Report No: CCISE181212303

FCC REPORT

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 1.8 inch 2G Bar Phone

Model No.: A3, Amber, J3

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: O55185018

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 26 Dec., 2018

Date of Test: 27 Dec.,2018 to 15 Jan., 2019

Date of report issued: 17 Jan., 2019

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	17 Jan., 2019	Original

Tested by: Mike Du Date: 17 Jan., 2019

Test Engineer

Reviewed by: Date: 17 Jan., 2019

Project Engineer

3 Contents

		r	age
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	TF	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	6
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	LABORATORY FACILITY	6
	5.9	LABORATORY LOCATION	6
	5.10	TEST INSTRUMENTS LIST	7
6	TE	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TE	EST SETUP PHOTO	17
8	Εľ	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark

Pass: The EUT complies with the essential requirements in the standard.

N/A: The EUT not applicable of the test item.

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address of Applicant:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Draduct Name:	4.0 in all CO. Day Dhan a	
Product Name:	1.8 inch 2G Bar Phone	
Model No.:	A3, Amber, J3	
Power supply:	Rechargeable Li-ion Battery DC3.7V-600mAh	
AC adapter :	Model: J3 Input: AC100-240V, 50/60Hz, 0.1A Output: DC 5.0V, 500mA	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	
Remark:	Model No.: A3, Amber, J3 were identical inside, the electrical circuit design, layout, components used and internal wiring. A3, Amber, J3 only have trademark differences: A3 model corresponds to the trademark LOGIC. Amber model correspond to the trademark iSWAG. J3 model corresponds to the trademark UNONU.	

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

Project No.: CCISE1812123

Report No: CCISE181212303

Report No: CCISE181212303

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Unshielded	1.0m	EUT	Adapter
Detached headset cable	Unshielded	1.0m	EUT	Headset

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.10 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	07		
Test Method:	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	[[[]] [] [] [] [] [] [] [] [Limit (dBµV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	0.5-30	60	50	
	* Decreases with the logarith	nm of the frequency.		
Test setup:	Reference Plan	ne		
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.6m			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement data:

Product name	2: 1.8 inch 2G Bar Phone Product model :				odel:	A3				
Test by:		Alex			Test mode	:	PC mode			
Test frequence	ey:	150 kHz ~ 3	30 MHz		Phase:		Line			
Test voltage:		AC 120 V/6	0 Hz		Environme	ent:	Temp: 22.5°	°C Huni: 55%		
70 60 50 2 40 10 0	(dBuV)	an Carant	Carphyll gentless for	halas a volument				CC PART15 B QP		
-10.15 .2	2	.5	1	2 Frequer	ncy (MHz)	5	10	20 30		
Trace: 17	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark		
<u> </u>	MHz	dBu∇	₫B	<u>d</u> B	dBu₹	dBu₹				
1 2 3 4 5	0.158 0.162	27. 28 35. 27 35. 69	0.17	10.77 10.77 10.75	38. 22 46. 21 46. 58	65.34	-17.34 -19.13 -14.93			

Notes:

10

11

12

17.291

23.018

23.018

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.30

0.31

0.31

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

10.91

10.89

10.89

47.15

39.52

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

27.82

35.95

28.32

Project No.: CCISE1812123

39.03 50.00 -10.97 Average

60.00 -12.85 QP

50.00 -10.48 Average

Product name:	e: 1.8 inch 2G Bar Phone			Product model: A3				
Test by:	Alex			Test mode	:	PC mode		
Test frequency:	150 kHz ~ 3	0 MHz		Phase:	se: Neutral			
Test voltage:	AC 120 V/60) Hz		Environme	nt:	Temp: 22.5°	C Huni: 55%	
Level (dBuV)	į.							
80 Eever (dBdv)								
70								
60							FCC PART15 B QP	
501							CC PART15 B AV	
A MAN A						<u>_</u>	and the	
40	m h		il it		5 l. do .u.l	middle and a second		
30	A M. Chartain	propriestly light have	atoffee angled all	apply my hope and a	WIPA	**************************************		
20 1	Vs Mormon			i Lead Marin			WI VI	
20		All the said	-Marie Al	April		Military	"	
10								
0								
-10 <mark></mark>	.5	1		2	5	10	20 30	
Trace: 19	1225000			ency (MHz)	2200	200 200000		
T.	Read		Cable		Limi		D1-	
Fre	d reaer	Factor	Loss	Level	Lin	e Limit	Remark	
MIH	z dBuV		₫B	dBu∀	dBu	vab		
1 0.15	4 36.11	0.98	10.78	47.87	65.7	8 -17.91	ΩP	
2 0.15 3 0.25 4 0.25			10.77			6 -15.77		
3 0.25			10.75	45.69	61.5	1 -15.82		
		0.95	10.75			1 -13.78	**************************************	
5 4.38 6 5.80 7 7.10 8 9.55		1.00	10.87			0 -18.26		
6 5.80		1.01	10.83			0 -18.89		
7 7.10 8 9.55		1.02 1.02	10.80 10.92			0 -21.07		
9 16.48		0.83	10.92			0 -15.69 0 -11.51		
10 16.57		0.83	10.91			0 -11.11		
11 23.01		0.68	10.89			0 -12.57		
12 23.14		0.68	10.89			0 -11.81		
Notes:	Parite at Section 2	2006 A XXII 2 10 0		M	SEPTIMENT STATES		LONGE TYPOSH DESCRIPTION	

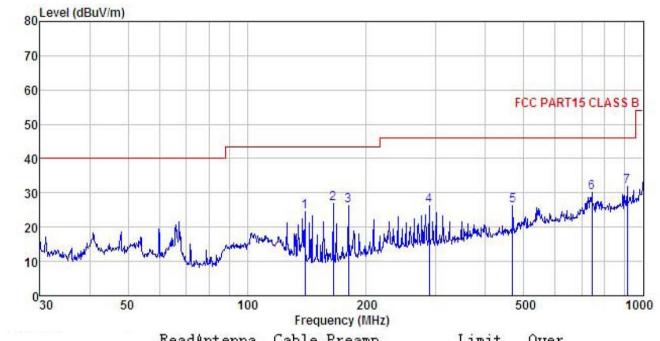
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

FCC Part 15 B Section 15.109							
ANSI C63.4:201	ANSI C63.4:2014						
30MHz to 6000f	MHz						
Measurement D	istance: 3	3m (Se	mi-Anechoi	c Chan	nber)		
Frequency			RBW			Remark	
30MHz-1GHz						Quasi-peak Value	
Above 1GHz						Peak Value	
Frequenc					12	Average Value Remark	
		LIIIII	,	20111)	C	Quasi-peak Value	
						Quasi-peak Value	
						Quasi-peak Value	
						Quasi-peak Value	
			54.0				
Above 1Gr	ΗZ		74.0			Peak Value	
	ANSI C63.4:201 30MHz to 6000I Measurement D Frequency 30MHz-1GHz Above 1GHz Frequenc 30MHz-88M 88MHz-216M 216MHz-960 960MHz-1G Above 1GHz Below 1GHz Frequence 30MHz-1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3 Frequency Detection Detect	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Se Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz RMS Frequency Limit 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoi Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz RMS 1MHz Frequency Limit (dBuV/m @ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Below 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Chan Frequency Detector RBW VBI 30MHz-1GHz Quasi-peak 120kHz 300k Above 1GHz Peak 1MHz 3MHz RMS 1MHz 3MHz RMS 1MHz 3MHz RMS 1MHz 3MHz Above 1GHz 43.5 216MHz-960MHz 44.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz Antenna Ground Plane Above 1GHz Antenna Ground Plane Above 1GHz	ANSI C63.4:2014 30MHz to 6000MHz Measurement Distance: 3m (Semi-Anechoic Chamber) Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz RMS 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 0 88MHz-216MHz 43.5 0 216MHz-960MHz 46.0 0 960MHz-1GHz 54.0 0 Above 1GHz 74.0 Below 1GHz Antenna Tower Ground Plane Above 1GHz Antenna Tower Antenna Tower	

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded



Measurement Data:

Below 1GHz:

Product Name:	1.8 inch 2G Bar Phone	Product Model:	A3
Test By:	Alex	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
Lovel (dDrillins)			

	Freq		Antenna Factor				Limit		
-	MHz	dBu∜	<u>dB</u> /π		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	139.851	43.19	8.11	2.39	29.27	24.42	43.50	-19.08	QP
2	164.908	44.08	9.25	2.62	29.09	26.86	43.50	-16.64	QP
2	180.017	42.67	9.80	2.73	28.97	26.23	43.50	-17.27	QP
4	287.990	38.33	13.53	2.91	28.47	26.30	46.00	-19.70	QP
5	468.876	35.07	16.65	3.36	28.90	26.18	46.00	-19.82	QP
6	742.259	33.33	20.82	4.33	28.51	29.97	46.00	-16.03	QP
7	912.862	33.61	22.33	3.84	27.84	31.94	46.00	-14.06	QP

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		1.8 inch 2	G Bar Phor	ne	Prod	duct Mode	I: A	A3			
Test By:		Alex			Test	mode:	Р	PC mode			
Test Frequency:		30 MHz ~	1 GHz		Pola	rization:	Н	orizontal			
Test Voltage:		AC 120/6	0Hz		Env	ironment:	Т	emp: 24 ℃	Huni	: 57%	
80 Level (dBuV/) 70 60 50 40 30 20	m)				2	3 1111111		FCC PAR	T15 CLA	SS B	
10 www.whater	Muchan	muhre	Lagger of the Land of the Land	war happy her	Mr Mr	Y''' JUNION	March 1 Th				
030	50		100	Freq	200 uency (MH:	z)		500		1000	
F	req		Antenna Factor		Preamp Factor		Limit Line		Remar	k	
	MHz	dBu∀	dB/m	₫B	₫₿	dBuV/m	dBuV/m	₫B			
1 167. 2 180. 3 239. 4 312. 5 468. 6 744.	017 987 179 876	43. 14 49. 60 38. 08 33. 74 35. 71 31. 35	9.34 9.80 12.97 13.86 16.65 20.88	2.64 2.73 2.82 2.98 3.36 4.34	29. 07 28. 97 28. 59 28. 48 28. 90 28. 50	26. 05 33. 16 25. 28 22. 10 26. 82 28. 07	43.50 46.00 46.00 46.00	-17.45 -10.34 -20.72 -23.90 -19.18 -17.93	QP QP QP QP		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

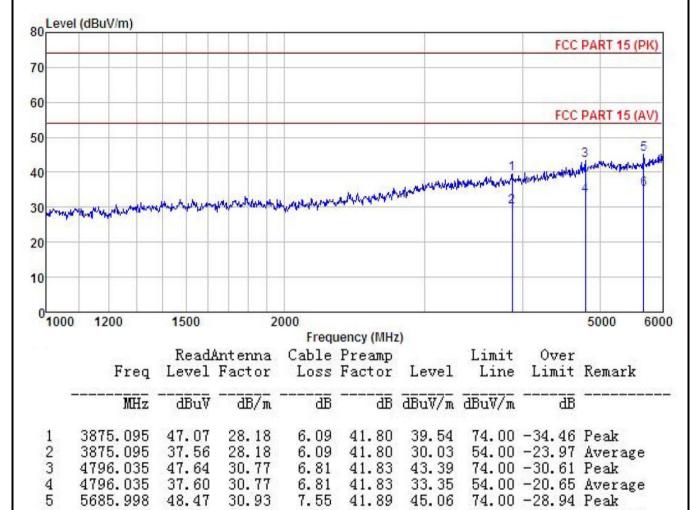
^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	1.8 inch 2G Ba	ar Phone	A3		
Гest By:	Alex		Test mode:	PC mode	
Test Frequency:	1 GHz ~ 6 GH	Z	Polarization:	Vertical	
est Voltage:	AC 120/60Hz		Environment:	Temp: 24°C Huni: 57%	
Level (dBuV/m)					
80 Eever (dbdv/iii)				FCC PART 15 (PK)	
70					
60				FCC PART 15 (AV)	
50				TCC PART TO (AV)	
40			المالية	S S S S S S S S S S S S S S S S S S S	
30 to al	والتواخ الرواع والمعارية المعارية والمعارية	And so the same of the same of the same of	May my my man and man	4 9	
and the self of th					
20					
10					
0 1000 1200	1500	2000	201 (BILLY)	5000 600	
0	ReadAnte	Frequer enna Cable P			

* CONTROL **								
MHz	dBu₹		<u>ab</u>		$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
3568.514	47.14	27.62	5.85	41.51	39.10	74.00	-34.90	Peak
3568.514	37.27	27.62	5.85	41.51	29.23	54.00	-24.77	Average
4155.566	46.49	28.70	6.34	41.81	39.72	74.00	-34.28	Peak
4155.566	37.69	28.70	6.34	41.81	30.92	54.00	-23.08	Average
4926.683	47.26	31.46	6.89	41.86	43.75	74.00	-30.25	Peak
4926.683	37.57	31.46	6.89	41.86	34.06	54.00	-19.94	Average
	3568.514 3568.514 4155.566 4155.566 4926.683	3568.514 47.14 3568.514 37.27 4155.566 46.49 4155.566 37.69	3568.514 47.14 27.62 3568.514 37.27 27.62 4155.566 46.49 28.70 4155.566 37.69 28.70 4926.683 47.26 31.46	3568.514 47.14 27.62 5.85 3568.514 37.27 27.62 5.85 4155.566 46.49 28.70 6.34 4155.566 37.69 28.70 6.34 4926.683 47.26 31.46 6.89	3568.514 47.14 27.62 5.85 41.51 3568.514 37.27 27.62 5.85 41.51 4155.566 46.49 28.70 6.34 41.81 4155.566 37.69 28.70 6.34 41.81 4926.683 47.26 31.46 6.89 41.86	3568.514 47.14 27.62 5.85 41.51 39.10 3568.514 37.27 27.62 5.85 41.51 29.23 4155.566 46.49 28.70 6.34 41.81 39.72 4155.566 37.69 28.70 6.34 41.81 30.92 4926.683 47.26 31.46 6.89 41.86 43.75	3568.514 47.14 27.62 5.85 41.51 39.10 74.00 3568.514 37.27 27.62 5.85 41.51 29.23 54.00 4155.566 46.49 28.70 6.34 41.81 39.72 74.00 4155.566 37.69 28.70 6.34 41.81 30.92 54.00 4926.683 47.26 31.46 6.89 41.86 43.75 74.00	3568.514 47.14 27.62 5.85 41.51 39.10 74.00 -34.90 3568.514 37.27 27.62 5.85 41.51 29.23 54.00 -24.77 4155.566 46.49 28.70 6.34 41.81 39.72 74.00 -34.28 4155.566 37.69 28.70 6.34 41.81 30.92 54.00 -23.08 4926.683 47.26 31.46 6.89 41.86 43.75 74.00 -30.25

Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

54.00 -18.79 Average

Product Name:	1.8 inch 2G Bar Phone	Product Model:	A3
Test By:	Alex	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Remark:

5685.998

38.62

30.93

7.55

41.89

35.21

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.