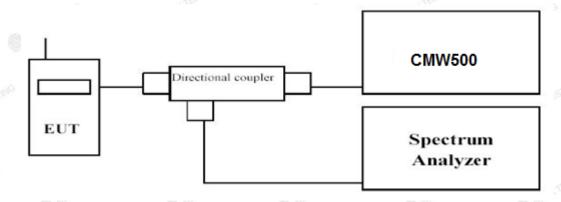
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBWwas set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth isthe delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

Test data refers to FCC ID: XMR201909EC25AFX, and report number is: R1907A0408-R1V1.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



4.4 Band Edge Compliance

LIMIT

Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

TEST CONFIGURATION

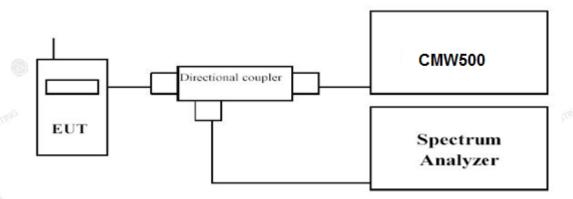
TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowestand highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum.

TEST RESULTS

Test data refers to FCC ID: XMR201909EC25AFX, and report number is: R1907A0408-R1V1.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



4.5 Spurious Emssionon Antenna Port

LIMIT

Per FCC §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

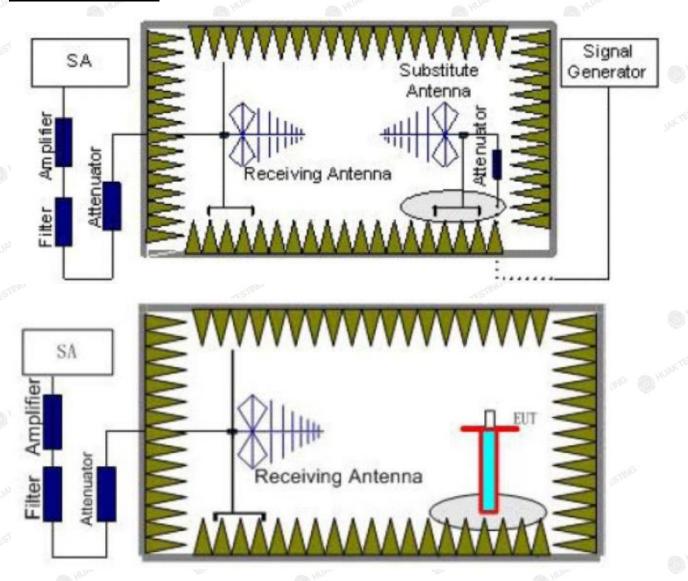
The EUT was setup according to EIA/TIA 603D.

- a. Place the EUT on a bench and set it in transmitting mode.
- Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
LTE FDD Band 5	0.01~20	1 MHz	3 MHz	Auto

TEST RESULTS

Test data refers to FCC ID: XMR201909EC25AFX, and report number is: R1907A0408-R1V1.



4.6 Radiated Spurious Emssion

TEST APPLICABLE

Per FCC §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.1 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 0.1m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

- The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set
 Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be
 recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below:

Power(EIRP)=P_{Mea}- P_{Ag} - P_{cl}+ G_a

- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
LTE BAND 5	0.03~1	100KHz	300KHz	10
LIE DAND 3	1~20	1 MHz	3 MHz	2

TEST LIMITS

According to 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
.6	Low	30MHz -20GHz	PASS
LTE BAND 5	Middle	30MHz -20GHz	PASS
HUAK	High	30MHz -20GHz	PASS

Radiated Measurement:

Remark:

- 1. We measured all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE BAND 5; recorded worst case for each Channel Bandwidth of LTE BAND 5.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. Not recorded other points as values lower than limits
- 4. Margin = Limit EIRP

LTE FDDBand 5_Channel Bandwidth 1.4MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1649.4	-43.01	3.00	3.00	9.58	-36.43	-13.00	23.43	Н
2474.1	-43.55	3.03	3.00	10.72	-35.86	-13.00	22.86	H
1649.4	-42.6	3.00	3.00	9.68	-35.92	-13.00	22.92	V
2474.1	-41.48	3.03	3.00	10.72	-33.79	-13.00	20.79	WAK V

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel

TE	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1673.0	-42.73	3.00	3.00	9.58	-36.15	-13.00	23.15	Н
	2509.5	-43.19	3.03	3.00	10.72	-35.5	-13.00	22.5	Н
	1673.0	-43.02	3.00	3.00	9.68	-36.34	-13.00	23.34	V
	2509.5	-42.06	3.03	3.00	10.72	-34.37	-13.00	21.37	V

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK_ High Channel

Fr	requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
W.T	1696.6	-41.76	3.00	3.00	9.58	-35.18	-13.00	22.18	W TESH
Home	2544.9	-42.85	3.03	3.00	10.72	-35.16	-13.00	22.16	AUTH H
	1696.6	-42.92	3.00	3.00	9.68	-36.24	-13.00	23.24	V
TIN	2544.9	-42.25	3.03	3.00	10.72	-34.56	-13.00	21.56	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1651.0	-43.62	3.00	3.00	9.58	-37.04	-13.00	24.04	THE BOTTOM
2476.5	-43.59	3.03	3.00	10.72	-35.9	-13.00	22.9	AKTES H
1651.0	-42.73	3.00	3.00	9.68	-36.05	-13.00	23.05	V
2476.5	-41.48	3.03	3.00	10.72	-33.79	-13.00	20.79	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK_ Middle Channel

114	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1673.0	-42.4	3.00	3.00	9.58	-35.82	-13.00	22.82	Н
<	2509.5	-43.1	3.03	3.00	10.72	-35.41	-13.00	22.41	Н
	1673.0	-43.11	3.00	3.00	9.68	-36.43	-13.00	23.43	TIME V
	2509.5	-42.21	3.03	3.00	10.72	-34.52	-13.00	21.52	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1695.0	-43.02	3.00	3.00	9.58	-36.44	-13.00	23.44	Н
2542.5	-42.53	3.03	3.00	10.72	-34.84	-13.00	21.84	Н
1695.0	-43.64	3.00	3.00	9.68	-36.96	-13.00	23.96	V
2542.5	-42.33	3.03	3.00	10.72	-34.64	-13.00	21.64	V

LTE FDDBand 5_Channel Bandwidth 5MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1653.0	-42.84	3.00	3.00	9.58	-36.26	-13.00	23.26	Н
2479.5	-43.55	3.03	3.00	10.72	-35.86	-13.00	22.86	Н
1653.0	-42.53	3.00	3.00	9.68	-35.85	-13.00	22.85	V
2479.5	-40.67	3.03	3.00	10.72	-32.98	-13.00	19.98	MAK V

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK_ Middle Channel

TE	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1673.0	-43.19	3.00	3.00	9.58	-36.61	-13.00	23.61	Н
>	2509.5	-42.27	3.03	3.00	10.72	-34.58	-13.00	21.58	Н
	1673.0	-43.55	3.00	3.00	9.68	-36.87	-13.00	23.87	V
	2509.5	-41.58	3.03	3.00	10.72	-33.89	-13.00	20.89	V W

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1693.0	-42.5	3.00	3.00	9.58	-35.92	-13.00	22.92	W.TESH
2539.5	-43.24	3.03	3.00	10.72	-35.55	-13.00	22.55	Н
1693.0	-42.96	3.00	3.00	9.68	-36.28	-13.00	23.28	V
2539.5	-42.13	3.03	3.00	10.72	-34.44	-13.00	21.44	V

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ Low Channel

Fı	requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1658.0	-43.27	3.00	3.00	9.58	-36.69	-13.00	23.69	THE HAME
	2487.0	-43.25	3.03	3.00	10.72	-35.56	-13.00	22.56	OK TEST H
Ba HU	1658.0	-42.71	3.00	3.00	9.68	-36.03	-13.00	23.03	V
20	2487.0	-41.08	3.03	3.00	10.72	-33.39	-13.00	20.39	V

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.0	-43.25	3.00	3.00	9.58	-36.67	-13.00	23.67	Н
2509.5	-42	3.03	3.00	10.72	-34.31	-13.00	21.31	Н
1673.0	-42.82	3.00	3.00	9.68	-36.14	-13.00	23.14	TING V
2509.5	-41.38	3.03	3.00	10.72	-33.69	-13.00	20.69	V

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ High Channel

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
8	1688.0	-43.17	3.00	3.00	9.58	-36.59	-13.00	23.59	Н
	2532.0	-43.65	3.03	3.00	10.72	-35.96	-13.00	22.96	Н
	1688.0	-43.2	3.00	3.00	9.68	-36.52	-13.00	23.52	V
	2532.0	-41.21	3.03	3.00	10.72	-33.52	-13.00	20.52	Vo

LTE FDD Band 5_Channel Bandwidth 1.4MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1649.4	-42.4	3.00	3.00	9.58	-35.82	-13.00	22.82	Н
2474.1	-43.29	3.03	3.00	10.72	-35.6	-13.00	22.6	H
1649.4	-42.64	3.00	3.00	9.68	-35.96	-13.00	22.96	V
2474.1	-41.47	3.03	3.00	10.72	-33.78	-13.00	20.78	WAK

LTE FDD Band 5_Channel Bandwidth 1.4MHz_16QAM _ Middle Channel

16	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1673.0	-43.14	3.00	3.00	9.58	-36.56	-13.00	23.56	Н
	2509.5	-42.39	3.03	3.00	10.72	-34.7	-13.00	21.7	Н
	1673.0	-43.34	3.00	3.00	9.68	-36.66	-13.00	23.66	V
	2509.5	-41.51	3.03	3.00	10.72	-33.82	-13.00	20.82	TESTIV W

LTE FDDBand 5_Channel Bandwidth 1.4MHz_16QAM _ High Channel

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1696.6	-41.86	3.00	3.00	9.58	-35.28	-13.00	22.28	W TESH
H	2544.9	-42.93	3.03	3.00	10.72	-35.24	-13.00	22.24	Н
	1696.6	-43.03	3.00	3.00	9.68	-36.35	-13.00	23.35	V
	2544.9	-41.42	3.03	3.00	10.72	-33.73	-13.00	20.73	V

LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1651.0	-42.59	3.00	3.00	9.58	-36.01	-13.00	23.01	THE HOLL
2476.5	-43.87	3.03	3.00	10.72	-36.18	-13.00	23.18	OK TEST H
1651.0	-43.06	3.00	3.00	9.68	-36.38	-13.00	23.38	V
2476.5	-41.31	3.03	3.00	10.72	-33.62	-13.00	20.62	V

LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM _ Middle Channel

H	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
Г	1673.0	-42.03	3.00	3.00	9.58	-35.45	-13.00	22.45	Н
180	2509.5	-43.57	3.03	3.00	10.72	-35.88	-13.00	22.88	H H
	1673.0	-43.45	3.00	3.00	9.68	-36.77	-13.00	23.77	V
	2509.5	-40.75	3.03	3.00	10.72	-33.06	-13.00	20.06	V

LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1695.0	-43.13	3.00	3.00	9.58	-36.55	-13.00	23.55	Н
2542.5	-43.15	3.03	3.00	10.72	-35.46	-13.00	22.46	Н
1695.0	-42.57	3.00	3.00	9.68	-35.89	-13.00	22.89	V
2542.5	-42.09	3.03	3.00	10.72	-34.4	-13.00	21.4	VG

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1653.0	-42.27	3.00	3.00	9.58	-35.69	-13.00	22.69	Н
2479.5	-43.25	3.03	3.00	10.72	-35.56	-13.00	22.56	Н
1653.0	-42.27	3.00	3.00	9.68	-35.59	-13.00	22.59	V
2479.5	-41.87	3.03	3.00	10.72	-34.18	-13.00	21.18	WAK V

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM _ Middle Channel

TE	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1673.0	-42.11	3.00	3.00	9.58	-35.53	-13.00	22.53	Н
	2509.5	-42.31	3.03	3.00	10.72	-34.62	-13.00	21.62	Н
	1673.0	-42.7	3.00	3.00	9.68	-36.02	-13.00	23.02	V
	2509.5	-41.29	3.03	3.00	10.72	-33.6	-13.00	20.6	TESTIV W

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1693.0	-42.8	3.00	3.00	9.58	-36.22	-13.00	23.22	W TESH
2539.5	-42.58	3.03	3.00	10.72	-34.89	-13.00	21.89	H H
1693.0	-43.07	3.00	3.00	9.68	-36.39	-13.00	23.39	V
2539.5	-41.82	3.03	3.00	10.72	-34.13	-13.00	21.13	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM _ Low Channel

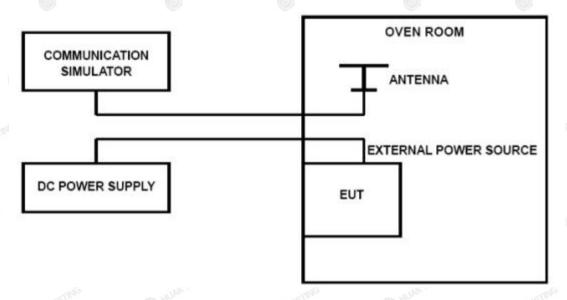
	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1658.0	-42.36	3.00	3.00	9.58	-35.78	-13.00	22.78	THE HATT
	2487.0	-43.13	3.03	3.00	10.72	-35.44	-13.00	22.44	OK TES H
	1658.0	-42.87	3.00	3.00	9.68	-36.19	-13.00	23.19	V
2	2487.0	-41.77	3.03	3.00	10.72	-34.08	-13.00	21.08	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM _ Middle Channel

114	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1673.0	-42.46	3.00	3.00	9.58	-35.88	-13.00	22.88	Н
<	2509.5	-42.93	3.03	3.00	10.72	-35.24	-13.00	22.24	Н
	1673.0	-42.7	3.00	3.00	9.68	-36.02	-13.00	23.02	STING V
	2509.5	-41.08	3.03	3.00	10.72	-33.39	-13.00	20.39	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1688.0	-42.12	3.00	3.00	9.58	-35.54	-13.00	22.54	Н
2532.0	-42.74	3.03	3.00	10.72	-35.05	-13.00	22.05	Н
1688.0	-43.08	3.00	3.00	9.68	-36.4	-13.00	23.4	V
2532.0	-42.18	3.03	3.00	10.72	-34.49	-13.00	21.49	VG



4.7 Frequency Stability

LIMIT

According to §24.235, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D.

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30 ℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE Band 5, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure.

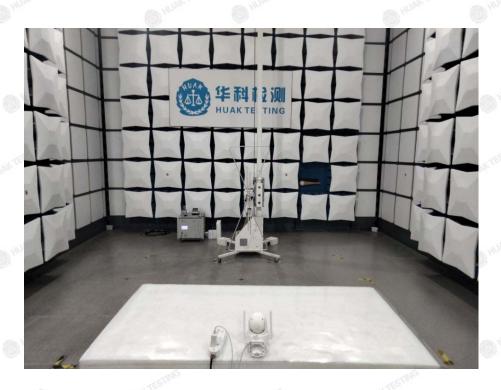
Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, recordthe maximum frequency change.

TEST RESULTS

Test data refers to FCC ID: XMR201909EC25AFX, and report number is: R1907A0408-R1V1.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

5 TEST SETUP PHOTOS OF THE EUT

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6 EXTERNAL AND INTERNALPHOTOS OF THE EUT

Reference to the report :ANNEX A of external photos and ANNEX B ofinternal photos.

HUAK TESTING	End of	Report	MONTESTING	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.