

TEST REPORT

Product Name	:	SMART PHONE
Brand Name	:	SIRAGON
Model	:	SP-7260
Series Model	:	N/A
FCC ID	:	2BACG-SP-7260
Applicant	:	Siragon Corporate
Address	:	CR MANZANA A LOCAL SHED NRO 1-4 VALLE ALTO GUAYABAL, NAGUANAGUA CARABOBO ZIP 2005. IVORY STORE
Manufacturer	:	Shenzhen KEP Technology CO., LTD
Address	:	#101, #201 and #301, building B, 1st/ 2nd/3rd floor, Building A, FenghuangGang First Industrial Area, FenghuangGang Community, Xixiang Street, Bao an District, Shenzhen
Standard(s)	:	FCC CFR Title 47 Part 15 Subpart E Section 15.407
Date of Receipt	:	Mar. 13, 2025
Date of Test	:	Mar. 14, 2025~ Mar. 31, 2025

 Issued By:
 Guangdong Asia Hongke Test Technology Limited

 B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street,

 Bao'an District, Shenzhen, Guangdong, China

 Tel.: +86 0755-230967639

 Fax.: +86 0755-230967639

Approved by:

Note: This device has been tested and found to comply with the standard(s) listed, this test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited. If there is a need to alter or revise this document, the right belongs to Guangdong Asia Hongke Test Technology Limited, and it should give a prior written notice of the revision document. This test report must not be used by the client to claim product endorsement.

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Report Revise Record

Report Version	Issued Date	Notes
M1	Apr. 03, 2025	Initial Release

Contents

1 TE	EST SUMMARY	4
1.1	Test Standards	4
1.2	Test Summary	
1.3	Test Facility	5
1.4	MEASUREMENT UNCERTAINTY	5
2 GI	ENERAL INFORMATION	6
2.1	Environmental conditions	6
2.2	GENERAL DESCRIPTION OF EUT	6
2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.4	Special Accessories	7
2.5	EQUIPMENT LIST FOR THE TEST	8
3 TE	EST CONDITIONS AND RESULTS	9
3.1	Conducted Emissions Test	9
3.2	RADIATED EMISSIONS AND BAND EDGE	
3.3	MAXIMUM CONDUCTED AVERAGE OUTPUT POWER	23
3.4	Power Spectral Density	25
3.5	Emission Bandwidth (26dBm Bandwidth)	27
3.6	MINIMUM EMISSION BANDWIDTH (6DBM BANDWIDTH)	
3.7	FREQUENCY STABILITY	29
3.8	Antenna Requirement	
4 те	EST SETUP PHOTOGRAPHS OF EUT	
5 Pł	HOTOS OF EUT	

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15 Subpart E—Unlicensed National Information Infrastructure Devices.

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB 662911 D01 Multiple Transmitter Output v02r01 is required to be used for this kind of FCC 15.407 UII device.

1.2 Test Summary

FCC Requirement		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.407(a)	Emission Bandwidth(26dB Bandwidth)	PASS _{Note1}
FCC Part 15.407(e)	Minimum Emission Bandwidth(6dB Bandwidth)	PASS _{Note2}
FCC Part 15.407(a)	Maximum Conducted Output Power	PASS
FCC Part 15.407(a)	Peak Power Spectral Density	PASS
FCC Part 15.407(g)	Frequency Stability	PASS
FCC Part 15.407(b)	Undesirable emission	PASS
FCC Part 15.407(b)/15.205/15.209	Radiated Emissions	PASS
FCC Part 15.203	Antenna Requirement	PASS

Note 1: Apply to Band1, Band2A, Band2C only. Note 2: Apply to band3 only.

1.3 Test Facility

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

1.4 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Guangdong Asia Hongke Test Technology Limited's quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Asia Hongke laboratory is reported:

Test	Measurement Uncertainty	Notes
Power Line Conducted Emission	9KHz~30MHz ±1.20 dB	(1)
Radiated Emission	9KHz~30MHz \pm 3.10dB	(1)
Radiated Emission	30MHz~1GHz ±3.75dB	(1)
Radiated Emission	1GHz~18GHz ±3.88 dB	(1)
Radiated Emission	18GHz-40GHz ±3.88dB	(1)
RF power, conducted	30MHz~6GHz \pm 0.16dB	(1)
RF power density, conducted	\pm 0.24dB	(1)
Spurious emissions, conducted	\pm 0.21dB	(1)
Temperature	±1℃	(1)
Humidity	$\pm 3\%$	(1)
DC and low frequency voltages	±1.5%	(1)
Time	±2%	(1)
Duty cycle	±2%	(1)

The report uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty Multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C	
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2 General Description of EUT

Product Name:	SMART PHONE					
Model/Type reference:	SP-7260					
Serial Model:	N/A					
Power Supply:	Input: DC 5V/2A DC 3.87V 4900mAh	18.97Wh Recharg	eable Li-ion batter	у		
Adapter information:	Model: ES568E-U05 Input: 100-240V~ 50 Output: 5.0V-2000r)/60Hz 0.5A				
Hardware Version:	N/A					
Software Version:	N/A					
Sample(s) Status:	AiTSZ-250313013-1 AiTSZ-250313013-2					
5G WIFI:						
	20MHz system	40MHz system	80MHz system	160MHz system		
Supported type:	802.11a 802.11n 802.11ac	802.11n 802.11ac	802.11ac	N/A		
Operation frequency:	5180-5240MHz 5745-5825MHz	5190-5230MHz 5755-5795MHz	5210MHz 5775MHz	N/A		
Modulation:	OFDM	OFDM	OFDM	N/A		
Channel number:	9	4	2	N/A		
Channel separation:	20MHz	40MHz	80MHz	N/A		
Antenna type:	FPC antenna					
Antenna gain:	1.05 dBi					
Remark:	1					

Remark:

The above DUT's information was declared by manufacturer. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.3 Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

All test performed at the low, middle and high of operational frequency range of each mode.

	20	20MHz		40MHz		MHz
Operating band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	36	5180	38	5190		
U-NII 1	40	5200	36 5190	42	5210	
(5150MHz-5250MHz)	44	5220	46	5230	42	5210
	48	5240				
	149	5745	151	5755		
	153	5765	151 5755		155	5775
U-NII 3 (5725MHz-5850MHz)	157	5785	159	5795	155	5775
	161	5805	159	5795		
	165	5825				

Operation Frequency List:

Note:

1. "--"Means no channel(s) available any more.

2. The line display in grey is those Channels/Frequencies select to test in this report for each operation mode.

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
Maximum Conducted Output Power	802.11a SISO	6Mbps
Power Spectral Density	802.11n(HT20) SISO	MCS0
Emission Bandwidth(26dBm Bandwidth)	802.11n(HT40) SISO	MCS0
Minimum Emission Bandwidth(6dBm Bandwidth)	802.11ac(VHT20) SISO	MCS0
Undesirable emission	802.11ac(VHT40) SISO	MCS0
Frequency Stability	802.11ac(VHT80) SISO	MCS0

Power setting during the test:

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters:

Test Software Version	Engineering Mode		
Test Frequency	Lowest	Middle	Highest
UNII Band 1	Default	Default	Default
UNII Band 3	Default	Default	Default

2.4 Special Accessories

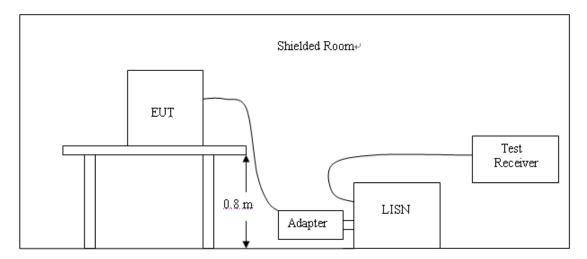
Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Serial No.	Provided by	Other
/	/	/	/	/	/
/	/	/	/	/	/

2.5 Equipment List for the Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	EMI Measuring Receiver	R&S	ESR	101160	2024.09.25	2025.09.24
2	Spectrum Analyzer	R&S	FSV40	101470	2024.09.23	2025.09.22
3	Low Noise Pre Amplifier	SCHWARZBECK	BBV 9745	00282	2024.09.25	2025.09.24
4	Low Noise Pre Amplifier	CESHENG	CSKJLNA23101 6A	CSKJLNA231016 A	2024.09.25	2025.09.24
5	Passive Loop	ETS	6512	00165355	2024.08.29	2027.08.28
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9168	01434	2024.08.29	2027.08.28
7	Broadband Horn Antenna	Schwarzbeck	BBHA 9120D	452	2024.08.29	2027.08.28
8	Horn Antenna 15- 40GHz	SCHWARZBECK	BBHA9170	BBHA9170367	2024.08.28	2027.08.27
9	6dB Attenuator	JFW	50FPE-006	4360846-949-1	2024.09.24	2025.09.23
10	EMI Test Receiver	R&S	ESPI	100771	2024.09.25	2025.09.24
11	LISN	R&S	NNLK 8129	8130179	2024.09.24	2025.09.23
12	LISN	R&S	ESH3-Z5	892785/016	2024.09.23	2025.09.22
13	Pulse Limiter	R&S	ESH3-Z2	102789	2024.09.24	2025.09.23
14	RF Automatic Test system	TST	TSTPASS	21033016	2024.09.25	2025.09.24
15	Vector Signal Generator	Agilent	N5182A	MY50143009	2024.09.25	2025.09.24
16	Analog signal generator	Agilent	E8257	MY51554256	2024.09.25	2025.09.24
17	Spectrum Analyzer	Agilent	N9020A	MY51289843	2024.09.25	2025.09.24
18	Spectrum Analyzer	Agilent	N9020A	MY53421570	2024.09.25	2025.09.24
19	Power Sensor	Agilent	8481A	MY41097697	2024.09.25	2025.09.24
20	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2024.09.24	2025.09.23
21	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	2024.09.24	2025.09.23
22	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
23	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
24	RF Software	TST	TSTPASS	Version 2.0	N/A	N/A
25	RF Software	cesheng	WCS-WCN	Version 2024.6.20	N/A	N/A
26	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A
Note:	connector(Note) The temporary antenna temporary antenna con	a connector is soldere	d on the PCB board			

3 TEST CONDITIONS AND RESULTS

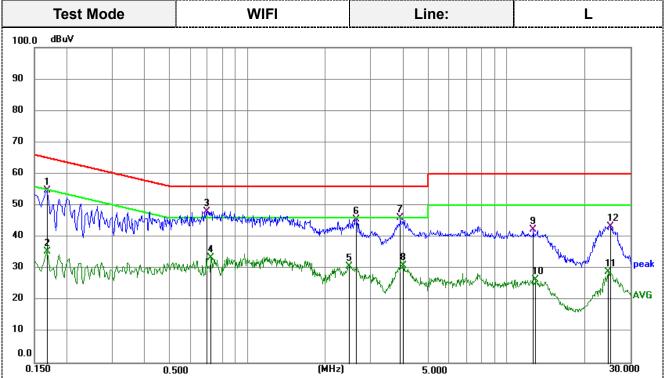

3.1 Conducted Emissions Test

<u>LIMIT</u>

Frequency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

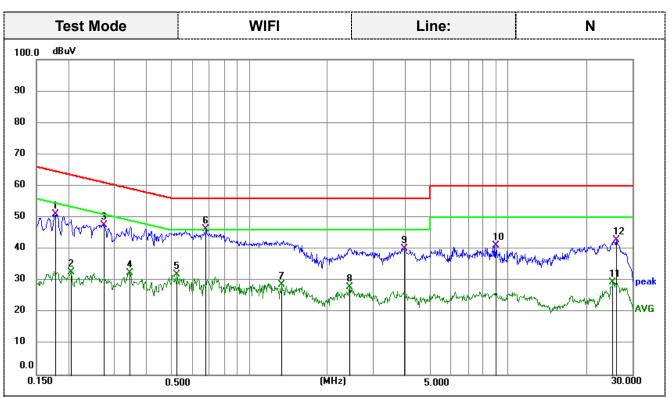
TEST CONFIGURATION


TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

- 1. Pre-scan all modes of IEEE 802.11a/n(HT20)/n(HT40)/ac(VHT20)/ac (VHT40) /ac (VHT80) at Low, Middle, and High channel; only the worst result of was reported as below:
- 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor;

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1675	44.07	10.67	54.74	65.08	-10.34	QP
2	0.1675	24.70	10.67	35.37	55.08	-19.71	AVG
3	0.6945	37.43	10.68	48.11	56.00	-7.89	QP
4	0.7215	22.78	10.67	33.45	46.00	-12.55	AVG
5	2.4630	19.95	10.79	30.74	46.00	-15.26	AVG
6	2.6250	34.77	10.79	45.56	56.00	-10.44	QP
7	3.8850	35.01	11.01	46.02	56.00	-9.98	QP
8	3.9885	19.95	11.00	30.95	46.00	-15.05	AVG
9	12.7050	31.02	11.33	42.35	60.00	-17.65	QP
10	12.9389	15.13	11.35	26.48	50.00	-23.52	AVG
11	24.7740	17.24	11.77	29.01	50.00	-20.99	AVG
12	25.2509	31.65	11.77	43.42	60.00	-16.58	QP

Margin = Measurement Result- Limit

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor;

Margin = Measurement Result- Limit

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1785	40.34	10.68	51.02	64.56	-13.54	QP
2	0.2040	21.87	10.69	32.56	53.45	-20.89	AVG
3	0.2741	36.92	10.69	47.61	60.99	-13.38	QP
4	0.3435	21.66	10.68	32.34	49.12	-16.78	AVG
5	0.5231	21.17	10.69	31.86	46.00	-14.14	AVG
6	0.6809	35.52	10.67	46.19	56.00	-9.81	QP
7	1.3331	17.90	10.68	28.58	46.00	-17.42	AVG
8	2.4450	17.07	10.78	27.85	46.00	-18.15	AVG
9	3.9480	29.11	10.99	40.10	56.00	-15.90	QP
10	8.9205	30.10	11.07	41.17	60.00	-18.83	QP
11	25.2645	17.68	11.70	29.38	50.00	-20.62	AVG
12	26.0970	31.06	11.70	42.76	60.00	-17.24	QP

3.2 Radiated Emissions and Band Edge

<u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1									
15.407(b)(1)											
15.407(b)(2)											
15.407(b)(3)	PK:-27(dBm/MHz)	PK:68.2(dBµV/m)									
15.407(b)(4)											

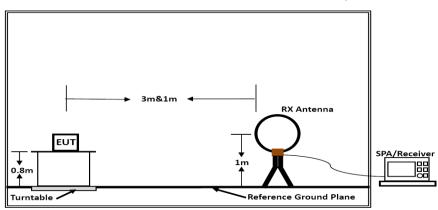
Undesirable emission limits

Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

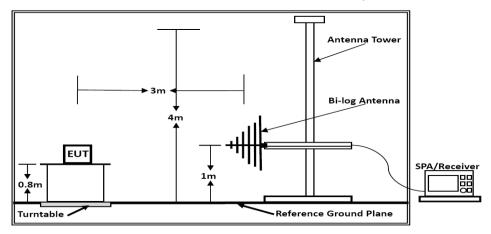
 $E = \frac{1000000\sqrt{30P}}{3} \,\mu\text{V/m}$, where P is the eirp (Watts)

(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209

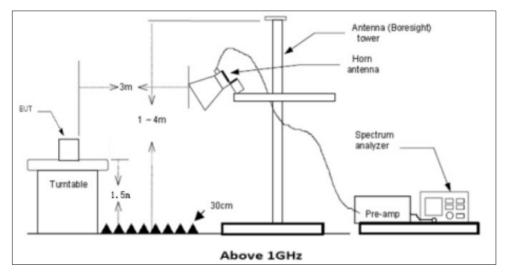
(6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


	Radi	ated emission limits			
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

Radiated emission limits


TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz


Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Below 1GHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°℃ to 360°℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector	
range			
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep	QP	
	time=Auto		
	Peak Value: RBW=1MHz/VBW=3MHz,		
1GHz-40GHz	Sweep time=Auto	Peak	
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	Реак	
	Sweep time=Auto		

TEST RESULTS

Remark:

- 1. All WIFI operation modes have been tested for below 1GHz test, only the worst case 802.11a low channel of U-NII 1 band was recorded.
- 2. All WIFI operation modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.
- 3. All WIFI operation modes have been tested for U-NII 3 bandedge test, only the worst case of 802.11n(HT20) mode was recorded.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

	Test mode:						١	WIFI		Pol	ariza	ation:			Ho	rizon	tal	
80.0	dB	uV/m																
70 -																		
60 -																		-
50 -																	±f	
40																	6	peak
30 -		1					2		مريبه ويستحد والمستحد والمستح	3	w.M.	ma w	4	and the second			All	peak
10	NU-YAN	Annaho barrow	verradur	Norman	www.wy	a Alfred	~	and the second s]
0 -																		-
-10 -																		-
-20																		-
-30 -																		1
-40 30.0	000			50.00					(MHz)		30)0.00					1000] .000
Facto	sioı or =	n Level =	a Fa	ctor +	- Ca	ble		; oss – Pre-ar	nplifier	•								
No.		Frequen (MHz)			adir BuV			Factor (dB/m)		vel V/m)	(c	Limit IBuV/m)		Marg (dB			Det.	
1		43.050	4	34	4.90)		-16.61	18	.29		40.00		-21.7	'1		QP	
2		99.179	5	43	3.02	2		-20.38	22	.64		43.50		-20.8	86		QP	
3		204.95	50	4	6.72	2		-20.18	26	.54		43.50		-16.9	96		QP	
4		411.824	40	4	0.04	ŀ		-14.26	25	.78		46.00		-20.2	22		QP	
5		658.836	60	3	6.63	3		-8.78	27	.85		46.00		-18.1	5		QP	
6		935.546	51	3	5.75	5		-3.90	31	.85		46.00		-14.1	5		QP	

Factor = Antenna Factor + Cable Loss – Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	30.8534	41.81	-17.50	24.31	40.00	-15.69	QP
2	57.9992	38.88	-17.16	21.72	40.00	-18.28	QP
3	102.0013	39.64	-20.15	19.49	43.50	-24.01	QP
4	207.1225	40.69	-20.24	20.45	43.50	-23.05	QP
5	377.2590	35.29	-15.05	20.24	46.00	-25.76	QP
6	955.4380	36.16	-3.49	32.67	46.00	-13.33	QP

For 1GHz to 40GHz

Remark: All WIFI operation modes have been tested for above 1GHz test, only the worst case 802.11a mode was recorded as below:

Tested Channel	Frequency (MHz)	Meter Reading (dBµV)	Factor (dB/m)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	ANT Pol	Detector Mode
36 (5180MHz)	5150	54.22	-6.33	47.89	68.20	-20.31	V	PK
	10360	46.68	3.87	50.55	68.20	-17.65	V	PK
(************************								
40	10400	46.45	4.22	50.67	68.20	-17.53	V	PK
(5200MHz)								
	5350.5	54.10	-5.81	48.29	68.20	-19.91	V	PK
48 (5240MHz)	10480	50.32	3.77	54.09	68.20	-14.11	V	PK
(02 1010112)	10480.00	41.33	3.77	45.10	54.00	-8.90	V	AV

U-NII 1 @ 802.11a mode (above 1GHz)

Tested Channel	Frequency (MHz)	Meter Reading (dBµV)	Factor (dB/m)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	ANT Pol	Detector Mode
	5150	53.16	-6.33	46.83	68.20	-21.37	н	PK
36 (5180MHz)	10360	45.67	3.87	49.54	68.20	-18.66	Н	PK
(************								
40	10400	45.35	4.22	49.57	68.20	-18.63	н	PK
(5200MHz)								
	5350.5	53.34	-5.81	47.53	68.20	-20.67	н	PK
48 (5240MHz)	10480	49.52	3.77	53.29	68.20	-14.91	Н	PK
(-)								

REMARKS:

- 1. Emission level (dBuV/m) =Meter Reading(dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Emission level- Limit value.

4. --Other emission levels are attenuated 20dB below the limit and not recorded in report.

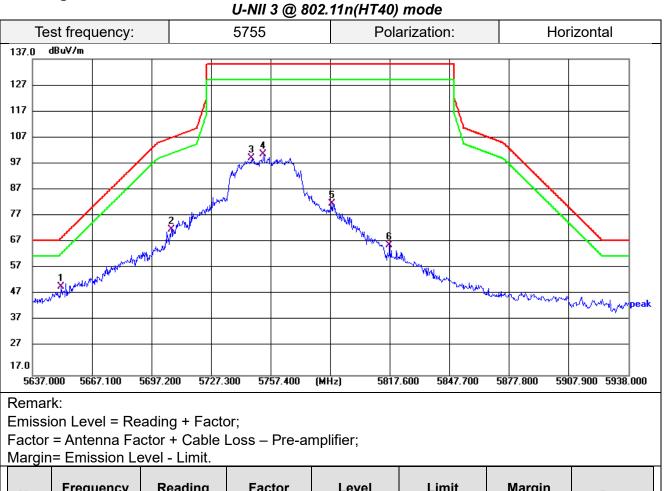
5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Tested Channel	Frequency (MHz)	Meter Reading (dBµV)	Factor (dB/m)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	ANT Pol	Detector Mode				
149 (5745MHz)	11490	53.30	4.83	58.13	68.20	-10.07	V	PK				
	11490	40.18	4.83	45.01	54.00	-8.99	V	AV				
(374310112)												
	11570	54.41	5.45	59.86	68.20	-8.34	V	PK				
157 (5785MHz)	11570	41.62	5.45	47.07	54.00	-6.93	V	AV				
(378310112)												
	11650	57.39	4.64	62.03	68.20	-6.17	V	PK				
165 (5825MHz)	11650	44.13	4.64	48.77	54.00	-5.23	V	AV				

U-NII 3 @ 802.11a mode (above 1GHz)

Tested Channel	Frequency (MHz)	Meter Reading (dBµV)	Factor (dB/m)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	ANT Pol	Detector Mode
	11490	52.89	4.83	57.72	68.20	-10.48	Н	PK
149	11490	39.38	4.83	44.21	54.00	-9.79	Н	AV
(5745MHz)								
	11570	53.63	5.45	59.08	68.20	-9.12	Н	PK
157 (5785MHz)	11570	41.47	5.45	46.92	54.00	-7.08	Н	AV
(37 6310112)								
	11650	57.27	4.64	61.91	68.20	-6.29	Н	PK
165 (5825MHz)	11650	43.58	4.64	48.22	54.00	-5.78	Н	AV
(562510172)								

REMARKS:


- 1. Emission level (dBuV/m) =Meter Reading(dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Emission level- Limit value.

4. --Other emission levels are attenuated 20dB below the limit and not recorded in report.

5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Band Edge Test Plots of U-NII 3

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	5651.448	55.18	-4.39	50.79	69.27	-18.48	PK
2	5707.133	76.80	-4.37	72.43	107.20	-34.77	PK
3	5747.768	103.69	-4.37	99.32	135.00	-35.68	PK
4	5753.788	105.16	-4.37	100.79	135.00	-34.21	PK
5	5788.102	86.46	-4.35	82.11	135.00	-52.89	PK
6	5817.299	70.90	-4.35	66.55	135.00	-68.45	PK

Test frequency:	5755	Polarization:	Vertical
137.0 dBuV/m			
127			
17			
07			
7	3 4		
	Mar Marine		
7	2 10 100 1005		
7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	to your the second s	
7		6	
7 June 1 March 19 Mar		Wind The second	
ward good against		- Contraction of the second seco	man when we what peal
7			
7			
7.0 5637.000 5667.100 5697.2	00 5727.300 5757.400 (MH	 z) 5817.600 5847.700 5	877.800 5907.900 5938.000
Remark:			

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss – Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	5680.344	62.59	-4.38	58.21	90.65	-32.44	PK
2	5715.260	80.24	-4.37	75.87	109.47	-33.60	PK
3	5745.360	102.32	-4.37	97.95	135.00	-37.05	PK
4	5753.487	102.99	-4.37	98.62	135.00	-36.38	PK
5	5785.092	81.27	-4.35	76.92	135.00	-58.08	PK
6	5820.610	66.97	-4.35	62.62	135.00	-72.38	PK

U-NII 3 @ 802.11n(HT40) mode

Те	st frequency:		5795	Pol	arization:	Hor	izontal
	dBu¥/m						
127							
117							
107				American			
97 87							
77			2 Walk and	W	Www.H.5		
67	4		where the second second		No.	6	
57		Valena and a state of the second			and the second s	6 Jun Harry Married	
	and had have a major and the work of	T				When when the second	whatever and the peak
37							
17.0							
5637.0		97.200 5727.3	300 5757.400	(MHz) 5817	600 5847.700	5877.800 590	7.900 5938.000
Factor	on Level = Rea = Antenna Fact	or + Cable I		nplifier;			
Margin	i= Emission Lev	ei - Limit.					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	5692.384	57.41	-4.38	53.03	99.56	-46.53	PK
2	5751.380	81.23	-4.37	76.86	135.00	-58.14	PK
3	5783.286	107.20	-4.35	102.85	135.00	-32.15	PK
4	5806.463	106.94	-4.35	102.59	135.00	-32.41	PK
5	5832.951	84.44	-4.35	80.09	135.00	-54.91	PK
6	5867.566	67.24	-4.34	62.90	107.28	-44.38	PK

Test frequency:	5795	Polarization:	Vertical		
37.0 dBuV/m					
27					
17					
07	3	4			
//					
/					
,	M. M.	A . MANYAR			
	Zahuk Marine A.	W. K			
<u>بران 1</u>	www.matterstore	White	When have have the second s		
1 Harthanna Manus in all and a state and a state of the			pea		
7					
7					
7.0					
5637.000 5667.100 5697.20	00 5727.300 5757.400 (MH	z) 5817.600 5847.700 5	877.800 5907.900 5938.000		

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss – Pre-amplifier; Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	5684.558	52.36	-4.38	47.98	93.77	-45.79	PK
2	5724.290	64.89	-4.37	60.52	120.58	-60.06	PK
3	5783.587	103.86	-4.35	99.51	135.00	-35.49	PK
4	5798.336	105.68	-4.35	101.33	135.00	-33.67	PK
5	5829.941	79.87	-4.35	75.52	135.00	-59.48	PK
6	5862.750	64.15	-4.34	59.81	108.63	-48.82	PK

3.3 Maximum Conducted Average Output Power

<u>Limit</u>

FCC requirement: For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W

IC requirement:

Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log₁₀B, dBm, whichever is less.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log₁₀B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz.

Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

a)The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;

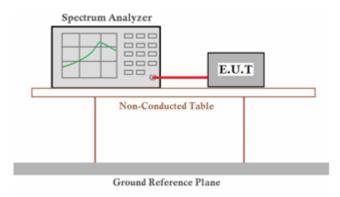
b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz.

Frequency band 5725-5850 MHz


The maximum conducted output power shall not exceed 1 W.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

Test Configuration

Test Results

⊠ Pass

Not Applicable

Note:

3.4 Power Spectral Density

<u>Limit</u>

FCC requirement: For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands

The maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725 - 5.85 GHz

The maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. note1, note2

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

IC requirement:

For the band 5.15-5.25 GHz.

The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Frequency band 5250-5350 MHz

The power spectral density shall not exceed 11 dBm in any 1.0 MHz band

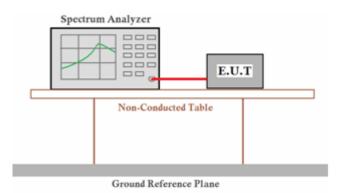
Frequency bands 5470-5600 MHz and 5650-5725 MHz

The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

For the band 5.725 - 5.85 GHz

The maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. ^{note1, note2}

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 510KHz for U-NII 3 band.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to encompass the entire EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

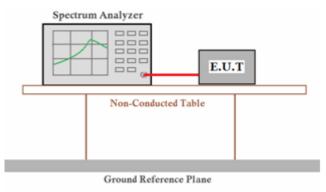
Test Configuration

Test Results

☑ Pass
☐ Not Applicable

Note:

3.5 Emission Bandwidth (26dBm Bandwidth)


<u>Limit</u>

N/A

Test Procedure

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW / EBW ratio is approximately 1 %.

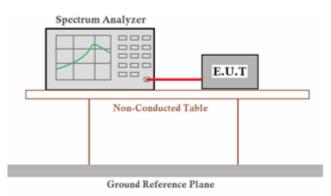
Test Configuration

Test Results

☑ Pass
☐ Not Applicable

Note:

3.6 Minimum Emission Bandwidth (6dBm Bandwidth)


<u>Limit</u>

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

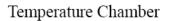
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

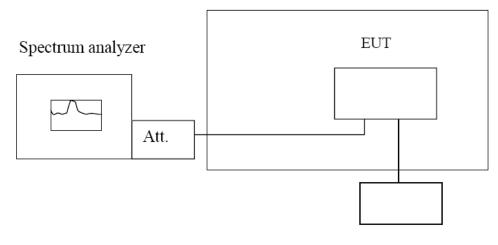
Test Configuration

Test Results

☑ Pass
□ Not Applicable

Note:




3.7 Frequency Stability

<u>LIMIT</u>

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

☑ Pass □ Not Applicable

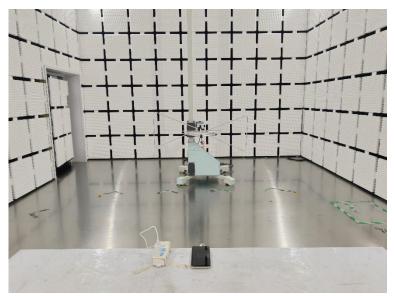
Note:

3.8 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


Test Result:

The maximum gain of antenna was 1.05dBi.

4 Test Setup Photographs of EUT

5 Photos of EUT

Please refer to test Report No.: AiTSZ-250313013FW1.