Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | |-----|--|--|--|---| | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 % | | AAA | ULLA BDR | ULLA | 1.16 | ± 9.6 % | | AAA | ULLA HDR4 | ULLA | 8.58 | ± 9.6 % | | AAA | ULLA HDR8 | ULLA | 10.32 | ± 9.6 % | | AAA | ULLA HDRp4 | ULLA | 3.19 | ± 9.6 % | | AAA | ULLA HDRp8 | ULLA | 3.43 | ± 9.6 % | | | AAB
AAB
AAB
AAB
AAB
AAB
AAB
AAB
AAB
AAB | AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 35 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) AAB 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) AAB 5G NR (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) AAB 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) AAB 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) AAA ULLA BDR AAA ULLA BDR AAA ULLA HDR4 AAA ULLA HDR8 | AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAB 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD AAB 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) 5G NR FR1 TDD AAA ULLA BDR ULLA AAA ULLA HDR4 ULLA AAA ULLA HDR8 | AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) 5G NR FR1 FDD 9.32 AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.36 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.36 AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR FR1 TDD 9.40 AAB 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.55 AAB 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.29 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.37 AAB 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.55 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.55 AAB 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.42 AAB 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.49 AAB 5G NR (CP-OFDM, TRB, 20 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 9.06 AAB 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 9.06 AAB 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) 5G NR FR1 TDD 10.28 AAA ULLA BDR ULLA HDR8 ULLA 8.58 AAA ULLA HDR8 ULLA 10.32 AAA ULLA HDR8 ULLA 3.19 | E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No:Z22-60028 Page 22 of 22 ## ANNEX H Dipole Calibration Certificate ### 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 CTTL (Auden) Certificate No: D750V3-1017_Jul22 CALIBRATION CERTIFICATE Object D750V3 - SN:1017 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz July 20, 2022 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration 04-Apr-22 (No. 217-03525/03524) SN: 104778 Power meter NRP Apr-23 Power sensor NRP-Z91 SN: 103244 04-Apr-22 (No. 217-03524) Apr-23 SN: 103245 04-Apr-22 (No. 217-03525) Power sensor NRP-Z91 Apr-23 SN: BH9394 (20k) 04-Apr-22 (No. 217-03527) Apr-23 Reference 20 dB Attenuator SN: 310982 / 06327 04-Apr-22 (No. 217-03528) Type-N mismatch combination Apr-23 Reference Probe EX3DV4 SN: 7349 31-Dec-21 (No. EX3-7349_Dec21) Dec-22 DAE4 SN: 601 02-May-22 (No. DAE4-601_May22) May-23 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check
Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature Calibrated by: Aidonia Georgiadou Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: July 22, 2022 Certificate No: D750V3-1017_Jul22 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1017_Jul22 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.63 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.64 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1017_Jul22 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.7 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.034 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D750V3-1017_Jul22 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 20.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.72 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.34 W/kg SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.43 W/kg Smallest distance from peaks to all points 3 dB below = 24.2 mm Ratio of SAR at M2 to SAR at M1 = 65.3% Maximum value of SAR (measured) = 2.95 W/kg 0 dB = 2.95 W/kg = 4.69 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D750V3-1017_Jul22 Page 6 of 6 ### 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D835V2-4d069 Jul22 | bject | D835V2 - SN:4d0 | | | |--|------------------------------------|---|--------------------------------| | | | 069 | | | alibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | alibration date: | July 20, 2022 | | | | he measurements and the uncerta | ainties with confidence pr | onal standards, which realize the physical unitrobability are given on the following pages and y facility: environment temperature (22 ± 3)°C | d are part of the certificate. | | alibration Equipment used (M&TE | E critical for calibration) | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | deference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | ype-N mismatch combination
teference Probe EX3DV4 | SN: 310982 / 06327
SN: 7349 | 04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349 Dec21) | Apr-23
Dec-22 | | AE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | ower meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | ower sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | ower sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | letwork Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | W | | Laboratory Technician | AI | | Calibrated by: | Aldonia Georgiadou | | 11/2-1 | Certificate No: D835V2-4d069_Jul22 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of
calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D835V2-4d069_Jul22 | Page 2 of 6 | | |------------------------------------|-------------|--| | | | | #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.51 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.73 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.34 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d069_Jul22 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.5Ω - $2.2 j\Omega$ | | |--------------------------------------|-------------------------------|--| | Return Loss | - 31.7 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.393 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D835V2-4d069_Jul22 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 20.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.89 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.62 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 3.34 W/kg Certificate No: D835V2-4d069_Jul22 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d069_Jul22 Page 6 of 6 ### 1750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 CTTL (Auden) Certificate No: D1750V2-1003_Jul22 | Object | D1750V2 - SN:10 | 003 | | |--|--|---|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 18, 2022 | | | | This calibration certificate documen | nts the traceability to nation | onal standards, which realize the physical uni | its of measurements (SI). | | | | robability are given on the following pages an | | | All calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | C and humidity < 70%. | | | | ,, | and namely 1070. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | ID #
SN: GB39512475 | Check Date (in house) 30-Oct-14 (in house check Oct-20) | Scheduled Check In house check: Oct-22 | | Secondary Standards Power meter E4419B | | | | | Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Secondary Standards | SN: GB39512475
SN: US37292783 | 30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: GB39512475
SN: US37292783
SN: MY41093315 | 30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22 | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in
house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 30-Oct-14 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20)
31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | Certificate No: D1750V2-1003 Jul22 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D1750V2-1003_Jul22 | Page 2 of 6 | |------------------------------------|-------------| |------------------------------------|-------------| ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.5 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1003_Jul22 Page 3 of 6 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.7 Ω - 0.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 43.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.214 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D1750V2-1003_Jul22 #### **DASY5 Validation Report for Head TSL** Date: 18.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.19 W/kg; SAR(10 g) = 4.82 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.4% Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg Certificate No: D1750V2-1003_Jul22 Page 5 of 6 ### Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1003_Jul22 Page 6 of 6 ### 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D1900V2-5d101_Jul22 | | D1900V2 - SN:50 | 1101 | | |---
--|--|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 26, 2022 | | | | | A CONTRACTOR OF THE PARTY TH | onal standards, which realize the physical unit | And the state of t | | | | | | | All calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and numidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | | The second secon | 07.0-145.0-1-1-0-1-00 | In house check: Oct-22 | | Power meter E4419B | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | | | Power meter E4419B
Power sensor HP 8481A | SN: US37292783
SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A | CONTRACTOR STATE OF CONTRACTOR | | In house check: Oct-22
In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: MY41093315
SN: 100972 | 07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: MY41093315
SN: 100972
SN: US41080477 | 07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20)
31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22 | | Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: MY41093315
SN: 100972
SN: US41080477
Name
Michael Weber | 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician | In house check: Oct-22
In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: MY41093315
SN: 100972
SN: US41080477
Name | 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function | In house check: Oct-22
In house check: Oct-22 | Certificate No: D1900V2-5d101_Jul22 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d101_Jul22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | |
Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | | Certificate No: D1900V2-5d101_Jul22 | Page 3 of 6 | | |-------------------------------------|-------------|--| ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.1 Ω + 4.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.5 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: D1900V2-5d101_Jul22 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 26.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.90 W/kg; SAR(10 g) = 5.18 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg ### Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d101_Jul22 Page 6 of 6 ### 2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates CTTL (Auden) Certificate No: D2450V2-853_Jul22 | Object | D2450V2 - SN:85 | 53 | | |--|---|---|--| | , | | | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 20, 2022 | | | | This calibration partificate document | ata tha traeschility to pati | and atandards, which realize the physical unit | to of manufactor (CI) | | | | onal standards, which realize the physical unit
robability are given on the following pages and | | | | | | | | All calibrations have been conducted | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | calibration Equipment used (Mart | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | NOTE OF THE PERSON NAMED IN COLUMN | SN: 104778
SN: 103244 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524) | Apr-23
Apr-23 | | Power sensor NRP-Z91 | | | | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 103244
SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
May-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22)
Check Date (in house) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No.
EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec-21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D2450V2-853_Jul22 Page 1 of 6