DUT: ZNFV350A; Type: Portable Handset; Serial: 01356 Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1770 \text{ MHz}; \ \sigma = 1.549 \text{ S/m}; \ \epsilon_r = 51.062; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1375 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) # Mode: LTE Band 66 (AWS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.05 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.702 W/kg 0 dB = 0.943 W/kg = -0.25 dBW/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01356 Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1905 MHz; $\sigma = 1.589 \text{ S/m}$; $\epsilon_r = 53.352$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 21.1°C; Tissue Temp: 21.8°C Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) # Mode: LTE Band 25 (PCS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.96 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.631 W/kg 0 dB = 0.936 W/kg = -0.29 dBW/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01356 Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1905 MHz; $\sigma = 1.589 \text{ S/m}$; $\epsilon_r = 53.352$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 21.1°C; Tissue Temp: 21.8°C Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) # Mode: LTE Band 25 (PCS), Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (9x9x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.26 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.25 W/kg SAR(1 g) = 0.724 W/kg 0 dB = 1.06 W/kg = 0.25 dBW/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01349 Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.856 \text{ S/m}; \ \epsilon_r = 50.861; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.65, 7.65, 7.65); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) # Mode: LTE Band 30, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.17 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 0.667 W/kg 0 dB = 1.07 W/kg = 0.29 dBW/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01349 Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.856 \text{ S/m}; \ \epsilon_r = 50.861; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.65, 7.65, 7.65); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) # Mode: LTE Band 30, Body SAR, Bottom Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (10x10x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.36 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.738 W/kg 0 dB = 1.12 W/kg = 0.49 dBW/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01356 Communication System: UID 0, LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2560 MHz; $\sigma = 2.182 \text{ S/m}$; $\epsilon_r = 50.769$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-31-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.7°C Probe: EX3DV4 - SN7406; ConvF(7.31, 7.31, 7.31); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) # Mode: LTE Band 7, Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.35 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.654 W/kg 0 dB = 1.14 W/kg = 0.57 dBW/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01349 Communication System: UID 0, LTE Band 41; Frequency: 2593 MHz; Duty Cycle: 1:1.58 Medium: 2450 Body Medium parameters used (interpolated): $f = 2593 \text{ MHz}; \ \sigma = 2.177 \text{ S/m}; \ \epsilon_r = 50.097; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.31, 7.31, 7.31); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) # Mode: LTE Band 41, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.50 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.667 W/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01349 Communication System: UID 0, 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.968$ S/m; $\varepsilon_r = 50.596$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) Mode: IEEE 802.11b, Antenna 1, 22 MHz Bandwidth, Body SAR, Ch 1, 1 Mbps, Back Side Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.36 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.543 W/kg SAR(1 g) = 0.271 W/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01349 Communication System: UID 0, 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.968 \text{ S/m}; \ \epsilon_r = 50.596; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) Mode: IEEE 802.11b, Antenna 1, 22 MHz Bandwidth, Body SAR, Ch 1, 1 Mbps, Left Side Area Scan (10x17x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.110 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.668 W/kg SAR(1 g) = 0.326 W/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01497 Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5825 MHz; $\sigma = 6.265$ S/m; $\varepsilon_r = 46.182$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 21.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4.5, 4.5, 4.5); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated:
6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) Mode: IEEE 802.11n, MIMO, UNII-3, 20 MHz Bandwidth, Body SAR, Ch 165, 13 Mbps, Back Side Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 11.37 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 3.92 W/kg SAR(1 g) = 0.806 W/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01489 Communication System: UID 0, Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1.284 Medium: 2450 Body Medium parameters used (interpolated): $f = 2402 \text{ MHz}; \ \sigma = 1.956 \text{ S/m}; \ \epsilon_r = 50.623; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### Mode: Bluetooth, Body SAR, Ch 0, 1 Mbps, Back Side Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.756 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.121 W/kg SAR(1 g) = 0.057 W/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01489 Communication System: UID 0, Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1.284 Medium: 2450 Body Medium parameters used (interpolated): $f = 2402 \text{ MHz}; \ \sigma = 1.956 \text{ S/m}; \ \epsilon_r = 50.623; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### Mode: Bluetooth, Body SAR, Ch 0, 1 Mbps, Left Edge Area Scan (10x16x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.115 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.140 W/kg SAR(1 g) = 0.059 W/kg DUT: ZNFV350A; Type: Portable Handset; Serial: 01497 Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5620 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5620 MHz; $\sigma = 5.977$ S/m; $\varepsilon_r = 46.501$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm Test Date: 03-26-2018; Ambient Temp: 21.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4.23, 4.23, 4.23); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) ### Mode: IEEE 802.11a, U-NII-2C, Antenna 1, 20 MHz Bandwidth, Phablet SAR, Ch 124, 6 Mbps, Back Side Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 40.51 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 68.4 W/kg SAR(10 g) = 1.18 W/kg ### APPENDIX B: SYSTEM VERIFICATION #### **DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: SN: 1054** Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.899 \text{ S/m}; \ \epsilon_r = 40.6; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 03-26-2018; Ambient Temp: 21.3°C; Tissue Temp: 20.8°C Probe: ES3DV3 - SN3287; ConvF(7, 7, 7); Calibrated: 9/18/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 6/21/2017 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.61 W/kg SAR(1 g) = 1.73 W/kg Deviation(1 g) = 3.35% 0 dB = 2.03 W/kg = 3.07 dBW/kg #### DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.909 \text{ S/m}$; $\epsilon_r = 42.541$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 03-30-2018; Ambient Temp: 23.8°C; Tissue Temp: 21.2°C Probe: EX3DV4 - SN7410; ConvF(10.6, 10.6, 10.6); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.41 W/kg SAR(1 g) = 1.62 W/kg Deviation(1 g) = -0.86% #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.899 \text{ S/m}; \ \epsilon_r = 41.025; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 03-25-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.92 W/kg SAR(1 g) = 1.98 W/kg Deviation(1 g) = 5.77% 0 dB = 2.31 W/kg = 3.64 dBW/kg **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.396$ S/m; $\varepsilon_r = 39.468$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-20-2018; Ambient Temp: 22.8°C; Tissue Temp: 21.8°C Probe: EX3DV4 - SN7410; ConvF(8.66, 8.66, 8.66); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.57 W/kg SAR(1 g) = 3.54 W/kg Deviation(1 g) = -2.75% #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.451$ S/m; $\epsilon_r = 38.666$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-21-2018; Ambient Temp: 21.3°C; Tissue Temp: 21.1°C Probe: ES3DV3 - SN3332; ConvF(5.33, 5.33, 5.33); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.10 W/kgSAR(1 g) = 3.93 W/kgDeviation(1 g) = -2.00% 0 dB = 4.97 W/kg = 6.96 dBW/kg #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.764$ S/m; $\varepsilon_r = 40.568$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-25-2018; Ambient Temp: 23.2°C; Tissue Temp: 23.1°C Probe: ES3DV3 - SN3332; ConvF(4.68, 4.68, 4.68); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 9.98 W/kg SAR(1 g) = 4.92 W/kg Deviation(1 g) = -6.64% 0 dB = 6.43 W/kg = 8.08 dBW/kg **DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073** Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2300 \text{ MHz}; \sigma = 1.643 \text{ S/m}; \epsilon_r = 40.639; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C Probe: ES3DV3 - SN3332; ConvF(4.99, 4.99, 4.99); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 2300 MHz System Verification at 20.0 dBm (100 mW) **Area Scan (8x9x1):** Measurement
grid: dx=12mm, dy=12mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 9.20 W/kg SAR(1 g) = 4.7 W/kgDeviation(1 g) = -3.29% 0 dB = 6.14 W/kg = 7.88 dBW/kg #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2600 MHz; $\sigma = 2.019$ S/m; $\varepsilon_r = 38.733$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 04-03-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.0°C Probe: ES3DV3 - SN3332; ConvF(4.56, 4.56, 4.56); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 5.4 W/kg Deviation(1 g) = -4.26% DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.849$ S/m; $\varepsilon_r = 39.322$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 04-03-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.0°C Probe: ES3DV3 - SN3332; ConvF(4.68, 4.68, 4.68); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.37 W/kg Deviation(1 g) = 1.70% 0 dB = 7.01 W/kg = 8.46 dBW/kg DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120 Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 4.67$ S/m; $\epsilon_r = 37.535$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C Probe: EX3DV4 - SN3589; ConvF(4.69, 4.69, 4.69); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 5250 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 3.9 W/kg Deviation(1 g) = -4.06% #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120 Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used: f = 5600 MHz; $\sigma = 5.02$ S/m; $\epsilon_r = 36.954$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C Probe: EX3DV4 - SN3589; ConvF(4.17, 4.17, 4.17); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 5600 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.3 W/kgSAR(1 g) = 4.27 W/kgDeviation(1 g) = 0.83% #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120 Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.194 \text{ S/m}$; $\varepsilon_r = 36.774$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C Probe: EX3DV4 - SN3589; ConvF(4.42, 4.42, 4.42); Calibrated: 1/16/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 5750 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 3.9 W/kg Deviation(1 g) = -3.70% DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.968$ S/m; $\varepsilon_r = 53.92$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm Test Date: 03-22-2018; Ambient Temp: 23.0°C; Tissue Temp: 21.8°C Probe: EX3DV4 - SN7410; ConvF(10.19, 10.19, 10.19); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.54 W/kg SAR(1 g) = 1.70 W/kg Deviation(1 g) = -1.28% DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.968 \text{ S/m}; \ \epsilon_r = 56.605; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 03-29-2018; Ambient Temp: 22.8°C; Tissue Temp: 23.4°C Probe: ES3DV3 - SN3287; ConvF(6.71, 6.71, 6.71); Calibrated: 9/18/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 6/21/2017 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.54 W/kg SAR(1 g) = 1.74 W/kg Deviation(1 g) = 3.20% #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.974 \text{ S/m}; \ \epsilon_r = 53.53; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 04-03-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C Probe: ES3DV3 - SN3213; ConvF(6.2, 6.2, 6.2); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) ### 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.07 W/kg Deviation(1 g) = 6.59% 0 dB = 2.41 W/kg = 3.82 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.527 \text{ S/m}$; $\epsilon_r = 51.137$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1375 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.06 W/kgSAR(1 g) = 3.92 W/kgDeviation(1 g) = 7.40% #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.583 \text{ S/m}; \ \epsilon_r = 53.37; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 21.1°C; Tissue Temp: 21.8°C Probe: EX3DV4 - SN3914; ConvF(7.62, 7.62, 7.62); Calibrated: 2/14/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018 Phantom: Twin-SAM V5.0 Right; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.73 W/kg SAR(1 g) = 4.18 W/kg Deviation(1 g) = 5.56% 0 dB = 6.46 W/kg = 8.10 dBW/kg **DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073** Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2300 MHz; $\sigma = 1.845$ S/m; $\varepsilon_r = 50.887$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-28-2018; Ambient Temp: 22.5°C; Tissue Temp: 22.2°C Probe:
EX3DV4 - SN7406; ConvF(7.65, 7.65, 7.65); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 2300 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 9.78 W/kg SAR(1 g) = 4.85 W/kg Deviation(1 g) = 0.83% DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.047$ S/m; $\varepsilon_r = 51.075$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-31-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.7°C Probe: EX3DV4 - SN7406; ConvF(7.6, 7.6, 7.6); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 4.95 W/kg Deviation(1 g) = -3.13% #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.229 \text{ S/m}; \ \epsilon_r = 50.657; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-31-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.7°C Probe: EX3DV4 - SN7406; ConvF(7.31, 7.31, 7.31); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.25 W/kg Deviation(1 g) = -3.31% DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237 Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.495$ S/m; $\varepsilon_r = 47.165$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 21.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4.84, 4.84, 4.84); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 5250 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.8 W/kgSAR(1 g) = 3.56 W/kg; SAR(10 g) = 0.995 W/kgDeviation(1 g) = -7.41%; Deviation(10 g) = -7.44% DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237 Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5600 MHz; $\sigma = 5.953$ S/m; $\varepsilon_r = 46.547$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 21.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4.23, 4.23, 4.23); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 5600 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.5 W/kgSAR(1 g) = 3.69 W/kg; SAR(10 g) = 1.02 W/kgDeviation(1 g) = -5.99%; Deviation(10 g) = -7.69% # PCTEST ENGINEERING LABORATORY, INC. DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237 Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 6.159$ S/m; $\varepsilon_r = 46.286$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 03-26-2018; Ambient Temp: 21.6°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7308; ConvF(4.5, 4.5, 4.5); Calibrated: 8/16/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417) #### 5750 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 3.6 W/kg Deviation(1 g) = -6.61% # APPENDIX C: PROBE CALIBRATION #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D750V3-1054_Mar17 # **CALIBRATION CERTIFICATE** Object D750V3 - SN:1054 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 07, 2017 BNV 03-27-2017 BNV 04-04-2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | lib# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | *** **** ***** ***** | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02299) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02292) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | | Apr-17 | | DAE4 | | 31-Dec-16 (No. EX3-7349_Dec16) | Dec-17 | | DAE4 | SN: 601 | 04-Jan-17 (No. DAE4-601_Jan17) | Jan-18 | | Secondary Standards | ID# | Check Date (In house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check; Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | | | Name | Function | Signature | | Calibrated by: | Johannes Kurikka | Laboratory Technician | Me lee | | Approved by: | Katja Pokovic | Technîcal Manager | All | Issued: March 14, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking
of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.37 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.50 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.6 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.61 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.68 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ## **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.7 Ω - 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.7 Ω - 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.7 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.033 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 08, 2011 | ## **DASY5 Validation Report for Head TSL** Date: 07.03.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.91 S/m; ϵ_r = 40.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** • Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31.12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.01.2017 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.21 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 4.55 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 07.03.2017 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.01.2017 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.94 W/kg 0 dB = 2.94 W/kg = 4.68 dBW/kg # Impedance Measurement Plot for Body TSL # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V3 – SN:1054 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: March 07, 2018 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 8/3/2017 | Annual | 8/3/2018 | MY40000670 | | Agilent | N5182A | MXG Vector Signal Generator | 1/24/2018 | Annual | 1/24/2019 | MY47420651 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 10/16/2017 | Annual | 10/16/2018 | 1126066 | | Anritsu | ML2495A | Power Meter | 10/22/2017 | Annual | 10/22/2018 | 1328004 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017 | Annual | 6/1/2018 | MY53401181 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Seekonk | NC-100 | Torque Wrench 5/16", 8" lbs | 1/22/2018 | Annual | 1/22/2019 | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/13/2017 | Annual | 7/13/2018 | 1322 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/21/2017 | Annual | 6/21/2018 | 1333 | | SPEAG | EX3DV4 | SAR Probe | 7/17/2017 | Annual | 7/17/2018 | 7410 | | SPEAG | ES3DV3 | SAR Probe | 9/18/2017 | Annual | 9/18/2018 | 3287 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | Page 1 of 4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured
SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Electrical | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | W/kg @ 22.0 | (%) | Certificate
SAR Target
Head (10g)
W/kg @ 23.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|------------|--|-------------|-------|---|--------------|----------------------|------|---|--------------------------|------|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 3/7/2017 | 3/7/2018 | 1.033 | 1.67 | 1.70 | 1.55% | 1.10 | 1.11 | 0.91% | 54.7 | 53.4 | 1.3 | -0.7 | -2.5 | 1.8 | -26.8 | -28.0 | -4.60% | PASS | | ı | Calibration
Date | Extension Date | | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | Measured
Body SAR (1g)
W/kg @ 23.0
dBm | | Certificate
SAR Target
Body (10g)
W/kg @ 23.0
dBm | Measured
Body SAR
(10g) W/kg @
23.0 dBm | | | Measured
Impedance
Body (Ohm)
Real | | Certificate
Impedance
Body (Ohm)
Imaginary | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | |---|---------------------|----------------|-------|--|---|--------|---|--|--------|------|---|-----|---|------|----------------------------------|---|--------------------------------------|---------------|-----------| | | 3/7/2017 | 3/7/2018 | 1.033 | 1.72 | 1.70 | -1.28% | 1.14 | 1.12 | -1.41% | 50.7 | 50.4 | 0.3 | -3.6 | -3.9 | 0.3 | -28.7 | -28.5 | 0.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | Fage 2 01 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Dago 2 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | Page 3 of 4 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1054 | 03/07/2018 | Page 4 of 4 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 0108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D750V3-1161_Jul16 # **CALIBRATION CERTIFICATE** Object D750V3 - SN:1161 appendig after Appendig of the Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 13, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | • | | Reference 20 dB Attenuator | SN: 5058 (20k) | 05-Apr-16 (No. 217-02292) | Apr-17 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295) | Apr-17 | | Reference Probe EX3DV4 | SN: 7349 | 15-Jun-16 (No. EX3-7349_Jun16) | Apr-17 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Jun-17 | | | 1 00 ! | 00-Dec-13 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Sahadulad Ob I | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (No. 217-02222) | Scheduled Check | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (No. 217-02222) | In house check: Oct-16 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (No. 217-02223) | In house check: Oct-16 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 | | Network Analyzer HP 8753E | SN: US37390585 | | In house check: Oct-16 | | , | 1014.000700000 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Simothyla | | Calibrated by: | Claudio Leubler | | Signature | | | | Laboratory Technician | | | | | | | | Approved by: | Katja Pokovic | Technical Manager | | | | | a connectival layer | | | | | | | Issued: July 13, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1161_Jul16 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: Certificate No: D750V3-1161_Jul16 e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | . = | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL
temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.17 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.39 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | | | |---|-----------------|--------------|------------------|--|--| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.1 ± 6 % | 0.99 mho/m ± 6 % | | | | Body TSL temperature change during test | < 0.5 °C | **** | | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.43 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.53 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1161_Jul16 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.6 Ω - 0.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.4 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.2 Ω - 4.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.0 dB | #### **General Antenna Parameters and Design** | Figure 1 Dalay (and disputed) | 4 000 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.033 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 19, 2015 | Certificate No: D750V3-1161_Jul16 #### **DASY5 Validation Report for Head TSL** Date: 13.07.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.07 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.13 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg 0 dB = 2.80 W/kg = 4.47 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 13.07.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.33 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.87 W/kg 0 dB = 2.87 W/kg = 4.58 dBW/kg # Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V3 – SN: 1161 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Calibration date: July 12, 2017 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017 | Annual | 6/1/2018 | MY53401181 | | Agilent | 8753ES | S-Parameter Network Analyzer | 10/26/2016 | Annual | 10/26/2017 | US39170118 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/8/2017 | Annual | 3/8/2018 | 1368 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/14/2017 | Annual | 6/14/2018 | 1334 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/10/2017 | Annual | 5/10/2018 | 1070 | | SPEAG | ES3DV3 | SAR Probe | 11/15/2016 | Annual | 11/15/2017 | 3334 | | SPEAG | ES3DV3 | SAR Probe | 3/14/2017 | Annual | 3/14/2018 | 3319 | | Anritsu | MA2411B | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/16/2015 | Biennial | 10/16/2017 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 2/28/2017 | Annual | 2/28/2018 | MY47420800 | | Seekonk | NC-100 | Torque Wrench | 11/6/2015 | Biennial | 11/6/2017 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 201 | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1161 | 07/12/2017 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Measured
Head SAR (1g)
W/kg @ 23.0
dBm | 70/) | Certificate
SAR Target
Head (10g)
W/kg @ 23.0
dBm | Measured
Head SAR
(10g) W/kg @
23.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|---
--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 7/13/2016 | 7/12/2017 | 1.033 | 1.63 | 1.65 | 0.98% | 1.08 | 1.09 | 1.11% | 55.6 | 54.5 | 1.1 | -0.9 | -4.0 | 3.1 | -25.4 | -24.8 | 2.40% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | Measured
Body SAR (1g)
W/kg @ 23.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 23.0
dBm | | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 7/13/2016 | 7/12/2017 | 1.033 | 1.69 | 1.75 | 3.80% | 1.11 | 1.17 | 5.79% | 50.2 | 48.0 | 2.2 | -4.0 | -6.9 | 2.9 | -28.0 | -23.9 | 14.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D750V3 – SN: 1161 | 07/12/2017 | Page 2 of 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D835V2-4d132_Jan18 # **CALIBRATION CERTIFICATE** Object D835V2 - SN:4d132 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz BNV Calibration date: January 15, 2018 N-25-2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check; Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sed aller | | Approved by: | Katja Pokovic | Technical Manager | Alle- | Issued: January 15, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook # **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5.0 mm$ | <u> </u> | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.36 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.55 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.10 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.8 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.71 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.39 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments
outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.8 Ω - 2.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.4 Ω - 5.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.9 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.386 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 22, 2011 | # Appendix (Additional assessments outside the scope of SCS 0108) # **Measurement Conditions** DASY system configuration, as far as not given on page 1 and 3. | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| |---------|------------------|-----------------------------| # SAR result with SAM Head (Top) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.41 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.21 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.69 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.64 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.45 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.22 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.25 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.03 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.96 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.39 W/kg ± 16.9 % (k=2) | Certificate No: D835V2-4d132_Jan18 ## **DASY5 Validation Report for Head TSL** Date: 08.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.23 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.22 W/kg 0 dB = 3.22 W/kg = 5.08 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 08.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.55 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.66 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 3.24 W/kg 0 dB = 3.24 W/kg = 5.11 dBW/kg # Impedance Measurement Plot for Body TSL ### **DASY5 Validation Report for SAM Head** Date: 15.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 44.1$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: SAM Head DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.16 W/kg # SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.99 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg Maximum value of SAR (measured) = 3.19 W/kg # SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.20 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.33 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.04 W/kg # SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.03 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.90 W/kg SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.61 W/kg 0 dB = 2.61 W/kg = 4.17 dBW/kg ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schwelzerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D1750V2-1148_May17 ### **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1148 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz 0(-23-2317 Calibration date: May 09, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|---------------------------------------|-----------------------------------|---------------------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) |
Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-16 (No. EX3-7349_Dec16) | Dec-17 | | DAE4 | SN: 601 | 28-Mar-17 (No. DAE4-601_Mar17) | Mar-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | | | | e | · · · · · · · · · · · · · · · · · · · | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | | | | | W. | | Approved by: | Katja Pokovic | Technical Manager | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 624 | | | | | | Issued: May 11, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1148_May17 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.83 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.7 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.17 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.93 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1148_May17 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8 Ω - 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 42.9 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.7 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.9 dB | ### **General Antenna Parameters and Design** | | <u> </u> | |----------------------------------|----------| | Electrical Delay (one direction) | 1.223 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 30, 2014 | Certificate No: D1750V2-1148_May17 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 09.05.2017 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 09.05.2017 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** • Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA;
Serial: 1002 • DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.49 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 13.1 W/kg 0 dB = 13.1 W/kg = 11.17 dBW/kg ### Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Accreditation No.: SCS 0108 Certificate No: D1750V2-1150_Jul16 ## **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1150 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 14, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | 0-10 - 70 - 11 | | |--|---|---|--| | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) | Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) | Dec-16 Scheduled Check In house check: Oct-16 | | Calibrated by: | Name
Jeton Kastrati | Function
Laboratory Technician | Signature | | Approved by: | Katja Pokovic | Technical Manager | | Issued: July 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1150_Jul16 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizlo svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1150_Jul16 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.4 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.85 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.5 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1150_Jul16 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $50.9 \Omega + 0.4 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 40.2 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $46.4 \Omega - 0.5 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 28.5 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1,218 ns | |----------------------------------|----------| | | 1.210118 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when
loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 10, 2015 | ### **DASY5 Validation Report for Head TSL** Date: 14.07.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1150 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 15.06.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.4 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.8 W/kg Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 14.07.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1150 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.48 \text{ S/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52** Configuration: Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 15.06.2016; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.09 W/kg; SAR(10 g) = 4.85 W/kg Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg ### Impedance Measurement Plot for Body TSL ### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com ### **Certification of Calibration** Object D1750V2 – SN: 1150 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Calibration date: July 07, 2017 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Model Description | | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017 | Annual | 6/1/2018 | MY53401181 | | Agilent | 8753ES | S-Parameter Network Analyzer | 10/26/2016 | Annual | 10/26/2017 | US39170118 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/8/2017 | Annual | 3/8/2018 | 1368 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/13/2017 | Annual | 3/13/2018 | 1415 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/10/2017 | Annual | 5/10/2018 | 1070 | | SPEAG | ES3DV3 | SAR Probe | 3/14/2017 | Annual | 3/14/2018 | 3209 | | SPEAG | ES3DV3 | SAR Probe | 3/14/2017 | Annual | 3/14/2018 | 3319 | | Anritsu | MA2411B | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 2/10/2017 | Annual | 2/10/2018 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/16/2015 | Biennial | 10/16/2017 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 2/28/2017 | Annual | 2/28/2018 | MY47420800 | | Seekonk | NC-100 | Torque Wrench | 11/6/2015 | Biennial | 11/6/2017 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BROPTE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1150 | 07/07/2017 | Page 1 of 4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | 70/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 7/14/2016 | 7/7/2017 | 1.218 | 3.61 | 3.57 | -1.11% | 1.92 | 1.88 | -2.08% | 50.9 | 49.9 | 1 | 0.4 | -1.8 | 2.1 | -40.2 | -33.4 | 16.90% | PASS | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 7/14/2016 | 7/7/2017 | 1.218 | 3.65 | 3.68 | 0.82% | 1.95 | 1.97 | 1.03% | 46.4 | 45.5 | 0.9 | -0.5 | 0.7 | 1.2 | -28.5 | -23.6 | 17.20% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1150 | 07/07/2017 | rage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1150 | 07/07/2017 | Page 3 of 4 | ### Impedance & Return-Loss Measurement Plot for Body TSL CENTER 1 750.000 000 MHz | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1150 | 07/07/2017 | Page 4 of 4 | SPAN 400.000 000 MHz ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D1900V2-5d148_Feb18 ### **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d148 Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz BN1- Calibration date: February
07, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|-------------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | Calibrated by: | Name
Claudio Leubler | Function
Laboratory Technician | Signature | | Approved by: | Katja Pokovic | Technical Manager | Alls | Issued: February 7, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d148_Feb18 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | *** | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Page 3 of 8 Certificate No: D1900V2-5d148_Feb18 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.1 Ω + 5.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $47.8 \Omega + 6.5 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.1 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 4.400 | |----------------------------------|----------| | Liectrical Delay (one direction) | 1.199 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 11, 2011 | ### **DASY5 Validation Report for Head TSL** Date: 07.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.6 V/m; Power Drift = -0.07 dB Peak SAR
(extrapolated) = 18.5 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg ### Impedance Measurement Plot for Head TSL