

TEST REPORT

FCC PART 15.247

Report Reference No.: CTL2411191033-WF01

Compiled by:

(position+printed name+signature)

Tested by:

(position+printed name+signature)

Approved by:

(position+printed name+signature)

Happy Guo (File administrators)

Wuqiang Wu (Test Engineer)

Ivan Xie (Manager)

Product Name: laptop

Model/Type reference: T1568

T1567

Trade Mark..... N/A

FCC ID...... 2BAGV-T1568

Applicant's name Shenzhen Forwell Electronics Technology Co., Ltd.

2nd Floor, Building A, Shatang Beifangyongfa Science and

Address of applicant Technology Park, Jincheng Rd., Shajing, Baoan

Shenzhen, Guangdong, 518125 China

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification.....:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of receipt of test item: Nov. 22, 2024

Date of Test Date...... Nov. 22, 2024-Jan. 08, 2025

Date of Issue Jan. 09, 2025

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL2411191033-WF01	Jan. 09, 2025		
		Date of issue		

Equipment under Test : laptop

Sample No : CTL2411191033

Model /Type : T1568

Listed Models : T140R, T140H, T156R, T156H, T160H, T160R, T173R,

T173H, T1567

Applicant : Shenzhen Forwell Electronics Technology Co., Ltd.

Address : 2nd Floor, Building A, Shatang Beifangyongfa Science and

Technology Park, Jincheng Rd., Shajing, Baoan

Shenzhen, Guangdong, 518125 China

Manufacturer : Shenzhen Forwell Electronics Technology Co., Ltd.

Address 2nd Floor, Building A, Shatang Beifangyongfa Science and

Technology Park, Jincheng Rd., Shajing, Baoan

Shenzhen, Guangdong, 518125 China

Test result	Pass *
Test result	Pass *

^{*}In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

The device (Product Name: laptop) Models Name: T1568, T140R, T140H, T156R, T156H, T160H, T160R, T173R, T173H, T1567 have same electrical, PCB and BOM, only the colour and model's names are different for marketing requirements.

** Modified History **

Report No.: CTL2411191033-WF01

Revisions	Description	Issued Data	Report No.	Remark	
Version 1.0	Initial Test Report Release	2025-01-09	CTL2411191033-WF01	Tracy Qi	
		B		-	
		Barre .			
		1000			
				De 10	
1/2	0 0			Barn .	
- 1					
- 1	Marie W		100		

	lable of Contents	Page
1. SUI	MMARY	5
1.1.	TEST STANDARDS	5
1.2.	TEST DESCRIPTION	5
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GEI	NERAL INFORMATION	8
2.1.	Environmental conditions	8
2.2.	GENERAL DESCRIPTION OF EUT	8
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	9
2.4.	EQUIPMENTS USED DURING THE TEST	10
2.5.	RELATED SUBMITTAL(S) / GRANT (S)	10
2.6.	Modifications	10
3. TES	ST CONDITIONS AND RESULTS	11
3.1.	CONDUCTED EMISSIONS TEST	11
3.2.	RADIATED EMISSIONS AND BAND EDGE	14
3.3.	MAXIMUM PEAK OUTPUT POWER	24
3.4.	20dB Bandwidth	25
3.5.	Frequency Separation	26
3.6.	NUMBER OF HOPPING FREQUENCY	27
3.7.	TIME OF OCCUPANCY (DWELL TIME)	28
3.8.	Out-of-band Emissions	
3.9.	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	30
3.10.	Antenna Requirement	
4. TES	ST SETUP PHOTOS OF THE EUT	32
E DI 14	OTOS OF THE SHIT	24

Page 4 of 48

V1.0 Page 5 of 48 Report No.: CTL2411191033-WF01

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid SysteKI that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

FCC PART 15.247				
FCC Part 15.207	AC Power Conducted Emission	PASS		
FCC Part 15.247(a)(1)(i)	20dB Bandwidth	PASS		
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS		
FCC Part 15.247(b)	Maximum Peak Output Power	PASS		
FCC Part 15.247(b)	Pseudorandom Frequency Hopping Sequence	PASS		
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency& Time of Occupancy	PASS		
FCC Part 15.247(a)(1)	Frequency Separation	PASS		
FCC Part 15.205/15.209	Radiated Emissions	PASS		
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS		
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS		

V1.0 Page 6 of 48 Report No.: CTL2411191033-WF01

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011 Shahexi Road, Nanshan District, Shenzhen, China 518055

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±1.60 dB	(1)
Occupied Bandwidth	±0.20ppm	(1)
Radiated Emission 9KHz~30MHz	±3.40dB	(1)

Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance 0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95%

⁽²⁾ confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C		
Relative Humidity:	55 %		
Air Pressure:	101 kPa		

2.2. General Description of EUT

Product Name:	laptop
Model/Type reference:	T1568
Power supply:	AC100V/60Hz&Powered by a 11.4V DC battery
Adapter information:	MODEL: JHD-AD065B-190342BA-A
	INPUT: 100-240V,50/60Hz 1.5A
	OUTPUT: 19V===3.42A 64.98W
Bluetooth:	
Version:	Supported BR/EDR
Modulation:	GFSK, Pi/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	ANT1: FPC Antenna
7	ANT2: FPC Antenna
Antenna gain:	ANT1: 1.35dBi ANT2: 1.37dBi

Note 1: For more details, please refer to the user's manual of the EUT. Note 2: Antenna gain provided by the applicant.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
	1000
38	2440
39	2441
40	2442
P	
77	2479
78	2480

Preliminary tests were performed in each mode and packet length of BT, and found worst case as bellow, finally test were conducted at those mode and recorded in this report.

Test IteKI	Worst case		
Conducted Emissions	Charging mode		
Radiated Emissions and Band Edge	DH5		
Maximum Conducted Output Power	DH5/2DH5/3DH5		
20dB Bandwidth	DH5/2DH5/3DH5		
Frequency Separation	DH5/2DH5/3DH5 Middle channel		
Number of hopping frequency	DH5/2DH5/3DH5		
Time of Occupancy (Dwell Time)	DH1/DH3/DH5 Middle channel 2DH1/2DH3/2DH5 Middle channel 3DH1/3DH3/3DH5 Middle channel		
Out-of-band Emissions	DH5/2DH5/3DH5		

There was 3 test Modes. TM1 to TM3 were shown below:

TM1 : Operate in Bluetooth mode;TM2 : Operate in Charging mode;

TM3 : Idle mode.

***Note:

1. All test modes were tested, but we only recorded the worst case in this report.

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.		Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ESH2-Z5		860014/010	2024/04/30	2025/04/29
Double cone logarithmic antenna	Schwarzbeck	VULB 9168		824	2023/02/13	2026/02/12
EMI Test Receiver	R&S	ESC	CI	1166.5950.03	2024/04/30	2025/04/29
Spectrum Analyzer	Agilent	N902	20A	US46220290	2024/05/02	2025/05/01
Spectrum Analyzer	Keysight	N902	20A	MY53420874	2024/05/02	2025/05/01
Horn Antenna	Sunol Sciences Corp.	DRH-	118	A062013	2024/12/21	2025/12/20
Active Loop Antenna	Da Ze	ZN30900A		/	2024/04/30	2025/04/29
Amplifier	Agilent	8449B		3008A02306	2024/04/30	2025/04/29
Amplifier	Brief&Smart	LNA-4018		2104197	2024/05/03	2025/05/02
Temperature/Humi dity Meter	Ji Yu	MC501		/	2024/05/04	2025/05/03
Power measurement module	TSTPASS	TSPS2023R		TSCB220016	2024/05/03	2025/05/02
Power Sensor	Agilent	U202	1XA	MY53340004	2024/05/04	2025/05/03
Power Sensor	Agilent	U202	1XA	MY54080012	2024/05/03	2025/05/02
Spectrum Analyzer	RS	FSP		1164.4391.38	2024/05/03	2025/05/02
Test Software						
Name of Software				Ve	ersion	6.
TST-PASS			V2.0			
EZ_EMC(Below 1GHz)			V1.1.4.2			
EZ_EMC((Above 1GHz)		V1.1.4.2				

2.5. Related Submittal(s) / Grant (s)

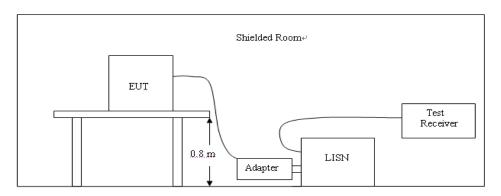
This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

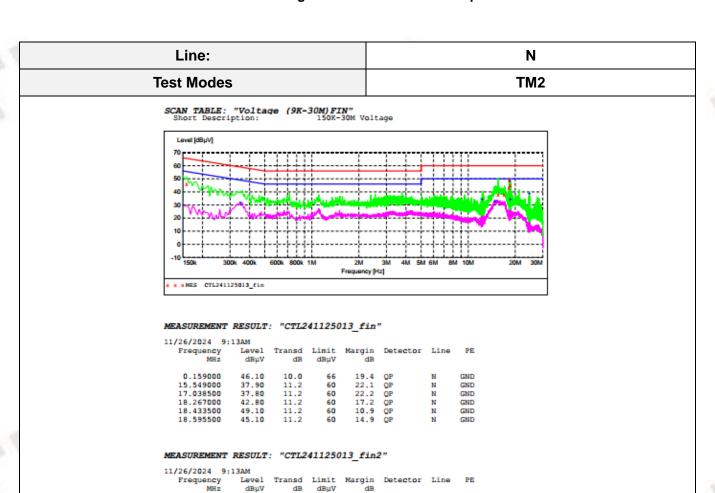

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fragues ou ronge (MIII-)	Limit (dBuV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION


TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a Speaker; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

V1.0 Page 12 of 48 Report No.: CTL2411191033-WF01

TEST RESULTS

Line:							L	
Test Modes						Т	M2	
SCAN TABLE: "Short Descript	Voltage (9K-	-30M) FI 150K-	N" 30M Volt	age				
Level [dBµV]								
70				1111	TII	11		
50					+++	! 		
40 Annyajas	Appropriate Appropriate	Section 1			-4-4-4 -4-4-4		77	
20				and the last		\		
10		 	†	-††-	777	†††-	- 300	
10						11 1		
150k 300k	400k 600k 800k		2M Frequency (H		6M 8N	10M 20M	30М	
x x x MES CTL2411265	501_fin							
MEASUREMENT RI 11/26/2024 9:48 Frequency	ESULT: "CTL2		Margin		Line	PE		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHz 0.339000	ESULT: "CTLA	Limit dBµV	Margin dB	Detector	L1	GND		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHz 0.339000 0.690000 18.276000	ESULT: "CTLi AM Level Transd dBμV dB 41.50 10.0 36.40 10.0 36.40 11.2	Limit dBµV 59 56 60	Margin dB 17.7 19.6 17.8	Detector QP QP QP				
MEASUREMENT RI 11/26/2024 9:48 Frequency MHz 0.339000 0.690000 18.276000	ESULT: "CTLi AM Level Transd dBμV dB 41.50 10.0 36.40 10.0 36.40 11.2	Limit dBµV 59 56 60	Margin dB 17.7 19.6 17.8	Detector QP QP QP	L1 L1 L1	GND GND GND GND		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHZ 0.339000 0.690000 18.276000 18.433500 18.595500	ESULT: "CTLi AM Level Transd dBμV dB 41.50 10.0 36.40 10.0 36.40 11.2	Limit dBµV 59 56 60 60	Margin dB 17.7 19.6 17.8 10.7 14.6	Detector QP QP QP QP QP QP	L1 L1 L1	GND GND GND		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHZ 0.339000 0.690000 18.276000 18.433500 18.595500	ESULT: "CTL2 Level Transd dBμV dB 41.50 10.0 36.40 10.0 42.20 11.2 49.30 11.2 49.30 11.2 29.70 11.2	Limit dBµV 59 56 60 60 60	Margin dB 17.7 19.6 17.8 10.7 14.6 30.3	Detector QP QP QP QP QP QP QP	L1 L1 L1 L1	GND GND GND GND GND		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHZ 0.339000 0.690000 18.276000 18.433500 18.595500 19.977000 MEASUREMENT RI 11/26/2024 9:48	ESULT: "CTL2 AM Level Transd dBµV dB 41.50 10.0 36.40 10.0 42.20 11.2 49.30 11.2 49.30 11.2 29.70 11.2 ESULT: "CTL2	Limit dBµV 59 56 60 60 60 60	Margin dB 17.7 19.6 17.8 10.7 14.6 30.3	Detector QP QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHz 0.339000 0.690000 18.276000 18.33500 18.595500 19.977000 MEASUREMENT RI 11/26/2024 9:48 Frequency	ESULT: "CTL2 AMM Level Transd dBµV dB 41.50 10.0 36.40 10.0 42.20 11.2 49.30 11.2 29.70 11.2 ESULT: "CTL2 AMM Level Transd	Limit dBµV 59 56 60 60 60 60	Margin dB 17.7 19.6 17.8 10.7 14.6 30.3	Detector QP QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHIZ 0.339000 0.690000 18.276000 18.433500 18.595500 19.977000 MEASUREMENT RI 11/26/2024 9:48 Frequency MHZ 0.339000	ESULT: "CTL2 AM Level Transd dBµV dB 41.50 10.0 42.20 11.2 49.30 11.2 49.30 11.2 29.70 11.2 ESULT: "CTL2 AM Level Transd dBµV dB 34.60 10.0	Limit dBµV 59 56 60 60 60 60 2411265 Limit dBµV	Margin dB 17.7 19.6 17.8 10.7 14.6 30.3 Margin dB 14.6	Detector OP	L1 L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND FE		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHZ 0.339000 0.690000 18.276000 18.35500 19.977000 MEASUREMENT RI 11/26/2024 9:48 Frequency MHZ 0.339000 0.640500 1.108500	ESULT: "CTL2 AM Level Transd dBµV dB 41.50 10.0 36.40 10.0 42.20 11.2 49.30 11.2 29.70 11.2 ESULT: "CTL2 AM Level Transd dBµV dB 34.60 10.0 34.60 10.0 31.20 10.1	Limit dBµV 59 56 60 60 60 60 60 60 4411265 Limit dBµV 49 46 46	Margin dB 17.7 19.6 17.8 10.7 14.6 30.3 01_fin2 Margin dB 14.6 17.1 14.8	Detector QP QP QP QP QP QP QP AV AV AV	L1 L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND FE GND		
MEASUREMENT RI 11/26/2024 9:48 Frequency MHE 0.339000 0.690000 18.276000 18.33500 18.595500 19.977000 MEASUREMENT RI 11/26/2024 9:48 Frequency MHE 0.339000 0.640500 1.108500 13.582500	ESULT: "CTL2 AM Level Transd dBμV dB 41.50 10.0 36.40 10.0 42.20 11.2 49.30 11.2 49.30 11.2 29.70 11.2 ESULT: "CTL2 AM Level Transd dBμV dB 34.60 10.0 28.90 10.0	Limit dBµV 59 56 60 60 60 60 60 Limit dBµV 49 46 46 50	Margin dB 17.7 19.6 17.8 10.7 14.6 30.3 01_fin2 Margin dB 14.6 17.1 14.8 24.9 24.9	Detector OP OP OP OP OP OP AV AV AV AV	L1 L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND FE GND		

17.7 AV 15.4 AV 17.6 AV 2.1 AV 15.4 AV 11.1 AV

GND GND

GND

31.20 34.60 32.40 47.90 34.60 38.90 10.0 10.9 11.1 11.2

11.2

0.352500 12.291000 14.874000

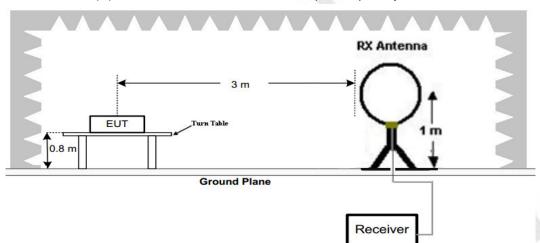
18.433500

18.595500 24.576000

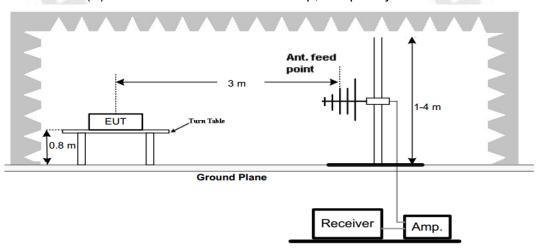
3.2. Radiated Emissions and Band Edge

Limit

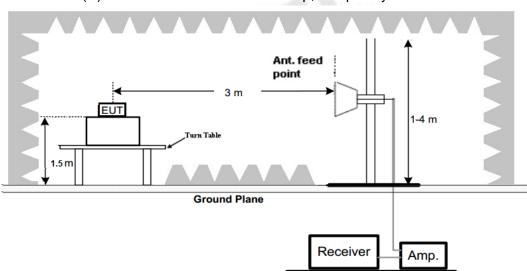
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

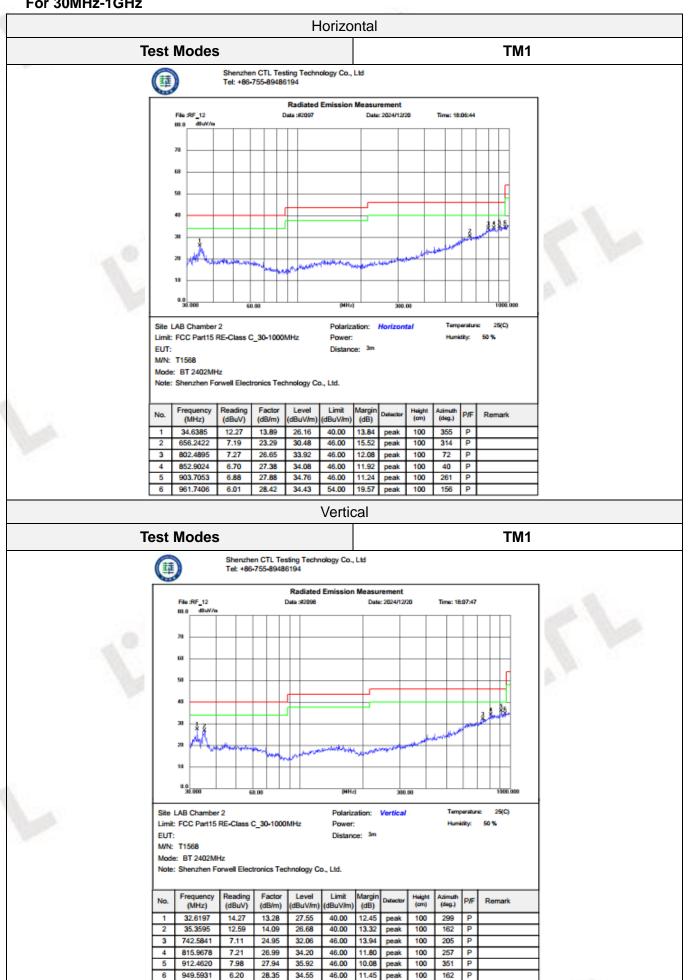
(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

V1.0 Page 15 of 48 Report No.: CTL2411191033-WF01

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

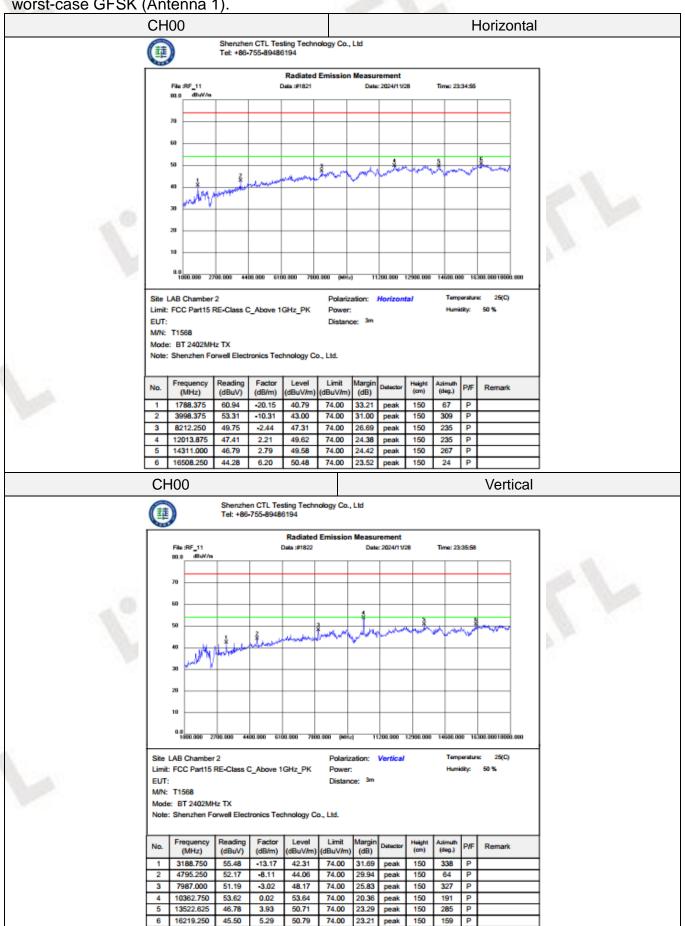
- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

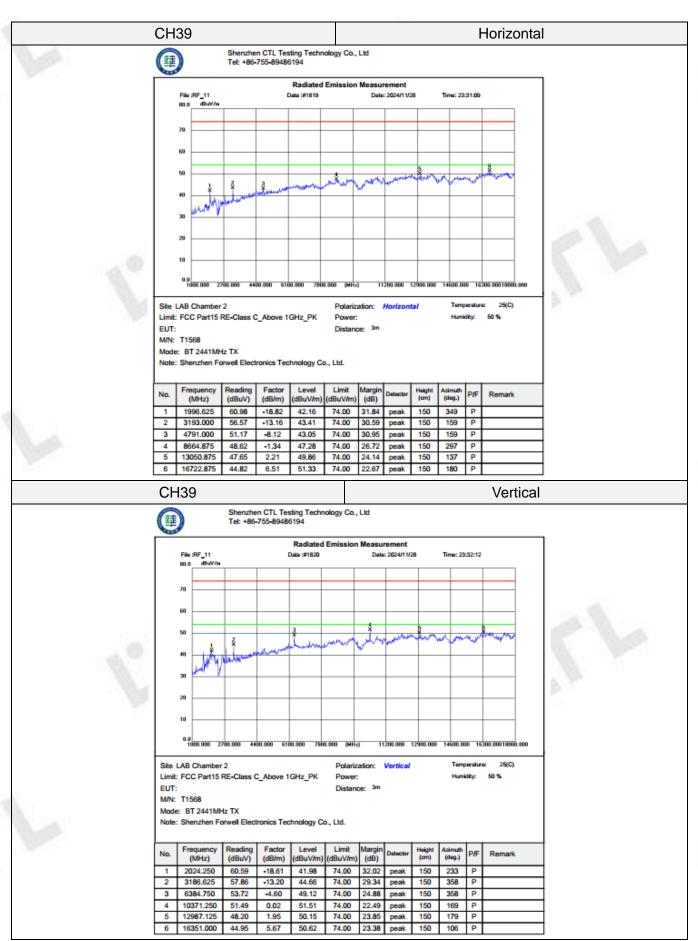

TEST RESULTS

Remark:

- 1. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode (Antenna 1).
- 2. For below 1GHz testing recorded worst at GFSK DH5(Antenna 1) low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, Found the emission level are attenuated 20dB below the limits from 9 kHz to 30MHz, so it does not recorded in report.

For 30MHz-1GHz


V1.0



Report No.: CTL2411191033-WF01

For 1GHz to 25GHz

Note: GFSK, Pi/4 DQPSK, and 8DPSK have all been tested, and the report only records the worst-case GFSK (Antenna 1).

Remark: Level(dBuV/m)=Reading(dBuV)+Factor(dB/m)
Margin= Limit(dBuV/m)- Level(dBuV/m)

Remark: Level(dBuV/m)=Reading(dBuV)+Factor(dB/m)
Margin= Limit(dBuV/m)- Level(dBuV/m)

V1.0 Page 20 of 48 Report No.: CTL2411191033-WF01

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report.
- 7. 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

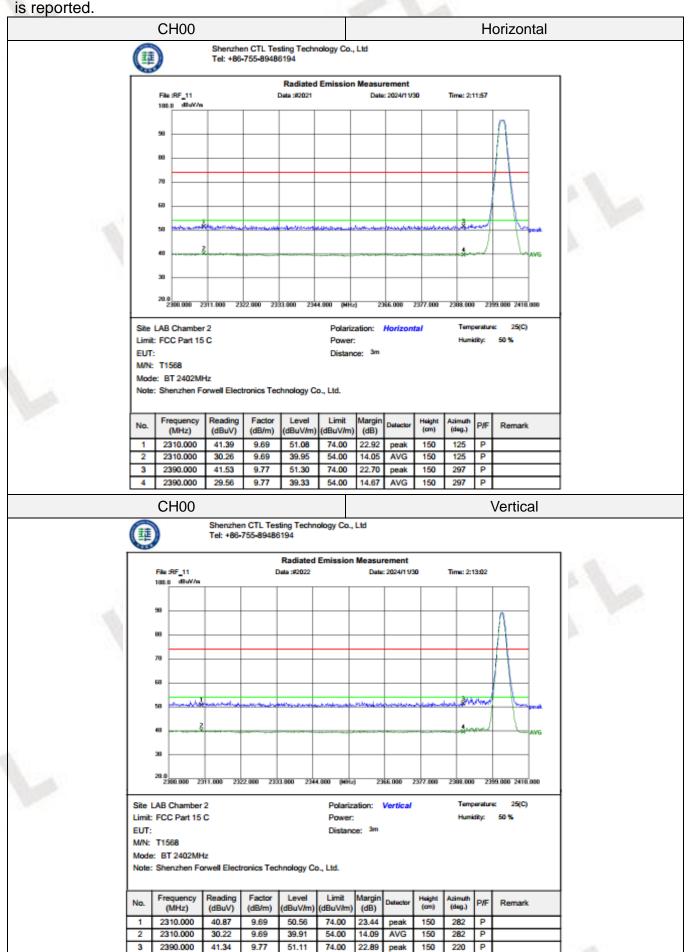
Results of Band Edge

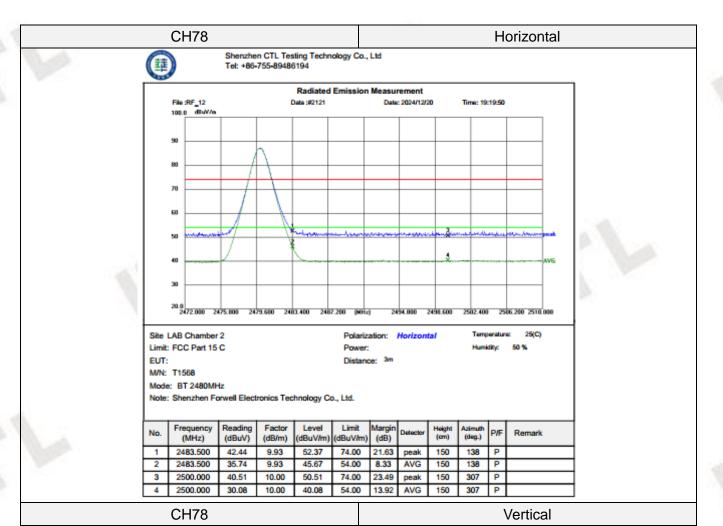
4 2390.000

29.61

9.77

39.38


54.00


14.62 AVG

150

220

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK (Antenna 1)

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

				Radiated	Emission	Measu	rement					
	File:RF_12			Oata :#2122		Date	c 2024/12/2	20	Time: 19:	20:55		
1	100.0 dlluV/n											1
9	90											
	80		_									
			\Box									
7	70		\rightarrow				-	+	-			
		/	\									
	60		\rightarrow				-	_	_			
				edder							ومرون والمراور	
	50 teenmoo	1	- \	The same of the sa	and agent the be	n and a trade	-	Carlotte Miles		the same of	Name of Street	peak
		/	\	.								
•	40	-						-4		-		AVG
												1
1	30							+	_			
	20.0 2472.000 24	675.800 24	79.600 246	33.400 248	7.200 (MHz) 24	194.800	2498.600	2502.400	25	06.200 2510	000
	20.0 2472.000 24		79.500 248	33.460 248								
te L	20.0 2472.000 24 AB Chamber	2	79.600 248	33.400 248	Polariz	ation:	Vertical		Temp	eratur	e: 25(C)	
te L/	20.0 2472.000 24	2	79.600 248	33.400 248	Polariz Power:	ation:			Temp		e: 25(C)	
te L/ mit: I JT:	20.0 2472.000 24 AB Chamber FCC Part 15	2	79.680 248	33.400 248	Polariz	ation:			Temp	eratur	e: 25(C)	
te L/ mit: I UT: /N:	20.0 2472.000 20 AB Chamber FCC Part 15	2 C	79.600 246	33.400 248	Polariz Power:	ation:			Temp	eratur	e: 25(C)	
te L/mit: I UT: /N:	20.0 2472.080 24 AB Chamber FCC Part 15 T1568 BT 2480MH	2 C			Polariz Power: Distanc	ation:			Temp	eratur	e: 25(C)	
te L/mit: I UT: /N:	20.0 2472.000 20 AB Chamber FCC Part 15	2 C			Polariz Power: Distanc	ation:			Temp	eratur	e: 25(C)	
te L/mit: I UT: /N:	20.0 2472.080 24 AB Chamber FCC Part 15 T1568 BT 2480MH	2 C			Polariz Power: Distanc	ation:			Temp	eratur	e: 25(C)	
te L/ mit: I JT: /N: ode:	AB Chamber FCC Part 15 T1568 BT 2480MF Shenzhen Fo	2 C Hz orwell Elect	ronics Tec	chnology Co	Polariz Power: Distance	ation: be: 3m	Vertical	Height	Temp Humi	erature dity:	e: 25(C) 50 %	
te L/ mit: I JT: /N: ode:	AB Chamber FCC Part 15 T1568 BT 2480MF Shenzhen Fc	2 C tz	tronics Tec	chnology Co	Polariz Power: Distance	ation: be: 3m	Vertical		Temp	eratur	e: 25(C)	
te L/ mit: I UT: /N: ode: ode:	AB Chamber FCC Part 15 T1568 BT 2480MF Shenzhen Fo	2 C Hz orwell Elect	ronics Tec	chnology Co	Polariz Power: Distance	ation: be: 3m	Vertical	Height	Temp Humi	erature dity:	e: 25(C) 50 %	
te L/mit: UT: /N: /ode: tote: tote:	AB Chamber FCC Part 15 T1568 BT 2480MF Shenzhen Fo	2 C dz orwell Elect Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Polariz Power: Distance o., Ltd.	ation: ce: 3m Margin (dB)	Vertical	Height (cm)	Temp Humi Azimuth (deg.)	erature dity:	e: 25(C) 50 %	
ite L/ mit: UT: /N: ode: ote:	AB Chamber FCC Part 15 T1568 BT 2480MH Shenzhen Fo (MHz) 2483.500	2 C dz crwell Elect Reading (dBuV) 41.15	Factor (dB/m) 9.93	Level (dBuV/m) 51.08	Polariz Power: Distance o., Ltd. Limit (dBuV/m) 74.00	Margin (dB)	Vertical Detector peak	Height (cm)	Temp Humi Azimuth (deg.)	erature dity:	e: 25(C) 50 %	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. RBW 1MHz VBW 3MHz Peak detector is for PK value; RBW 1MHz VBW 10Hz Peak detector is for AV value.
- 6. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RKI detector is for AV value.
- 7. Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report.