Model No. # FCC SAR Test Report Product Name : InstaShow X Button, InstaShow S Button WDC25THS, WDC30THS, WDC21THS, WDC30SETHS, WDC20+THS, WDC30+THS, WDC25PTHS, WDC31THS Applicant : BenQ Corporation Address : 16 Jihu Road, 11492 Neihu, Taipei, TAIWAN Date of Receipt : 2021/09/09 Issued Date : 2022/03/09 Report No. : 2190334R-SAUSSARV02-A Report Version : V1.0 The test results relate only to the samples tested. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein. This report must not be used to claim product endorsement by TAF or any agency of the government. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement. # Test Report Issued Date: 2022/03/09 Report No.: 2190334R-SAUSSARV02-A **Product Name** : InstaShow X Button, InstaShow S Button : BenQ Corporation **Applicant** : 16 Jihu Road, 11492 Neihu, Taipei, TAIWAN Address Manufacturer : Shuttle Inc. Model No. : WDC25THS, WDC30THS, WDC21THS, WDC30SETHS, WDC20+THS, WDC30+THS, WDC25PTHS, WDC31THS Trade Name : BenQ : JVPWDC30THS FCC ID Applicable Standard : IEEE 1528-2013 > KDB 447498 D01 v06 KDB 865664 D01 v01r04 Measurement : 47CFR § 2.1093 KDB 248227 D01 v02r02 procedures KDB 616217 D04 v01r02 Test Result : Max. SAR Measurement (1g) 5 GHz: 0.678 W/kg Application Type : Certification The above equipment has been tested by DEKRA, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. | Documented By | April Chen | | |---------------|--|--| | | (Senior Project Specialist / April Chen) | | | Tested By | : Luke Cheng | | | | (Senior Engineer / Luke Cheng) | | | Approved By | Gain Van | | | | (Supervisor / San Lin) | | # TABLE OF CONTENTS | 1.1 EUT Description 5 1.2 Antenna List 5 1.3 SAR Test Exclusion Calculation 6 1.4 Test Environment 7 2. SAR Measurement System 8 2.1 DASY5 System Description 8 2.1.1 Applications 9 2.1.2 Area Scans 9 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging 9 2.2 DASY5 E-Field Probe 10 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1.2 System Check Result 6 4.1 SAR System Check R | Des | | age | |---|-----|---|----------| | 1.2 Antenna List 5 1.3 SAR Test Exclusion Calculation 6 1.4 Test Environment 7 2. SAR Measurement System 8 2.1 DASY5 System Description 8 2.1.2 Area Scans 9 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging 9 2.2.1 Isotropic E-Field Probe 10 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1.2 System Check 16 4.1.1 Dipoles 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure | 1. | | | | 1.3 SAR Test Exclusion Calculation 6 1.4 Test Environment 7 2. SAR Measurement System 8 2.1 DASY5 System Description 8 2.1.1 Applications 9 2.1.2 Area Scans 9 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-(Extrapolation and Averaging 9 2.2 DASY5 E-Field Probe 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 3.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 20 4.2 SAR Measurement Incertainty 22 5. SAR Exposure Limits | | | | | 1.4 Test Environment 7 2. SAR Measurement System 8 2.1 DASY5 System Description 8 2.1.1 Applications 9 2.1.2 Area Scans 9 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging 9 2.2 DASY5 E-Field Probe 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.5 Robot 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 Tissue Simulating Liquid 14 3.1 Tissue Calibration Result 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4. 1.1 Dipoles 16 4.1.2 System Check 16 4.1.2 System Check Result 16 4.1.2 System Check Result 16 4.2 SAR Measu | | 1.2 Antenna List | 5 | | 2. SAR Measurement System 8 2.1 DASY5 System Description 8 2.1.1 Applications 9 2.1.2 Area Scans 9 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging 9 2.2 DASY5 E-Field Probe 10 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.2 Tissue Delielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.2 System Check Result 16 4.1.2 System Check Result 16 4.1.2 System Check Results 16 5. | | | | | 2.1 DASY5 System Description 8 2.1.1
Applications 9 2.1.2 Area Scans 9 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging 9 2.2.1 Isotropic E-Field Probe 10 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure Limits 16 6. Test Equipment List 20 7. Measurement Uncertainty 22 8. Conducted Powe | _ | | | | 2.1.1 Applications. .9 2.1.2 Area Scans .9 2.1.3 Zoom Scan (Cube Scan Averaging) .9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging .9 2.2 DASY5 E-Field Probe .10 2.3 Boundary Detection Unit and Probe Mounting Device .11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server .11 2.5 Robot .12 2.6 Light Beam Unit .12 2.7 Device Holder .13 3.8 SAM Twin Phantom .13 3. Tissue Simulating Liquid .14 3.1 The composition of the tissue simulating liquid .14 3.2 Tissue Calibration Result .14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms .15 4. SAR Measurement Procedure .16 4. 1. Dipoles .16 4. 1. 2 System Check .16 4. 1. 2 System Check Result .16 4. 2 SAR Measurement Procedure .18 5. SAR Exposure Limits .19 6. Test Equipment List .20 7. Measurement Uncertainty .22 8. Conducted Power Measurement (Including tolerance allowed for production unit) <t< td=""><td>2.</td><td>SAR Measurement System</td><td> გ</td></t<> | 2. | SAR Measurement System | გ | | 2.1.2 Área Scans 9 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging 9 2.2 DASY5 E-Field Probe 10 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1.1 Dipoles 16 4.1.2 System Check 16 4.1.2 System Check Result 16 4.1.2 System Check Result 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure Limits 19 6. Test Equipment List 20 7. Measurement Uncertainty 20 8. Conducted Power | | 2.1 DASY5 System Description | ა | | 2.1.3 Zoom Scan (Cube Scan Averaging) 9 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging 9 2.2 DASY5 E-Field Probe 10 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1.2 System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 16 4.1.2 System Check Result 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure Limits 19 6. Test Equipment List 20 7. Measurement Uncertainty 22 8. Conducted Power Measurement (Including tolerance allowed for production unit) | | | | | 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging. 2.2 DASY5 E-Field Probe 3.2 DASY5 E-Field Probe Specification 3.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 3.1 The composition Result 13 3.3 Tissue Calibration Result 14 3.3 Tissue Calibration Result 14 4.1 SAR System Check 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure Limits 19 6. Test Equipment List 20 7. Measurement Uncertainty 21 8. Conducted Power Measurement (Including tolerance allowed for production unit) 24 9.1 SAR Test Results Summary 25 9.2 Simultaneous transmission 26 9.2.1 Simultaneous transmission of MIMO in 802.11 test exclusion considerations 26 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies 26 10. SAR measurement Variability 27 Appendix 28 Appendix A. SAR System Check Data Appendix C. Test Setup Photographs Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data Appendix E. Dipole Calibration Data Appendix E. Dipole Calibration Data | | | | | 2.2 DASY5 E-Field Probe 10 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 20 7. Measurement Uncertainty 22 8. Conducted Power Measurement (Including tolerance allowed for production unit) 24 9.1 SAR Test Results Summary 25 9.2 Simultaneous transmission of MIMO in 802.11 test exclusion considerations 26 9.2.1 Simulta | | 2.1.3 Lincertainty of Inter-/Extrapolation and Averaging | 9 | | 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 11 2.4 DATA Acquisition Electronics (DAE) and Measurement Server 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 16 4.1.3 Fact Results 19 6. Test Equipment List 20 7. Measurement Uncertainty 22 8. Conducted Power Measurement (Including tolerance allowed for production unit) 24 9.1 SAR Test Results Summary 25 9.2 Simultaneous transmission 26 | | 2.2 DASY5 F-Field Probe | 10 | | 2.3 Boundary Detection Unit and Probe Mounting Device | | 2.2.1 Isotropic E-Field Probe Specification | 10 | | 2.4 DATA Acquisition Electronics (DAE) and Measurement Server. 11 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure Limits 19 6. Test Equipment List 20 7. Measurement Uncertainty 22 8. Conducted Power Measurement (Including tolerance allowed for production unit) 24 9.1 SAR Test Results Summary 25 9.2 Simultaneous transmission 26 9.2.1 Simultaneous transmission of MIMO in 802.11 test exclusion considerations 26 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies 26 10. SAR measurement variability 27 <td< td=""><td></td><td>2.3 Boundary Detection Unit and Probe Mounting Device</td><td> 11</td></td<> | | 2.3 Boundary Detection Unit and Probe Mounting Device | 11 | | 2.5 Robot 12 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 16 4.1.2 System Check Result 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure Limits 19 6. Test Equipment List 20 7. Measurement Uncertainty 22 8. Conducted Power Measurement (Including tolerance allowed for production unit) 24 9.1 SAR Test Results Summary 25 9.2 Simultaneous transmission 26 9.2.1 Simultaneous transmission of MiMO in 802.11 test exclusion considerations 26 10. SAR measurement variability 27 Appendix A. SAR System Check Data Appendix B. SAR measurement Data Appendix D. Probe Calibration Data | | 2.4 DATA Acquisition Electronics (DAE) and Measurement Server | 11 | | 2.6 Light Beam Unit 12 2.7 Device Holder 13 2.8 SAM Twin Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Check 16 4.1.1 Dipoles 16 4.1.2 System Check Result 16 4.2 SAR Measurement Procedure 18 5. SAR Exposure Limits 19 6. Test Equipment List 20 7. Measurement Uncertainty 22 8. Conducted Power Measurement (Including tolerance allowed for production unit) 24 9.1 SAR Test Results Summary 25 9.2 Simultaneous transmission 26 9.2.1 Simultaneous transmission of MIMO in 802.11 test exclusion considerations 26 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies 26 10. SAR measurement variability 27 Appendix A. SAR System Check Data Appendix B. SAR measurement Data Appendix D. Probe Calibration Data Appendix E | | 2.5 Robot | 12 | | 2.8 SAM Twin Phantom | | 2.6 Light Beam Unit | 12 | | 3. Tissue Simulating Liquid | | 2.7 Device Holder | 13 | | 3.1 The composition of the tissue simulating liquid | | | | | 3.2 Tissue Calibration Result 3.3 Tissue Dielectric Parameters for Head and Body Phantoms. 15 4. SAR Measurement Procedure. 4.1 SAR System Check 4.1.1 Dipoles. 4.2 System Check Result. 4.2 SAR Measurement Procedure. 5. SAR Exposure
Limits. 5. SAR Exposure Limits. 6. Test Equipment List. 7. Measurement Uncertainty. 8. Conducted Power Measurement (Including tolerance allowed for production unit). 9. Test Results. 9.1 SAR Test Results Summary. 9.2 Simultaneous Transmission 9.2.1 Simultaneous transmission of MIMO in 802.11 test exclusion considerations. 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies. 26 10. SAR measurement variability. 27 Appendix A. SAR System Check Data Appendix B. SAR measurement Data Appendix C. Test Setup Photographs Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data Appendix E. Dipole Calibration Data | 3. | Tissue Simulating Liquid | 14 | | 3.3 Tissue Dielectric Parameters for Head and Body Phantoms | | 3.1 The composition of the tissue simulating liquid | 14 | | 4.1 SAR Measurement Procedure | | 3.2 Tissue Calibration Result | 14 | | 4.1 SAR System Check | | | | | 4.1.1 Dipoles | 4. | | | | 4.1.2 System Check Result | | 4.1 SAR System Check | 10
16 | | 4.2 SAŘ Measurement Procedure | | 4.1.1 Dipoles | 16 | | 5. SAR Exposure Limits | | 4.2 SAR Measurement Procedure | 18 | | 6. Test Equipment List | 5 | | | | 7. Measurement Uncertainty | | · | | | 8. Conducted Power Measurement (Including tolerance allowed for production unit) | | | | | 9. Test Results — 24 9.1 SAR Test Results Summary — 25 9.2 Simultaneous Transmission — 26 9.2.1 Simultaneous transmission of MIMO in 802.11 test exclusion considerations — 26 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies — 26 10. SAR measurement variability — 27 Appendix — 28 Appendix A. SAR System Check Data Appendix B. SAR measurement Data Appendix C. Test Setup Photographs Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data | | - The state of th | | | 9.1 SAR Test Results Summary | | | | | 9.2 Simultaneous Transmission | 9. | | | | 9.2.1 Simultaneous transmission of MIMO in 802.11 test exclusion considerations26 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies | | 9.1 SAK Test Results Summary | 25 | | 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies | | | | | 10. SAR measurement variability 27 Appendix 28 Appendix A. SAR System Check Data Appendix B. SAR measurement Data Appendix C. Test Setup Photographs Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data | | | | | Appendix | 10 | - | | | Appendix A. SAR System Check Data Appendix B. SAR measurement Data Appendix C. Test Setup Photographs Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data | 10. | | | | Appendix B. SAR measurement Data Appendix C. Test Setup Photographs Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data | | | 20 | | Appendix C. Test Setup Photographs Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data | | ·· | | | Appendix D. Probe Calibration Data Appendix E. Dipole Calibration Data | | • • | | | Appendix E. Dipole Calibration Data | | · · · · · · · · · · · · · · · · · · · | | | | | 11 | | | Appendix F. Product Photos-Please refer to the file: 2190334R-Product Photos | | Appendix F. Product Photos-Please refer to the file: 2190334R-Product Photos | | # **Revision History** | Report No. | Version | Description | Issued Date | |-----------------------|---------|--------------------------|-------------| | 2190334R-SAUSSARV02-A | V1.0 | Initial issue of report. | 2022/03/09 | # 1. General Information # 1.1 EUT Description | · | | |----------------------------|--| | Product Name | InstaShow X Button, InstaShow S Button | | Trade Name | BenQ | | Model No. | WDC25THS, WDC30THS, WDC21THS, WDC30SETHS, | | | WDC20+THS, WDC30+THS, WDC25PTHS, WDC31THS | | Test Sample | WDC30THS | | FCC ID | JVPWDC30THS | | Frequency Range | 802.11a/n/ac-20:5180-5240MHz, 5745-5825MHz | | | 802.11n/ac-40MHz: 5190-5230MHz, 5755-5795MHz | | | 802.11ac-80MHz: 5210MHz, 5775MHz | | Number of Channels | 802.11a/n/ac-20MHz: 9, 802.11n/ac-40MHz: 4 | | | 802.11ac-80MHz: 2 | | Data Rate | 802.11a/g: 6-54Mbps | | | 802.11n: up to 300Mbps | | | 802.11ac-80MHz: up to 866.7MHz | | Type of Modulation | 802.11a/n/ac: OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM | | Antenna Type | PIFA | | Device Category | Portable | | RF Exposure Environment | Uncontrolled | | Summary of test result –Re | ported 1g SAR (W/Kg) | | Test configuration | NII | | Body-Standalone | 0.678 | | Dady Circulton and | NII (Main + Aux) | | Body-Simultaneous | 1.196 | | | | | | | #### Note: It's declared by manufacture about all models are electrically identical, different model names for marketing purpose. The identification of test sample is WDC30THS. ## 1.2 Antenna List | No. | Manufacturer | Part No. | Antenna Type | Peak Gain | |-----|--------------|--------------------------|--------------|----------------------------| | 1 | WGT | HHC30WIPB01+C | PIFA | 2.28dBi for 5.15~5.25GHz | | | | (43R-WDC301-0300) (Main) | | 2.29dBi for 5.725~5.850GHz | | | | HHC30WIPB02+B | | | | | | (43R-WDC301-0310)(Aux) | | | Page: 5 of 28 #### 1.3 SAR Test Exclusion Calculation According to KDB Publication 447498 D01, section 4.3.1, per the calculations of item 1 (Power(mW)/separation (mm)*sqrt(f(GHz)≤3.0), SAR is required as shown in the table below where calculated values are greater than 3.0 : #### SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna < 50mm from the user : | Antenna | Tx | Frequency | Separation distances (mm) | | | | | | | ılated Th
0 SAR is | | | | | | | |---------|-------|-----------|---------------------------|----|------|-------|------|-----|--------|-----------------------|------|-------|-------|-------|--------|-------| | | (MHz) | | dBm | mW | Back | Right | Left | Тор | Bottom | Front | Back | Right | Left | Тор | Bottom | Front | | Main | WiFi | 5240 | 14 | 25 | 3 | 1 | 55 | 55 | 1 | 4 | 11.5 | 11.5 | >50mm | >50mm | 11.5 | 11.5 | | Main | WiFi | 5825 | 14 | 25 | 3 | 1 | 55 | 55 | 1 | 4 | 12.1 | 12.1 | >50mm | >50mm | 12.1 | 12.1 | #### SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna > 50mm from the user: | | Antenna | Tx | Frequency | Output | Power | wer Separation distances (mm) | | | | | | | Calculated Threshold Value (SAR test exclusion power,mW) | | | | | |--|---------|------|-----------|--------|-------|-------------------------------|-------|------|-----|--------|-------|-------|--|-------|-------|--------|-------| | | | | (MHz) | dBm | mW | Back | Right | Left | Тор | Bottom | Front | Back | Right | Left | Тор | Bottom | Front | | | Main | WiFi | 5240 | 14 | 25 | 3 | 1 | 55 | 55 | 1 | 4 | <50mm | <50mm | 115.5 | 115.5 | <50mm | <50mm | | | Main | WiFi | 5825 | 14 | 25 | 3 | 1 | 55 | 55 | 1 | 4 | <50mm | <50mm | 112.2 | 112.2 | <50mm | <50mm | #### SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna < 50mm from the user : | Antenna | Tx | Frequency | Output F | Power | | Separation distances (mm) | | | | | mm) Calculated Threshold Value (≦3.0 SAR is not required) | | | | | | | | |---------|------|-----------|----------|-------|------|---------------------------|------|-----|--------|-------|---|-------|------|------|--------|-------|--|--| | | | (MHz) | dBm | mW | Back | Right | Left | Тор | Bottom | Front | Back | Right | Left | Тор | Bottom | Front | | | | Aux | WiFi | 5240 | 14 | 25 | 3 | 55 | 1 | 1 | 55 | 4 | 11.5 | >50mm | 11.5 | 11.5 | >50mm | 11.5 | | | | Aux | WiFi | 5825 | 14 | 25 | 3 | 55 | 1 | 1 | 55 | 4 | 12.1 | >50mm | 12.1 | 12.1 | >50mm | 12.1 | | | #### SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna > 50mm from the user: | <u> </u> | 71010 | | | | | | <u> </u> | | | • • • • | U. W | • · · · · · · · · | •••• | • . | | | | |----------|-------|-----------|----------|-------|----------------------------|---------------------------|----------|------|-----|-------------------------------|-------------|----------------------------|-------|-------|-------|-------------|-------| | | | Frequency | Output F | Dowor | | Separation distances (mm) | | | | | | Calculated Threshold Value | | | | | | | Antenna | Tx | (MHz) | Output i | Owei | Separation distances (min) | | | | | (SAR test exclusion power,mW) | | | | | | | | | | | | (IVITZ) | dBm | mW | Back | Right | Left | Тор | Bottom | Front | Back | Right | Left | Тор | Bottom | Front | | Aux | WiFi | 5240 | 14 | 25 | 3 | 55 | 1 | 1 | 55 | 4 | <50mm | 115.5 | <50mm | <50mm | 115.5 | <50mm | | | Aux | WiFi | 5825 | 14 | 25 | 3 | 55 | 1 | 1 | 55 | 4 | <50mm | 112.2 | <50mm | <50mm | 112.2 | <50mm | | Page: 6 of 28 #### 1.4 Test Environment Ambient conditions in the laboratory: Test Date: Oct. 28, 2021 | Items | Required | Actual | |------------------|----------|---------| | Temperature (°C) | 18-25 | 23.1± 2 | | Humidity (%RH) | 30-70 | 51 | USA : FCC Registration Number: TW0033 Canada : IC Registration Number: 26930 Site Description : Accredited by TAF Accredited Number: 3023 Test Laboratory : DEKRA Testing and Certification Co., Ltd Address : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C. Phone number : 886-3-275-7255 Fax number : 866-3-327-8031 Email address : info.tw@dekra.com Website : http://www.dekra.com.tw # 2. SAR Measurement System #### 2.1 DASY5 System Description The DASY5 system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. -
The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### 2.1.1 Applications Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others. #### 2.1.2 Area Scans Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2013, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). ### 2.1.3 Zoom Scan (Cube Scan Averaging) Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis. #### 2.1.4 Uncertainty of Inter-/Extrapolation and Averaging In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat Page: 9 of 28 distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface. $$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$ $$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$ $$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$ #### 2.2 DASY5 E-Field Probe The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D. ## 2.2.1 Isotropic E-Field Probe Specification | Model | Ex3DV4 | | |---------------|--|------------------| | Construction | Symmetrical design with triangular core Built-in sh charges PEEK enclosure material (resistant to or DGBE) | | | Frequency | 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to
probe axis) | / | | Dynamic Range | 10 μW/g to 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | Application | High precision dosimetric measurements in any (e.g., very strong gradient fields). Only procompliance testing for frequencies up to 6 GHz wir 30%. | be which enables | #### 2.3 Boundary Detection Unit and Probe Mounting Device The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response. #### 2.4 DATA Acquisition Electronics (DAE) and Measurement Server The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board. #### 2.5 Robot The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are important for our application: - High precision (repeatability 0.02 mm) - High reliability (industrial design) - Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) - ➢ 6-axis controller #### 2.6 Light Beam Unit The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. #### 2.7 Device Holder The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles. The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. #### 2.8 SAM Twin Phantom The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas: - Left head - Right head - > Flat phantom The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. # 3. Tissue Simulating Liquid # 3.1 The composition of the tissue simulating liquid | INGREDIENT | 5GHz | |--------------|-------| | (% Weight) | Head | | Water | 68.29 | | Salt | 0.00 | | Sugar | 0.00 | | HEC | 0.00 | | Preventol | 0.00 | | DGBE | 2.44 | | Triton X-100 | 29.27 | #### 3.2 Tissue Calibration Result The dielectric parameters of the liquids were verified prior to the SAR evaluation using Dielectric Probe Kit and Vector Network Analyzer. | Head Tissue Simulate Measurement | | | | | | | |----------------------------------|------------------|----------------|--------------|---------------|--|--| | Frequency | Description | Dielectric F | Parameters | Tissue | | | | [MHz] | Description | εr | σ [s/m] | Temp.
[°C] | | | | | Reference result | 35.95 | 4.71 | N/A | | | | 5250MHz | ± 5% window | 34.15 to 37.75 | 4.47 to 4.95 | IN/A | | | | | 28-Oct-21 | 35.93 | 4.72 | 22.2
 | | | 5230 MHz | Channel 46 | 36.01 | 4.69 | 22.2 | | | | Head Tissue Simulate Measurement | | | | | | | |----------------------------------|------------------|----------------|--------------|---------------|--|--| | Frequency | Description | Dielectric F | Parameters | Tissue | | | | [MHz] | Description | εr | σ [s/m] | Temp.
[°C] | | | | | Reference result | 35.3 | 5.27 | N/A | | | | 5800MHz | ± 5% window | 33.54 to 37.07 | 5.01 to 5.53 | IN/A | | | | | 28-Oct-21 | 34.43 | 5.46 | 22.2 | | | | 5755 MHz | Channel 151 | 34.56 | 5.4 | 22.2 | | | | 5795 MHz | Channel 159 | 34.45 | 5.45 | 22.2 | | | Page: 14 of 28 ## 3.3 Tissue Dielectric Parameters for Head and Body Phantoms The head tissue dielectric parameters recommended by the IEC 62209-1 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head tissue parameters that have not been specified are interpolated according to the head parameters specified in IEC 62209-1 | Target Frequency | Не | ead | |------------------|----------------|---------| | (MHz) | ε _r | σ (S/m) | | 300 | 45.3 | 0.87 | | 450 | 43.5 | 0.87 | | 750 | 41.9 | 0.89 | | 835 | 41.5 | 0.90 | | 900 | 41.5 | 0.97 | | 1450 | 40.5 | 1.20 | | 1640 | 40.2 | 1.31 | | 1750 | 40.1 | 1.37 | | 1800 – 2000 | 40.0 | 1.40 | | 2450 | 39.2 | 1.80 | | 3000 | 38.5 | 2.40 | | 5000 | 36.2 | 4.45 | | 5200 | 36.0 | 4.66 | | 5400 | 35.8 | 4.86 | | 5600 | 35.3 | 5.27 | | 5800 | 35.3 | 5.27 | | 6000 | 35.1 | 5.48 | (ϵ_{r} = relative permittivity, σ = conductivity and ρ = 1000 kg/m³) Page: 15 of 28 #### 4. SAR Measurement Procedure # 4.1 SAR System Check ## 4.1.1 Dipoles The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles. | Frequency | L (mm) | h (mm) | d (mm) | |---------------|--------|--------|--------| | 5200M~5800MHz | 20.6 | 40.3 | 3.6 | ## 4.1.2 System Check Result | System Performance Check at 5250MHz Dipole Kit: D5GHzV2 | | | | | | | |---|---|------------------------|------------------------|------|--|--| | Frequency
[MHz] | · · · Description · · · · · · · · · · · · · · · · · · | | | | | | | 5250 MHz | Reference result ± 10% window | 81.6
73.44 to 89.76 | 23.2
20.88 to 25.52 | N/A | | | | | 28-Oct-21 | 85.2 | 24.5 | 22.2 | | | Note: (1) The power level is used 100mW - (2) All SAR values are normalized to 1W forward power. - (3) The reference result is from Appendix E. | System Performance Check at 5800MHz Dipole Kit: D5GHzV2 | | | | | | | |---|-------------------------------|------------------------|------------------------|-----|--|--| | Frequency [MHz] Description SAR [w/kg] SAR [w/kg] Tissue Temp. 10g [°C] | | | | | | | | 5800 MHz | Reference result ± 10% window | 82.0
73.80 to 90.20 | 22.8
20.52 to 25.08 | N/A | | | | 28-Oct-21 85.5 24.3 22.2 | | | | | | | | Note: (1) The power level is used 100mW | | | | | | | - (2) All SAR values are normalized to 1W forward power. - (3) The reference result is from Appendix E. #### 4.2 SAR Measurement Procedure The Dasy5 calculates SAR using the following equation, $$SAR = \frac{\sigma |E|^2}{\rho}$$ σ: represents the simulated tissue conductivity ρ: represents the tissue density The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings. Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid. The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area. The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³). # 5. SAR Exposure Limits SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure. Limits for General Population/Uncontrolled Exposure (W/kg) | Type Exposure | Uncontrolled
Environment Limit | |--|-----------------------------------| | Spatial Peak SAR (1g cube tissue for brain or body) | 1.60 W/kg | | Spatial Average SAR (whole body) | 0.08 W/kg | | Spatial Peak SAR (10g for hands, feet, ankles and wrist) | 4.00 W/kg | Page: 19 of 28 # 6. Test Equipment List | Instrument | Manufacturer | Model No. | Serial No. | Last | Next | |-----------------------------|--------------|---------------|-----------------|-------------|------------------| | | | | | Calibration | Calibration | | Stäubli Robot TX60L | Stäubli | TX60L | F13/5S7KD1/A/01 | N/A | N/A | | Controller | Speag | CS8c | N/A | N/A | N/A | | Reference Dipole 5GHz | Speag | D5GHzV2 | 1041 | 2020/05/25 | 2023/05/24 | | Device Holder | Speag | N/A | N/A | N/A | N/A | | Data Acquisition Electronic | Speag | DAE4 | 1425 | 2020/11/24 | 2021/11/23 | | E-Field Probe | Speag | EX3DV4 | 3979 | 2020/11/25 | 2021/11/24 | | SAR Software | Speag | DASY52 | V52.10.0.1446 | N/A | N/A | | Power Amplifier | Mini-Circuit | ZVE-8G | 541100241 | N/A | N/A | | Directional Coupler | Agilent | 87300C | MY44300353 | N/A | N/A ¹ | | Attenuator | Woken | WATT-218FS-10 | N/A | N/A | N/A ¹ | | Attenuator | Mini-Circuit | BW-S20W2+ | N/A | N/A | N/A ¹ | | Vector Network | Agilent | E5071C | MY46108013 | 2021/2/24 | 2022/2/23 | | Signal Generator | Anritsu | MG3694A | 041902 | 2021/8/26 | 2022/8/25 | | Power Meter | Anritsu | ML2487A | 6K00001447 | 2020/11/06 | 2021/11/05 | | Power Sensor | Anritsu | MA2411B | 1339194 | 2020/11/06 | 2021/11/05 | Note: 1. System Check, the path loss measured by the network analyzer, includes the signal generator, amplifier, cable, attenuator and directional coupler. Page: 20 of 28 #### Note: Per KDB 865664 D01 requirements for dipole calibration, the following are recommended FCC procedures for SAR dipole calibration. - 1. After a dipole is damaged and properly repaired to meet required specifications - 2. When the measured SAR deviates from the calibrated SAR value by more than 10% due to changes in physical, mechanical, electrical or other relevant dipole conditions. - 3. When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification. | | Frequency | Tissue | Return loss | Limit | Verified Date | |-------------|-----------|--------|-------------|--------------|---------------| | Calibration | 5250 | Head | -26.86dB | Within 20% | 2020.05.25 | | Measurement | 5250 | Head | -24.16dB | VVIIIII 2070 | 2021.05.18 | | | Frequency | Tissue | Return loss | Limit | Verified Date | |-------------|-----------|--------|-------------|-------------|---------------| | Calibration | 5800 | Head | -26.80dB | Within 200/ | 2020.05.25 | | Measurement | 5800 | Head | -25.64dB | Within 20% | 2021.05.18 | 4. When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement. | | Frequency | Tissue | Return loss | Limit | Verified Date | |-------------|-----------|--------|-------------|-----------|---------------| | Calibration | 5250 | Head | 49.04 | Within 5Ω | 2020.05.25 | | Measurement | 5250 | Head | 45.54 | | 2021.05.18 | | | Frequency | Tissue | Return loss | Limit | Verified Date | |-------------|-----------|--------|-------------|-------------|---------------| | Calibration | 5800 | Head | 54.28 | - Within 5Ω | 2020.05.25 | | Measurement | 5800 | Head | 49.85 | | 2021.05.18 | # 7. Measurement Uncertainty | DASY5 U | ncertaint
ement u | • | | • | | | • | | |-----------------------------|----------------------|-------|------|------|------|-----------|-----------|------| | Error Description | Uncert. | Prob. | Div. | (ci) | (Ci) | Std. Unc. | Std. Unc. | (Vi) | | | value | Dist. | | 1g | 10g | (1g) | (10g) | Veff | | Measurement System | | | | , , | | 1 (0) | 1 0/ | I | | Probe Calibration | ±6% | N | 1 | 1 | 1 | ±6.0% | ±6.0% | ∞ | | Axial Isotropy | ±4.7% | R | √3 | 0.7 | 0.7 | ±1.9% | ±1.9% | ∞ | | Hemispherical Isotropy | ±9.6% | R | √3 | 0.7 | 0.7 | ±3.9% | ±3.9% | ∞ | | Boundary Effects | ±1.0% | R | √3 | 1 | 1 | ±0.6% | ±0.6% | ∞ | | Linearity | ±4.7% | R | √3 | 1 | 1 | ±2.7% | ±2.7% | ∞ | | System Detection Limits | ±1.0% | R | √3 | 1 | 1 | ±0.6% | ±0.6% | ∞ | | Modulation Response | ±2.4% | R | √3 | 1 | 1 | ±1.4% | ±1.4% | ∞ | | Readout Electronics | ±0.3% | N | 1 | 1 | 1 | ±0.3% | ±0.3% | ∞ | | Response Time | ±0.8% | R | √3 | 1 | 1 | ±0.5% | ±0.5% | ∞ | | Integration Time | ±2.6% | R | √3 | 1 | 1 | ±1.5% | ±1.5% | ∞ | | RF Ambient Noise | ±3.0% | R | √3 | 1 | 1 | ±1.7% | ±1.7% | ∞ | | RF Ambient Reflections | ±3.0% | R | √3 | 1 | 1 | ±1.7% | ±1.7% |
∞ | | Probe Positioner | ±0.4% | R | √3 | 1 | 1 | ±0.2% | ±0.2% | ∞ | | Probe Positioning | ±2.9% | R | √3 | 1 | 1 | ±1.7% | ±1.7% | ∞ | | Max. SAR Eval. | ±4.0% | R | √3 | 1 | 1 | ±1.2% | ±1.2% | ∞ | | Test Sample Related | | • | | | | | | | | Device Positioning | ±2.9% | N | 1 | 1 | 1 | ±2.9% | ±2.9% | 145 | | Device Holder | ±3.6% | N | 1 | 1 | 1 | ±3.6% | ±3.6% | 5 | | Power Drift | ±5.0% | R | √3 | 1 | 1 | ±2.9% | ±2.9% | ∞ | | Power Scaling | ±0% | R | √3 | 1 | 1 | ±0.0% | ±0.0% | | | Phantom and Setup | | | | | | | | | | Phantom Uncertainty | ±6.1% | R | √3 | 1 | 1 | ±3.5% | ±3.5% | ∞ | | SAR correction | ±1.9% | R | √3 | 1 | 0.84 | ±1.1% | ±0.9% | ∞ | | Liquid Conductivity (meas.) | ±2.5% | R | √3 | 0.78 | 0.71 | ±1.1% | ±1.0% | ∞ | | Liquid Permittivity (meas.) | ±2.5% | R | √3 | 0.26 | 0.26 | ±0.3% | ±0.4% | ∞ | | Temp. unc Conductivity | ±3.4% | R | √3 | 0.78 | 0.71 | ±1.5% | ±1.4% | ∞ | | Temp. unc Permittivity | ±0.4% | R | √3 | 0.23 | 0.26 | ±0.1% | ±0.1% | ∞ | | Combined Std. Uncertainty | | | | | | ±11.2% | ±11.1% | 361 | | Expanded STD Uncertainty | | | | | | ±22.3% | ±22.2% | | Page: 22 of 28 | DASY5 U
Measu | ncertaint
urement u | | | | | | 13) | | |-----------------------------|------------------------|-------|------|------|------|-----------|-----------|------| | Error Description | Uncert. | Prob. | Div. | (Ci) | (Ci) | Std. Unc. | Std. Unc. | (Vi) | | | value | Dist. | | 1g | 10g | (1g) | (10g) | Veff | | Measurement System | | | 1 | 1 | 1 | | | • | | Probe Calibration | ±6.55% | N | 1 | 1 | 1 | ±6.55% | ±6.55% | ∞ | | Axial Isotropy | ±4.7% | R | √3 | 0.7 | 0.7 | ±1.9% | ±1.9% | ∞ | | Hemispherical Isotropy | ±9.6% | R | √3 | 0.7 | 0.7 | ±3.9% | ±3.9% | ∞ | | Boundary Effects | ±2.0% | R | √3 | 1 | 1 | ±1.2% | ±1.2% | ∞ | | Linearity | ±4.7% | R | √3 | 1 | 1 | ±2.7% | ±2.7% | ∞ | | System Detection Limits | ±1.0% | R | √3 | 1 | 1 | ±0.6% | ±0.6% | ∞ | | Modulation Response | ±2.4% | R | √3 | 1 | 1 | ±1.4% | ±1.4% | ∞ | | Readout Electronics | ±0.3% | N | 1 | 1 | 1 | ±0.3% | ±0.3% | ∞ | | Response Time | ±0.8% | R | √3 | 1 | 1 | ±0.5% | ±0.5% | ∞ | | Integration Time | ±2.6% | R | √3 | 1 | 1 | ±1.5% | ±1.5% | ∞ | | RF Ambient Noise | ±3.0% | R | √3 | 1 | 1 | ±1.7% | ±1.7% | ∞ | | RF Ambient Reflections | ±3.0% | R | √3 | 1 | 1 | ±1.7% | ±1.7% | ∞ | | Probe Positioner | ±0.8% | R | √3 | 1 | 1 | ±0.5% | ±0.5% | ∞ | | Probe Positioning | ±6.7% | R | √3 | 1 | 1 | ±3.9% | ±3.9% | ∞ | | Post-processing | ±4.0% | R | √3 | 1 | 1 | ±2.3% | ±2.3% | ∞ | | Test Sample Related | | • | | | | | | | | Device Positioning | ±2.9% | N | 1 | 1 | 1 | ±2.9% | ±2.9% | 145 | | Device Holder | ±3.6% | N | 1 | 1 | 1 | ±3.6% | ±3.6% | 5 | | Power Drift | ±5.0% | R | √3 | 1 | 1 | ±2.9% | ±2.9% | ∞ | | Power Scaling | ±0% | R | √3 | 1 | 1 | ±0.0% | ±0.0% | | | Phantom and Setup | | • | | | | | | | | Phantom Uncertainty | ±6.6% | R | √3 | 1 | 1 | ±3.8% | ±3.8% | ∞ | | SAR correction | ±1.9% | R | √3 | 1 | 1 | ±1.1% | ±0.9% | ∞ | | Liquid Conductivity (meas.) | ±2.5% | R | √3 | 1 | 0.84 | ±1.1% | ±1.0% | ∞ | | Liquid Permittivity (meas.) | ±2.5% | R | √3 | 0.26 | 0.26 | ±0.3% | ±0.4% | ∞ | | Temp. unc Conductivity | ±3.4% | R | √3 | 0.78 | 0.71 | ±1.5% | ±1.4% | ∞ | | Temp. unc Permittivity | ±0.4% | R | √3 | 0.23 | 0.26 | ±0.1% | ±0.1% | ∞ | | Combined Std. Uncertainty | • | • | • | • | • | ±12.3% | ±12.2% | 748 | | Expanded STD Uncertainty | | | | | | ±24.6% | ±24.5% | | Page: 23 of 28 # 8. Conducted Power Measurement (Including tolerance allowed for production unit) | WL | AN 5G 2TX S | ISO | | | | | | | | | | | | | | | | | |---|----------------|-------|----|------------------------------|-------------|--------------|-----|-------------|--------------|----------------|-------|---------------|-----|-------------|--------------|-----|-------------|--------------| | | | | | SISO-Main(TX1) SISO-Aux(TX2) | | | | | | SISO-Main(TX1) | | SISO-Aux(TX2) | | (TX2) | | | | | | | Frequency | Mode | BW | СН | AV
Power | AV
Target | СН | AV
Power | AV
Target | Frequency | Mode | BW | СН | AV
Power | AV
Target | СН | AV
Power | AV
Target | | | | | | 36 | 13.69 | 14 | 36 | 13.88 | 14 | | | | 52 | N/A | N/A | 52 | N/A | N/A | | | | | | 40 | 13.81 | 14 | 40 | 13.96 | 14 | | | | 56 | N/A | N/A | 56 | N/A | N/A | | | | а | 20 | 44 | 13.58 | 14 | 44 | 13.82 | 14 | | а | 20 | 60 | N/A | N/A | 60 | N/A | N/A | | | | | | 48 | 13.60 | 14 | 48 | 13.77 | 14 | - | | | 64 | N/A | N/A | 64 | N/A | N/A | | t | | | | 36 | 13.79 | 14 | 36 | 13.83 | 14 | | | | 52 | N/A | N/A | 52 | N/A | N/A | | па рог | U-NII-1 | | | 40 | 13.77 | 14 | 40 | 13.74 | 14 | U-NII-2A | | | 56 | N/A | N/A | 56 | N/A | N/A | | anteni | (5150~5250MHz) | | 20 | 44 | 13.71 | 14 | 44 | 13.66 | 14 | (5250~5350MHz) | | 20 | 60 | N/A | N/A | 60 | N/A | N/A | | OFDM mode specified maximum output power at an antenna port | | n(HT) | | 48 | 13.86 | 14 | 48 | 13.63 | 14 | | n(HT) | | 64 | N/A | N/A | 64 | N/A | N/A | | wer a | | | | 38 | 11.44 | 11.5 | 38 | 11.39 | 11.5 | | | | 54 | N/A | N/A | 54 | N/A | N/A | | ont po | | | 40 | 46 | 13.78 | 14 | 46 | 13.77 | 14 | | | 40 | 62 | N/A | N/A | 62 | N/A | N/A | | n out | | ac | 80 | 42 | 9.64 | 10 | 42 | 9.71 | 10 | | ac | 80 | 58 | N/A | N/A | 58 | N/A | N/A | | ximur | | | 20 | 100 | N/A | N/A | 100 | N/A | N/A | | | 20 | 132 | N/A | N/A | 132 | N/A | N/A | | em pe | | | | 112 | N/A | N/A | 112 | N/A | N/A | | а | | 149 | 13.82 | 14 | 149 | 13.91 | 14 | | pecifie | | а | | 116 | N/A | N/A | 116 | N/A | N/A | | | | 165 | 13.78 | 14 | 165 | 13.85 | 14 | | s apc | | | | 128 | N/A | N/A | 128 | N/A | N/A | | | | 132 | N/A | N/A | 132 | N/A | N/A | |)M mo | | | | 100 | N/A | N/A | 100 | N/A | N/A | | | 20 | 149 | 13.83 | 14 | 149 | 13.98 | 14 | | OFE | | | 20 | 112 | N/A | N/A | 112 | N/A | N/A | 5.65 GHz & | ~/UT) | | 165 | 13.95 | 14 | 165 | 13.82 | 14 | | | U-NII-2C | | 20 | 116 | N/A | N/A | 116 | N/A | N/A | U-NII-3 | n(HT) | | 134 | N/A | N/A | 134 | N/A | N/A | | | (5470~5650MHz) | n(HT) | | 128 | N/A | N/A | 128 | N/A | N/A | (5725~5850MHz) | | 40 | 151 | 13.64 | 14 | 151 | 13.86 | 14 | | | | | | 102 | N/A | N/A | 102 | N/A | N/A | | | | 159 | 13.81 | 14 | 159 | 13.97 | 14 | | | | | 40 | 110 | N/A | N/A | 110 | N/A | N/A | | | 20 | 144 | N/A | N/A | 144 | N/A | N/A | | | | | 40 | 118 | N/A | N/A | 118 | N/A | N/A | | ar | 40 | 142 | N/A | N/A | 142 | N/A | N/A | | | | | | 126 | N/A | N/A | 126 | N/A | N/A | | ac | 80 | 138 | N/A | N/A | 138 | N/A | N/A | | | | ac | 80 | 106 | N/A | N/A | 106 | N/A | N/A | | | - 50 | 155 | 12.91 | 13 | 155 | 12.97 | 13 | | | | ac | 00 | 122 | N/A | N/A | 122 | N/A | N/A | | | | | | | | | | Page: 24 of 28 ## 9. Test Results # 9.1 SAR Test Results Summary | SAR MEASUREMENT | | | | | | | | | | | |---|------------------------|--------------|--------------|---------|-----------------------|------------------|------------------|-------------------|------|--| | Liquid Tempe | erature (°C | ;): 22.2 | 2 <u>±</u> 2 | | | Relative I | Humidity (%) : (| 51 % | | | | Ambient Temperature (°C): 23.1 ±2 Depth of Liquid (cm): >15 | | | | | | | | | | | | Test Position | est Position Antenna | | Freque | ency | Conducted Power (dBm) | | SAR 1g (W/kg) | | Plot | | | Body | Position | Dist
(mm) | Channel | MHz | Measurement | Tune-up
Limit | Measurement | Tune-up
Scaled | No. | | | Test Mode: 80 | 2.11n-40M __ | _Main A | ntenna (AF | P6398S) | | | | | | | | Front | Fixed | 5 | 46 | 5230 | 13.78 | 14 | 0.072 | 0.076 | | | | Front | Fixed | 5 | 159 | 5795 | 13.81 | 14 | 0.045 | 0.047 | | | | Back | Fixed | 5 | 46 | 5230 | 13.78 | 14 | 0.121 | 0.127 | | | | Back | Fixed | 5 | 159 | 5795 | 13.81 | 14 | 0.145 | 0.151 | | | | Right-side | Fixed | 5 | 46 | 5230 | 13.78 | 14 | 0.136 | 0.143 | | | | Right-side | Fixed | 5 | 159 | 5795 | 13.81 | 14 | 0.145 | 0.151 | | | | Bottom | Fixed | 5 | 46 | 5230 | 13.78 | 14 | 0.492 | 0.518 | 1 | | | Bottom | Fixed | 5 | 159 | 5795 | 13.81 | 14 | 0.413 | 0.431 | | | | Test Mode: 80 | 2.11n-40M ₋ | _Aux An | itenna (AP | 6398S) | | | | | | | | Front | Fixed | 5 | 46 | 5230 | 13.77 | 14 | 0.021 | 0.022 | | | | Front | Fixed | 5 | 159 | 5795 | 13.97 | 14 | 0.123 | 0.124 | | | | Back | Fixed | 5 | 46 | 5230 | 13.77 | 14 | 0.206 | 0.217 | | | | Back | Fixed | 5 | 159 | 5795 | 13.97 | 14 | 0.261 | 0.263 | | | | Left-side | Fixed | 5 | 46 | 5230 | 13.77 | 14 | 0.166 | 0.175 | | | | Left-side | Fixed | 5 | 159 | 5795 | 13.97 | 14 | 0.273 | 0.275 | | | | Тор | Fixed | 5 | 46 | 5230 | 13.77 | 14 | 0.400 | 0.422 | | | | Тор | Fixed | 5 | 151 | 5755 | 13.86 | 14 | 0.626 | 0.647 | | | | Тор | Fixed | 5 | 159 | 5795 | 13.97 | 14 | 0.673 | 0.678 | 2 | | Note : 1. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required. ^{2.} When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. #### 9.2 Simultaneous Transmission | Simultaneous Transmission Configurations | | | | | | | |--|--------------------------------|--|--|--|--|--| | 1 | WLAN 5GHz Main + WLAN 5GHz Aux | | | | | | #### 9.2.1 Simultaneous transmission of MIMO in 802.11 test exclusion considerations | Frequency
(GHz) | Test
Position
(Body) | WLAN
Main
SAR (W/Kg) | WLAN
Aux
SAR W/Kg) | Simultaneous
Transmission
(W/Kg) | Antenna
pair
in mm | Peak location
separation
ratio | |--------------------|----------------------------|----------------------------|--------------------------|--|--------------------------|--------------------------------------| | 5 | Top/Bottom | 0.518 | 0.678 | 1.196 | N/A | N/A | Note: The sum of value
is less than 1.6W/Kg or the ratio is determined by (SAR1 + SAR2)^{1.5}/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for SAR test exclusion. #### 9.2.2 Simultaneous transmission of Wi-Fi and other wireless technologies When the sum of SAR is larger than the limit, The ratio is determined by (SAR1 + SAR2)^1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. The estimation result as below: #### For U-NII Band: | | WLAN | WLAN | ВТ | Simultaneous | Antenna | Peak location | |------|------------|-----------|------------|--------------|---------|---------------| | Mode | Main | Aux | SAR (W/Kg) | Transmission | pair | separation | | | SAR (W/Kg) | SAR W/Kg) | SAR (W/Rg) | (W/Kg) | in mm | ratio | | N/A The sum of value is less than 1.6W/Kg, thus simultaneous SAR testing is not needed. Page: 26 of 28 # 10. SAR measurement variability - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. | Freque | ency | SAR 1g (W/kg) | | | | | | | |---------|------|---------------|----------------|-------|-------|----------|----------------|-------| | | | 0 | First Repeated | | | Repeated | Third Repeated | | | Channel | MHz | Original | Value | Ratio | Value | Ratio | Third Re | Ratio | | 159 | 5795 | 0.673 | N/A | N/A | N/A | N/A | N/A | N/A | # **Appendix** Appendix A. SAR System Check Data Appendix B. SAR measurement Data **Appendix C. Test Setup Photographs** **Appendix D. Probe Calibration Data** **Appendix E. Dipole Calibration Data** Appendix F. Product Photos-Please refer to the file: 2190334R-Product Photos