

Radio Test Report

Report No.:STS512328W04

Issued for

ShenZhen ZhongKeRui Electronics CO., LTD.

501, Building A, Nankeng 2nd Industrial Park, Bantian, Longgang, Shenzhen 518129, China

- Product Name: Bike Rear Light
 - Brand Name: RAVEMEN
 - Model Name: NT201
- Series Model(s) NT202, NT203, NT204, NT205
 - FCC ID: 2AYUF-25324
- Test Standards: FCC Part 15.245

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name:	ShenZhen ZhongKeRui Electronics CO., LTD.
Address:	501, Building A, Nankeng 2nd Industrial Park, Bantian, Longgang, Shenzhen 518129, China
Manufacture's Name:	ShenZhen ZhongKeRui Electronics CO., LTD.
Address:	501, Building A, Nankeng 2nd Industrial Park, Bantian, Longgang, Shenzhen 518129, China

Product Description

Product Name:	Bike Rear Light
Brand Name	RAVEMEN
Model Name	NT201
Series Model	NT202, NT203, NT204, NT205
Test Standards	FCC Part 15.245
Test Procedure:	ANSI C63.4-2014 ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test

Date of receipt of test item:	24 Dec. 2024
Date of performance of tests:	24 Dec. 2024~21 Mar. 2025
Date of Issue	21 Mar. 2025
Test Result	Pass

Testing Engineer

Rain.1

(Rain Liu)

Technical Manager

(Tony Liu)

Authorized Signatory :

hover yong

(Bovey Yang)

101, Building B, Zhuoke Science Park, No. 190 Chongqing Road, Zhancheng Shequ, Fuhal Sub-District, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail:sts@stsapp.com

	Table of Contents	Page
1. SUMMARY OF TEST RE 1.1 TEST FACILITY 1.2 MEASUREMENT UNC		5 6 6
2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION 2.2 EUT OPERATION MODE 2.3 DESCRIPTION OF TES 2.4 BLOCK DIGRAM SHOW	N ON OF EUT DE ST MODES WING THE CONFIGURATION OF SYST	7 7 8 8 7EM TESTED 8
2.5 DESCRIPTION OF NEC 2.6 TEST EQUIPMENT 3. EMC EMISSION TEST	CESSARY ACCESSORIES AND SUPPO	ORT UNITS 9 10 11
3.1 CONDUCTED EMISSIO 3.2 TEST PROCEDURE 3.3 TEST SETUP 3.4 EUT OPERATING CON 3.5 TEST RESULT		11 12 12 12 13
 4. FIELD STRENGTH OF EI 4.1 LIMIT 4.2 TEST PROCEDURE 4.3 TEST SETUP 4.4 FIELD STRENGTH CAI 4.5 TEST RESULTS 		15 15 16 19 21 22
5. OCCUPIED BANDWIDTH 5.1 LIMIT 5.2 TEST PROCEDURE 5.3 TEST SETUP 5.4 TEST RESULT		35 35 35 36 36
 6. ANTENNA REQUIREMEN 6.1 STANDARD REQUIREN 6.2 EUT ANTENNA 7. PHOTOS OF TEST SETU 	MENT	37 37 37 38

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	21 Mar. 2025	STS2412328W04	ALL	Initial Issue
	0			

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part 15.245		
FCC standard	Test Item	Results
15.207	AC Conducted Emission	PASS
15.245(b)	Field strength of emissions (wanted signal)	PASS
15.215(c)	Occuoied Bandwidth	PASS
15.209(a) 15.245(b)(1)(2)(3)	Field Strength of Spurious Radiation	PASS
15.203	Antenna requirement	PASS

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.4 and ANSI C63.10.

1.1 TEST FACILITY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated 6G-18GHz ±5.24	
7	All emissions, radiated 18G-40GHz	±5.42dB
8	All emissions, radiated >40GHz	±5.86dB

2. GENERAL INFORMATION

2.1	GENERAL	DESCRIPTION OF EUT
<u> </u>		

Product Name	Bike Rear Light
Brand Name	RAVEMEN
Model Name	NT201
Series Model(s)	NT202, NT203, NT204, NT205
Model Difference	Only the appearance and model are different, other circuits are the same
Operation Frequency	24075 - 24175 MHz
Modulation Type	FMCW
Antenna Type	Microstrip planar
Antenna Gain	13.03dBi
Test Channel	Please refer to the Note 3.
Power Rating	Input: DC 5V 0.8A Output: DC 3-3.3V 120mA
Adapter	N/A
Battery	Rated Voltage:3.7V Charge Limit Voltage:4.2V Capacity: 1400mAh
Hardware version number	V1
Software version number	1.1
Connecting I/O Port(s)	Please refer to the Note 1.

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	RAVEMEN	NT201	Microstrip planar	N/A	13.03	Antenna

The EUT antenna is External Antenna. No antenna other than that furnished by the responsible party shall be used with the device.

3

Chanr	nel List
Channel	Frequency (MHz)
01	24125

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above listed frequency for testing.

2.2 EUT OPERATION MODE

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.3 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

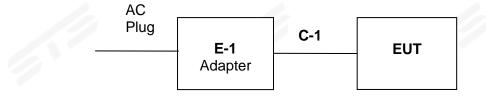
Test Mode	Description
Mode1	TX CH 01

Note:

The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
 We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

(3) The battery is fully-charged during the radited and RF conducted test.

For AC Conducted Emission


	Test Case
AC Conducted Emission	Mode 2 : Keeping TX

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

EUT	

Conducted Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	Adapter	ZTC	NB-A515A	N/A
C-1	USB Cable	ZTC	NB-A515A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	Shielded	NO	150cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^CLength¹ column.

2.6 TEST EQUIPMENT

	RF Radia	tion Test Equipment			
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2025.02.24	2026.02.23
Pre-Amplifier(0.1M-3GHz)	EM	EM330	60665	2025.02.22	2026.02.21
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2025.02.22	2026.02.21
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2025.02.22	2026.02.21
Active loop Antenna(9KHz-30MHz)	ZHINAN	ZN30900C	16035	2025.02.25	2026.02.24
Bilog Antenna(30-1000MHz)	TESEQ	CBL6111D	34678	2024.09.30	2025.09.29
Horn Antenna(1G-18GHz)	SCHWARZBECK	BBHA 9120D	2014	2023.09.24	2025.09.23
Horn Antenna(18G-40GHz)	A-INFOMW	LB-180400-KF	J211020657	2024.09.25	2025.09.24
Horn Antenna(40G-60GHz)	A-INFO	LB-19-25-A	2.02004E+12	2024.12.25	2025.12.24
Horn Antenna(50G-75GHz)	A-INFO	LB-15-25-A	2.02003E+12	2024.12.25	2025.12.24
Horn Antenna(75G-110GHz)	A-INFO	LB-10-25-A	2.02002E+12	2024.12.25	2025.12.24
Horn Antenna(110G-170GHz)	A-INFO	LB-6-25-A	2.02001E+12	2024.12.25	2025.12.24
Mixer(40-60GHz)	AT-Microwave	AT-SAX8-4060	N/A	2024.12.25	2025.12.24
Mixer(50-75GHz)	AT-Microwave	AT-SAXB-5075	N/A	2024.12.25	2025.12.24
Mixer(75-110GHz)	AT-Microwave	AT-SAX12-75110	N/A	2024.12.25	2025.12.24
Mixer(110-170GHz)	AT-Microwave	AT-SAX24-110170	N/A	2024.12.25	2025.12.24
Mixer(170-260GHz)	AT-Microwave	AT-SAX32-170260	N/A	2024.12.25	2025.12.24
Signal Analyzer	Keysight	N9020A	MY52440124	2025.02.22	2026.02.21
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2024.09.23	2025.09.22
Switch Unit	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	MF	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2024.09.23	2025.09.22
Test SW	EZ-EMC		Ver.STSLAB-03A	1 RE	
	Conduct	ion Test equipment			
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2024.09.24	2025.09.23
Limtter	CYBERTEK	EM5010	N/A	2024.09.24	2025.09.23
LISN	R&S	ENV216	101242	2024.09.24	2025.09.23
LISN	EMCO	3810/2NM	23625	2024.09.24	2025.09.23
Temperature & Humidity	SW-108	SuWei	N/A	2025.02.24	2026.02.23
Test SW	EZ-EMC		Ver.STSLAB-03A	1 CE	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

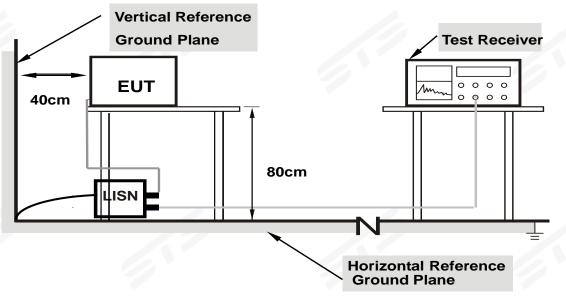
	Conducted Emissionlimit (dBuV)			
FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	



3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

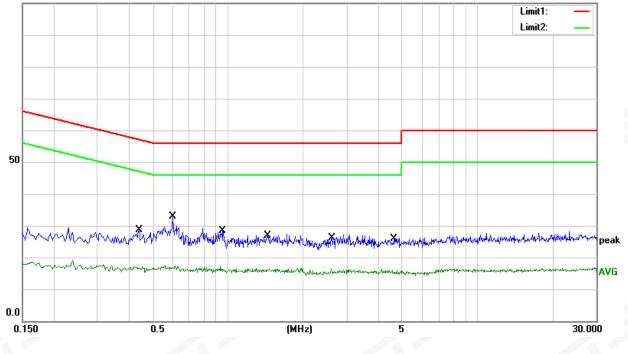
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULT

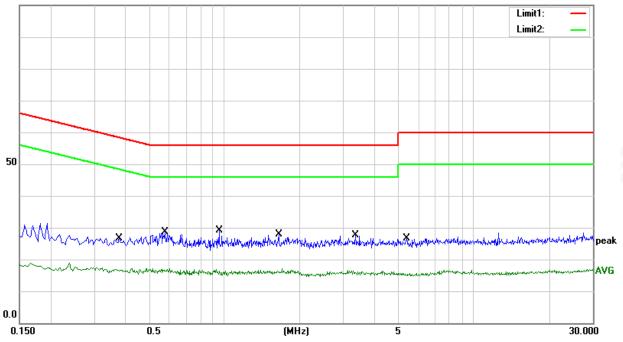

Temperature:	25.1℃	Relative Humidity:	59%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 2		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.4420	8.57	20.01	28.58	57.02	-28.44	QP
2	0.4420	-2.90	20.01	17.11	47.02	-29.91	AVG
3	0.6020	13.03	19.91	32.94	56.00	-23.06	QP
4	0.6020	-2.65	19.91	17.26	46.00	-28.74	AVG
5	0.9500	8.70	19.78	28.48	56.00	-27.52	QP
6	0.9500	-2.37	19.78	17.41	46.00	-28.59	AVG
7	1.4460	7.13	19.78	26.91	56.00	-29.09	QP
8	1.4460	-3.33	19.78	16.45	46.00	-29.55	AVG
9	2.6220	6.29	19.81	26.10	56.00	-29.90	QP
10	2.6220	-3.39	19.81	16.42	46.00	-29.58	AVG
11	4.6380	5.97	19.83	25.80	56.00	-30.20	QP
12	4.6380	-3.52	19.83	16.31	46.00	-29.69	AVG

Remark:

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV



Temperature:	25.1℃	Relative Humidity:	59%
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 2	14	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.3780	6.56	20.09	26.65	58.32	-31.67	QP
2	0.3780	-3.26	20.09	16.83	48.32	-31.49	AVG
3	0.5780	8.83	19.91	28.74	56.00	-27.26	QP
4	0.5780	-2.89	19.91	17.02	46.00	-28.98	AVG
5	0.9500	9.26	19.78	29.04	56.00	-26.96	QP
6	0.9500	-2.98	19.78	16.80	46.00	-29.20	AVG
7	1.6500	7.94	19.85	27.79	56.00	-28.21	QP
8	1.6500	-2.82	19.85	17.03	46.00	-28.97	AVG
9	3.3580	7.57	19.94	27.51	56.00	-28.49	QP
10	3.3580	-3.40	19.94	16.54	46.00	-29.46	AVG
11	5.3780	6.84	19.86	26.70	60.00	-33.30	QP
12	5.3780	-3.68	19.86	16.18	50.00	-33.82	AVG

Remark:

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
- 100.0 dBuV

4. Field Strength of Emissions

4.1 LIMIT

(a) According to § 15.245(b): The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency (MHz)	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (millivolts/meter)
902-928	500	1.6
2435-2465	500	1.6
5785-5815	500	1.6
10500-10550	2500	25.0
24075-24175	2500	25.0

(b) Regardless of the limits shown in the above table, harmonic emissions in the restricted bands below 17.7GHz, as specified in § 15.205, shall not exceed the field strength limits shown in § 15.209 and RSS-Gen. Harmonic emissions in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:

(i) For the second and third harmonics of field disturbance sensors operating in the 24075-24175 MHzband and for other field disturbance sensors designed for use only within a building or to open building doors, 25.0 mV/m.

(ii) For all other field disturbance sensors, 7.5 mV/m.

(iii) Field disturbance sensors designed to be used in motor vehicles or aircraft must include features to prevent continuous operation unless their emissions in the restricted bands, other than the second and third harmonics from devices operating in the 24075-24175 MHz band, fully comply with the limits given in § 15.209. Continuous operation of field disturbance sensors designed to be used in farm equipment, vehicles such as fork lifts that are intended primarily for use indoors or for very specialized operations, or railroad locomotives, railroad cars and other equipment which travels on fixed tracks is permitted. A field disturbance sensor will be considered not to be operating in a continuous mode if its operation is limited to specific activities of limited duration (e.g., putting a vehicle into reverse gear, activating a turn signal, etc.).

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

(c) Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

(e) The emission limits shown above are based on measurement instrumentation employing an average detector. The provisions in § 15.35 and RSS-Gen for limiting peak emissions apply.

4.2 TEST PROCEDURE

4.2.1 Sequence of testing radiated spurious 9 KHz to 30 MHz

Setup

- a. The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer
- b. If the EUT is a tabletop system, 1.5 m height is used.
- c. If the EUT is a floor standing device, it is placed directly on the turn table.
- d. Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C63.4.
- e. The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- f. Measuremet distance is 3m (see ANSI C63.4) see test details.
- g. EUT is set into operation.

Premeasurement

- a. The turntable rotates from 0 degree to 360 degree.
- b. The antenna height is 1.5m.
- c. Set RBW = 200 Hz / VBW = 1 KHz, sweep time: Auto
- d. At each turntable position the anzlyer sweeps with position-peak detector to find the maximum of all emissions.

Final measurement

- a. Identified emissions during the premeaurement are maximized by the software by rotating the turntable from 0 degree to 360 degree.
- b. The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- C- Final levels, frequency, measuring time, bandwidth, turntable position, conrrection factor, margin to The limit and limit will be recorded. A plot with the graph of the measurement and the limit is stored.

4.2.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- a. The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer
- b. If the EUT is a tabletop system, 0.8 m height is used, which is placed on the ground plance.
- C. If the EUT is a floor standing device, it is placed directly on the ground plane.
- d. Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C63.4.
- e. The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- f. Measuremet distance is 3m (see ANSI C63.4) see test details.
- $9 \cdot EUT$ is set into operation.

Premeasurement

- a. The turntable rotates from 0 degree to 360 degree.
- b. The antenna is polarized vertical and horizontal.
- C. The antenna height changes from 1m to 4m.

- d. Set RBW = 120 KHz / VBW = 1 MHz, sweep time: Auto
- e. At each turntable position the anzlyer sweeps with position-peak detector to find the maximum of all emissions.

Final measurement

The final neasurement us perormed for at least six highest peaks according to the requirements of the ANSI C63.4.

Based on antenna and turntable positions at which the peak values are measured the software

maximize the peaks by changing turntable and antenna height between 1 and 4 m.

The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).

Final levels, frequency, measuring time, bandwidth, turntable position, conrrection factor, margin to the limit and limit will be recorded. A plot with the graph of the measurement and the limit is stored.

4.2.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

a. The equipment is set up to simulate normal operation mode as described in the user manual or defined

by the manufacturer

- b. If the EUT is a tabletop system, 1.5 m height is used.
- c. If the EUT is a floor standing device, it is placed directly on the turn table.
- d. Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C63.4.
- e. The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- f. Measuremet distance is 3m (see ANSI C63.4) see test details.
- g. EUT is set into operation.

Premeasurement

- a. The turntable rotates from 0 degree to 360 degree.
- b. The antenna is polarized vertical and horizontal.
- C. The antenna height changes from 1m to 4m.
- d. Set RBW = 1 MHz / VBW = 3 MHz, sweep time: Auto, detector: Peak for Peak, RBW = 1 MHz / VBW = 3MHz, sweep time: Auto, detector: Average for Average.
- e. At each turntable position the anzlyer sweeps with position-peak detector to find the maximum of all emissions.

Final measurement

- a. The final neasurement us perormed for at least six highest peaks according to the requirements of the ANSI C63.4.
- b. Based on antenna and turntable positions at which the peak values are measured the software

maximize the peaks by changing turntable and antenna height between 1 and 4 m.

- c. The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- d. The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing theheight emissions with Peak and Average detector (as described in ANSI C 63.4).
- e. Final levels, frequency, measuring time, bandwidth, turntable position, conrrection factor, margin to the limit and limit will be recorded. A plot with the graph of the measurement and the limit is stored.

4.2.4 Sequence of testing radiated spurious above 18 GHz

Setup

- a. The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer
- b. If the EUT is a tabletop system, 1.5 m height is used.

- c. If the EUT is a floor standing device, it is placed directly on the turn table.
- d. Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C63.4.
- e. The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- f. Measuremet distance is 3m (see ANSI C63.4) see test details.
- g. EUT is set into operation.

Premeasurement

- a. The turntable rotates from 0 degree to 360 degree.
- b. The antenna is polarized vertical and horizontal.
- C. The antenna height changes from 1m to 4m.
- d. Set RBW = 1 MHz / VBW = 3 MHz, sweep time: Auto, detector: Peak for Peak, RBW = 1 MHz / VBW = 3MHz, sweep time: Auto, detector: Average for Average.
- e. At each turntable position the anzlyer sweeps with position-peak detector to find the maximum of all emissions.

Final measurement

- a. The final neasurement us perormed for at least six highest peaks according to the requirements of the ANSI C63.4.
- b. Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable and antenna height between 1 and 4 m.
- c. The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- d. All final levels should consider distance conversion factor as format: Final values (3 m) = Measurement

values (1 m) + Distance conversion factor

Distance conversion factor = $20 \times Log_{10} (d/3)$, where d = measurement distance in m

- Distance conversion factor = $20 \times \text{Log}_{10}(1/3) = -10.0 \text{ [dB]}$
- e. Final levels, frequency, measuring time, bandwidth, turntable position, conrrection factor, margin to the limit and limit will be recorded. A plot with the graph of the measurement and the limit is stored.

4.2.5 Sequence of testing radiated spurious above 40 GHz with external mixers Setup

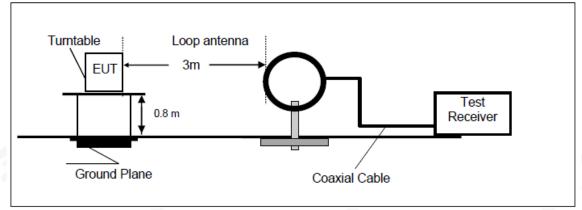
- a. The equipment is set up to simulate normal operation mode as described in the user manual or defined
 - by the manufacturer
- b. If the EUT is a tabletop system, 1.5 m height is used.
- c. If the EUT is a floor standing device, it is placed directly on the turn table.
- d. Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C63.4.
- e. The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- f. Measuremet distance is 3m (see ANSI C63.4) see test details.
- g. EUT is set into operation.

Premeasurement

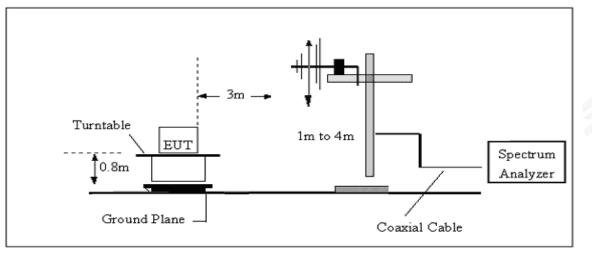
- a. The turntable rotates from 0 degree to 360 degree.
- b. The antenna is polarized vertical and horizontal.
- C. The antenna height changes from 1m to 4m.
- d. Set RBW = 1 MHz / VBW = 3 MHz, sweep time: Auto, detector: Peak for Peak, RBW = 1 MHz / VBW = 3MHz, sweep time: Auto, detector: Average for Average.
- e. At each turntable position the anzlyer sweeps with position-peak detector to find the maximum of all emissions.

Final measurement

- a. The final neasurement us perormed for at least six highest peaks according to the requirements of the ANSI C63.4.
- b. Based on antenna and turntable positions at which the peak values are measured the software
 - maximize the peaks by changing turntable and antenna height between 1 and 4 m.
- c. The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- d. All final levels should consider distance conversion factor as format: Final values (3 m) = Measurement

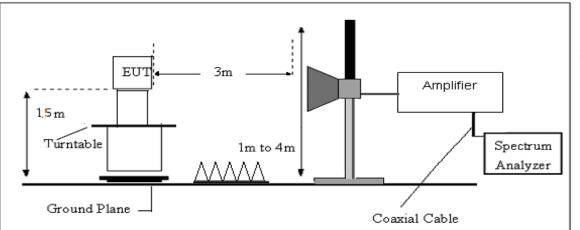

values (1 m) + Distance conversion factor

Distance conversion factor = $20 \times Log_{10} (d/3)$, where d = measurement distance in m

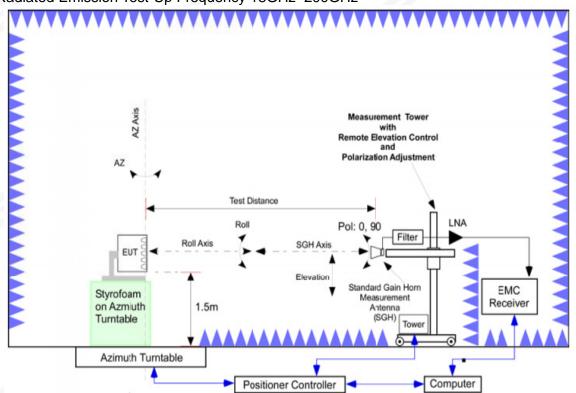

- Distance conversion factor = $20 \times \text{Log}_{10}(1/3) = -10.0 \text{ [dB]}$
- e. Final levels, frequency, measuring time, bandwidth, turntable position, conrrection factor, margin to the limit and limit will be recorded. A plot with the graph of the measurement and the limit is stored.

4.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency 9 KHz – 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



(C) Radiated Emission Test-Up Frequency 1GHz~18GHz

(D) Radiated Emission Test-Up Frequency 18GHz~200GHz

4.4 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

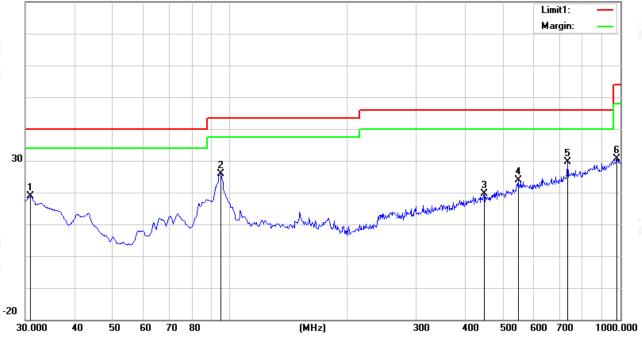
For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.5 TEST RESULTS

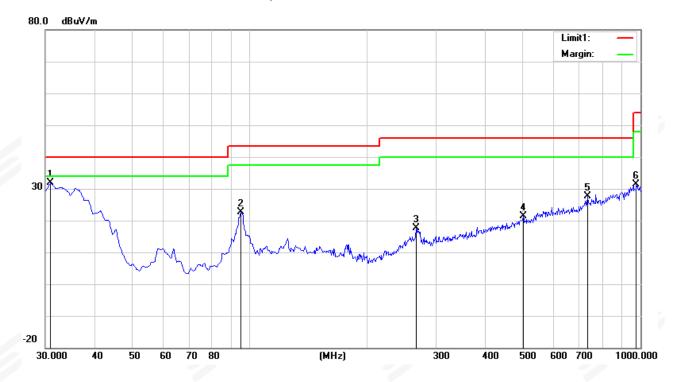
(30MHz -1000MHz)


Temperature:	23.4℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V	Phase:	Horizontal
Test Mode:	Mode 1	1	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	32.28	-13.35	18.93	40.00	-21.07	peak
2	94.9900	46.69	-20.78	25.91	43.50	-17.59	peak
3	448.0700	29.30	-9.76	19.54	46.00	-26.46	peak
4	547.9800	29.76	-5.99	23.77	46.00	-22.23	peak
5	733.2500	31.89	-2.35	29.54	46.00	-16.46	peak
6	981.5700	27.95	2.57	30.52	54.00	-23.48	peak

Remark:

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

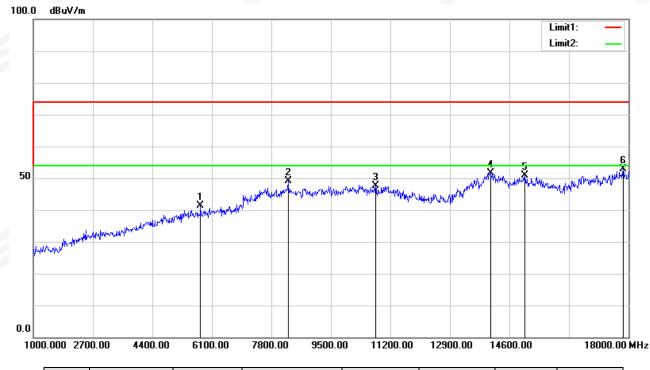


Temperature:	23.4 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	Mode 1	14	

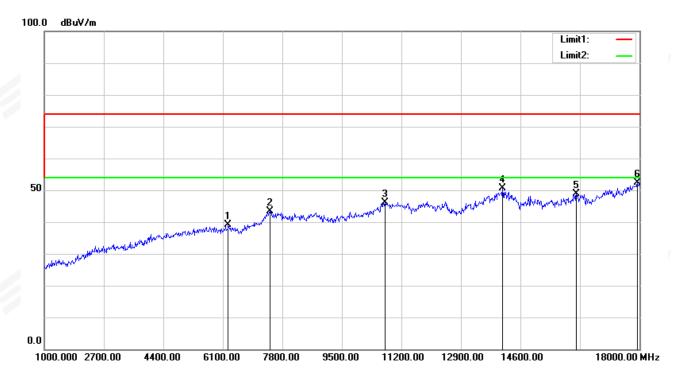
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	45.27	-13.35	31.92	40.00	-8.08	peak
2	94.9900	43.53	-20.78	22.75	43.50	-20.75	peak
3	266.6800	32.56	-14.94	17.62	46.00	-28.38	peak
4	502.3900	29.43	-8.00	21.43	46.00	-24.57	peak
5	733.2500	29.95	-2.35	27.60	46.00	-18.40	peak
6	976.7200	29.00	2.45	31.45	54.00	-22.55	peak
	1						

Remark:

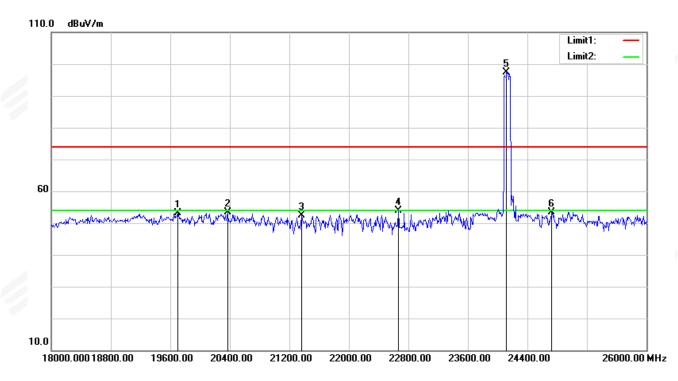
- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.



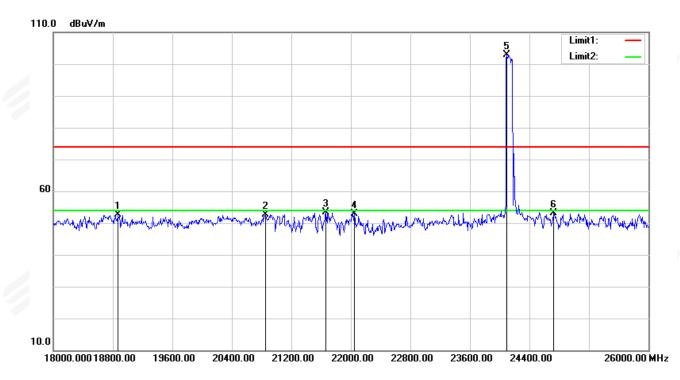
ABOVE 1G


RSE-1G-18G-H

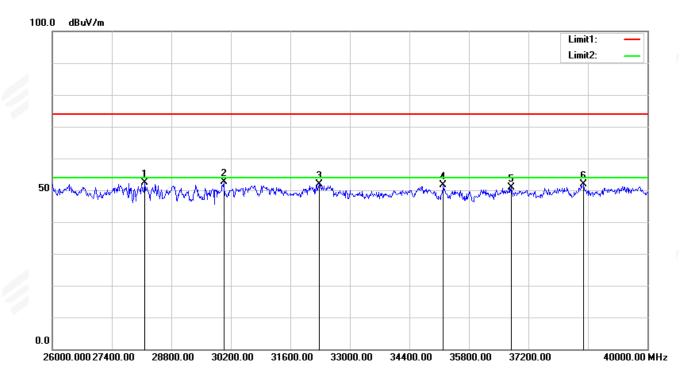
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5777.000	45.81	-4.40	41.41	74.00	-32.59	peak
2	8276.000	46.78	2.47	49.25	74.00	-24.75	peak
3	10775.000	41.93	5.70	47.63	74.00	-26.37	peak
4	14056.000	39.42	12.22	51.64	74.00	-22.36	peak
5	15042.000	40.90	10.03	50.93	74.00	-23.07	peak
6	17847.000	41.28	11.62	52.90	74.00	-21.10	peak



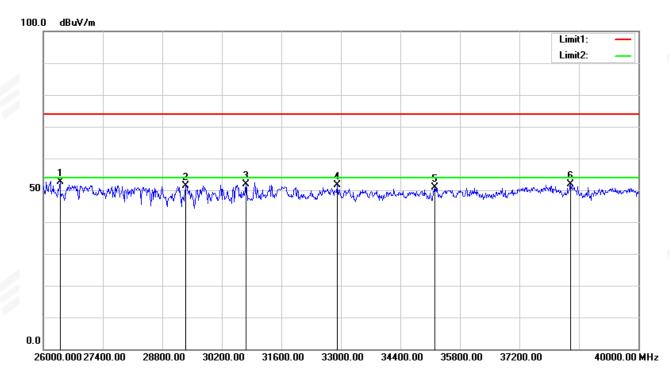
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6253.000	42.05	-2.81	39.24	74.00	-34.76	peak
2	7443.000	42.07	1.42	43.49	74.00	-30.51	peak
3	10741.000	40.56	5.61	46.17	74.00	-27.83	peak
4	14090.000	38.36	12.15	50.51	74.00	-23.49	peak
5	16198.000	41.09	7.68	48.77	74.00	-25.23	peak
6	17932.000	40.64	11.86	52.50	74.00	-21.50	peak


RSE-18G-26G-H

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19696.000	64.95	-11.74	53.21	74.00	-20.79	peak
2	20368.000	65.53	-12.09	53.44	74.00	-20.56	peak
3	21368.000	65.43	-13.03	52.40	74.00	-21.60	peak
4	22664.000	66.76	-12.83	53.93	74.00	-20.07	peak
5	24120.000	110.09	-12.74	97.35	127.96	-30.61	peak
6	24728.000	66.37	-12.92	53.45	74.00	-20.55	peak


RSE-18G-26G-V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18872.000	65.66	-12.94	52.72	74.00	-21.28	peak
2	20856.000	65.53	-12.87	52.66	74.00	-21.34	peak
3	21664.000	66.30	-12.97	53.33	74.00	-20.67	peak
4	22048.000	65.75	-12.90	52.85	74.00	-21.15	peak
5	24096.000	115.71	-12.73	102.98	127.96	-24.98	peak
6	24728.000	66.15	-12.92	53.23	74.00	-20.77	peak


RSE-26G-40G-H

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	28170.000	55.04	-2.73	52.31	74.00	-21.69	peak
2	30032.000	55.60	-2.91	52.69	74.00	-21.31	peak
3	32286.000	54.72	-2.89	51.83	74.00	-22.17	peak
4	35198.000	54.03	-2.50	51.53	74.00	-22.47	peak
5	36794.000	53.76	-3.00	50.76	74.00	-23.24	peak
6	38502.000	55.53	-3.68	51.85	74.00	-22.15	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	26392.000	54.95	-2.38	52.57	74.00	-21.43	peak
2	29346.000	53.76	-2.47	51.29	74.00	-22.71	peak
3	30774.000	54.85	-3.07	51.78	74.00	-22.22	peak
4	32916.000	54.84	-3.16	51.68	74.00	-22.32	peak
5	35212.000	53.39	-2.50	50.89	74.00	-23.11	peak
6	38404.000	55.46	-3.51	51.95	74.00	-22.05	peak

RSE-40G-60G-H

Page 30 of 38

🔤 Keysight Sp		nalyzer - Swept SA							
🕅 Start Fre	EXT MIX q 40.	er 0000000000 GHz	PNO: Fast	ENSE:PULSE Trig: Free Atten: 6 d		ALIGN AUTO Avg Type: Avg Hold: Ext Gain: -	>100/100	TF	2 AM Mar 19, 2025 RACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
10 dB/div Log	Ref	96.99 dBµV							.112 GHz 79 dBμ\
87.0									
77.0 67.0									DL2 74.00 dDph
57.0				1	<mark>2</mark>				DL1 54.00 dDph
47.0 37.0	ul septed			7				a sa kina dalambak	
27.0									
17.0									
6.99									
Start 40. #Res BW			#VE	BW 3.0 MHz	!		Sweep	Stop 20.00 ms	60.00 GHz (20001 pts
MKR MODE T 1 N 2 N	RC SCL	× 48.112 (50.429 (dBµV	ICTION FU	NCTION WIDTH	F	UNCTION VALUE	· · · · · · · · · · · · · · · · · · ·
3 4		50.429	302 40.232	ubμv					
2 N 3 4 5 6 7 8 9									=
10 11									
MSG						K STATUS			

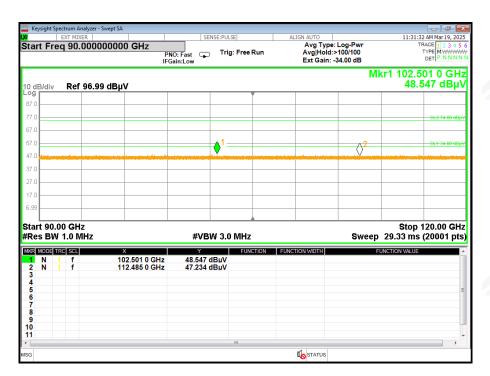
RSE-40G-60G-V

RSE-60G-90G-H

Page 31 of 38

🔤 Keysi			zer - Swept SA							
x Start		T MIXER 60.00	00000000 GHz		SENSE:PULSE	Free Run	Avg Hol	be: Log-Pwr d:>100/100 i: -34.00 dB		0 AM Mar 19, 202 RACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
10 dB/	div	Ref 90	ô.99 dΒμV						Mkr2 61.1 48.	97 0 GH 568 dBµ`
87.0										
77.0										DL2 74.00 dD;
67.0 -										
57.0 47.0	_ ♦ ²				$\langle \rangle^1$					DL1 54.00 dD;
47.0 4										
27.0 -										
17.0 -										
6.99 -										
	60.00 BW 1		z	#V	'BW 3.0 I	VIHz		Swee	Stop p 29.33 ms	90.00 GH (20001 pt
MKR MO	DDE TRC N 1 N 1	SCL f f	x 72.909 0 61.197 0		9 dBµV 8 dBµV	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
	• •		01.101 0	40.00	o ubpr					
3 4 5 6 7										
7 8 9										
10										
11					,	11				Þ
MSG							Ko status			

RSE-60G-90G-V



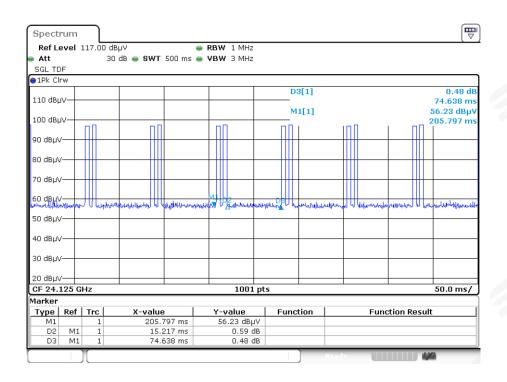
RSE-90G-120G-H

Page 32 of 38

ш к	eysight			nalyzer - Swept SA							
<mark>IXI</mark>			T MIX		SE	ENSE:PULSE		ALIGN AUTO	e: Log-Pwr		5 AM Mar 19, 202
Sta	πF	req	90.	000000000 GHz	PNO: Fast IFGain:Low) Trig: Fre	e Run	Avg Hold	:>100/100 :-34.00 dB		TYPE MWWWW DET PNNNN
10 0	B/div	v	Ref	96.99 dBµV					М	kr1 117.8 48.1	79 0 GH: 52 dBµ\
Log		-									
87.											
77.							_				DL2 74.00 dDp/
67.	\vdash										
57.							^ 2		_		<u>- w</u> 1 <u></u>
47.) <mark>share</mark>		in the						and the part of a part of		
37.											
27.											
17.	⊢										
6.9	- -										
.	rt 90		011								
	es B				#VB	SW 3.0 MH	z		Sweep	500 1 29.33 ms	(20.00 GH) (20001 pts
MKR 1	MODE	TRC		X 117.879 0 Gi	Y 1z 48.152		INCTION F	UNCTION WIDTH		FUNCTION VALUE	
	N		f	106.395 0 G							
3											
2 3 4 5 6 7											
7											
8 9											
10											
11 ∢ □											
MSG								I STATUS			
								-			

RSE-90G-120G-V

Radiation EIRP


Spectrum)			
Ref Level 117.0	00 dBµV	👄 RBW 1 MHz		· · · · · · · · · · · · · · · · · · ·
Att TDF	30 dB 👄 SWT 200	ms 👄 VBW 3 MHz	Mode Auto Sweep	
1 DF				·······
110 dBµV			M1[1]	98.19 dBµV 24.094130 GHz
100 dBµV	M			
90 dBµV				
80 dBµV				
70 dBµV				
60 dBµV				1 Milling Hill Hall Hall and a more than a feature of the second
50 dBµV				
40 dBμV				
30 dBµV				
20 dBµV				
CF 24.125 GHz		1001	pts	Span 150.0 MHz
			Measurin	4/4

Duty cycle

Ton(ms)	Tp(ms)	Duty cycle(%)	Duty Factor
15.217	74.638	20.39%	13.81

Note: Duty Factor=20*LOG10(1/(Ton/Tp))

5. OCCUPIED BANDWIDTH

5.1 LIMIT

The occupied bandwidth is defined as the 99% bandwidth.

According to § 2.1049: The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

The occupied bandwidth is defined as the 20dB bandwidth.

According to § 15.215 (c): Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under

the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

5.2 TEST PROCEDURE

a. The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer

b. If the EUT is a tabletop system, 1.5 m height is used.

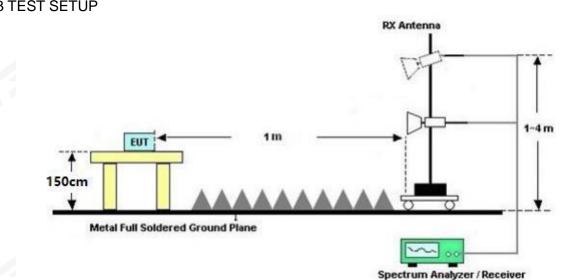
c. If the EUT is a floor standing device, it is placed directly on the turntable.

d. Auxiliary equipment and cables are positioned to simulate normal operation conditions as described inANSI C63.4.

e. The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

f. Measuremet distance is 1m (see ANSI C63.4) - see test details.

g. EUT is set into operation.


h. The turntable rotates from 0 degree to 360 degree.

i. The antenna with external mixer is polarized vertical and horizontal.

j. The antenna height changes from 1m to 4m.

k. Set the resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

5.4 TEST RESULT

Frequency	99% Bandwidth
(GHz)	(KHz)
24125	82.118

Ref Leve	L 117.00	dB⊔V		RBW 100 kHz						(*
Att				• VBW 300 kHz	Mode /	Auto Sv	veep			
TDF							-			
∋1Pk Max										
110 10 11					M1	[1]				89.85 dBµ'
110 dBµV—						-				L39990 GH
100 dBµV—					00	C Bw			82.1178	82118 MH
100 0004					м	1				
90 dBµV		T1				ř.		Т2		
		М.	A		Urun	M	1	7		
80 dBµV—								4		
70 dBµV—										
60 dBuV										
00 ubµv										
50 dBµV									entration of the second	a contra a contra
- leven while and	«الىسىدىلىمەلىر	and the second second						George	and a series of the series of	an a
40 dBµV										
30 dBµV										
20 dBµV										
CF 24.125	CH7			1001 pt					Snan	150.0 MHz
darker				1001 pt	-				opun	10010 11112
Type Re	f Trc	X-valı	ie I	Y-value	Funct	ion		Fun	ction Resul	t
M1	1		999 GHz	89.85 dBµV				r unction Result		
T1	1	24.083	492 GHz	83.69 dBµV	Oc	c Bw		82.117882118 MHz		
T2	1	24.165	609 GHz	83.96 dBµV						

6. ANTENNA REQUIREMENT

6.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.2 EUT ANTENNA

The EUT antenna is Microstrip planar Antenna. It comply with the standard requirement.

7. PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.
