

Exhibit 11: SAR Test Report IHDT56FQ1

Date of test: Date of Report:	11/01/2005 through 11/07/2005 11/16/2005	
Laboratory:	Motorola Mobile Devices Business Product 600 N. US Highway 45 Room: MW113 Libertyville, Illinois 60048	t Safety & Compliance Laboratory
Test Responsible:	Paul Ma RF Engineer	
Accreditation:	This laboratory is accredited to ISO/IEC 17	025-1999 to perform the following tests:
ACCREDITED	<u>Tests</u> : Electromagnetic Specific Absorption Rate Simulated Tissue Preparation RF Power Measurement	Procedures: ANSI/IEEE C95.1-1992, 1999 (SAR) IEEE C95.3-1991 IEEE 1528, IEC 62209-1 FCC OET Bulletin 65 (<i>including Supplements A, B, C</i>) Australian Communications Authority Radio Communications (Electromagnetic Radiation – Human Exposure) Standard 1999 CENELEC EN 50361 (2001) APP-0247 DOI-0876, 0900, 0902, 0904, 0915
	On the following products or types of produ Wireless Communications Devices (Examp Cellular, Licensed Non-Broadcast and PCS	les): Two Way Radios; Portable Phones (including
	A2LA certificate #1651-01	
Statement of Compliance:	IHDT56FQ1 to which this declaration re Population/Uncontrolled RF exposure stan §2.1093). It also declares that the pro measurement standards, guidelines and re standards, guidelines and recommended pra	
	(none)	
©Motorola, In This test repor	ic. 2005 t shall not be reproduced except in full, without w	ritten approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION
2. DESCRIPTION OF THE DEVICE UNDER TEST
2.1 Antenna description
2.2 Device description
3. TEST EQUIPMENT USED
3.1 Dosimetric System
3.2 Additional Equipment4
4. ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID4
5. SYSTEM ACCURACY VERIFICATION
6. TEST RESULTS
6.1 Head Adjacent Test Results7
6.2 Body Worn Test Results
APPENDIX 1: SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION12
APPENDIX 2: SAR DISTRIBUTION PLOTS FOR PHANTOM HEAD ADJACENT USE
APPENDIX 3: SAR DISTRIBUTION PLOTS FOR BODY WORN CONFIGURATION
APPENDIX 4: PROBE CALIBRATION CERTIFICATE
APPENDIX 5: MEASUREMENT UNCERTAINTY BUDGET16
APPENDIX 6: DIPOLE CHARACTERIZATION CERTIFICATE

1 Introduction

2

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone (FCC ID IHDT56FQ1). The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with FCC OET Bulletin 65 Supplement C 01-01.

Description of the Device Under Test

2.1 Antenna description

Туре	Internal Antenna				
Location – CDMA 800 Band	Bottom ; Rear Side				
Location – PCS 1900 Band	Upper Left Corner ; Rear Side				
Dimensions –	Length 48 mm				
CDMA 800 Band	Width 17 mm				
Dimensions –	Length 17 mm				
PCS 1900 Band	Width 15 mm				
Configuration	PI	FA			

2.2 Device description

FCC ID Number	IHDT56FQ1				
Serial number	5281C085				
Mode(s) of Operation	800 CDMA 1900 CDMA BlueTooth				
Modulation Mode(s)	CDMA	CDMA	BlueTooth		
Maximum Output Power Setting	26.00dBm	25.00dBm	4.00dBm		
Duty Cycle	1:1	1:1	1:1		
Transmitting Frequency Rang(s)	824-849MHz 1851-1909MHz 2400 - 2483.51				
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype				
Device Category	Portable				
RF Exposure Limits	Gene	ral Population / U	ncontrolled		

3 Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.5) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg. The list of calibrated equipment used for the measurements is shown below.

Description	Serial Number	Cal Due Date
DASY4 DAE3	437	3/24/2006
DASY4 DAE4	661	8/26/2006
E-Field Probe ET3DV6R	1397	4/22/2006
E-Field Probe ET3DV6R	1506	5/26/2006
Dipole Validation Kit, D900V2	80	
S.A.M. Phantom used for 800MHz	TP-1153	
Dipole Validation Kit, D900V2	91	
S.A.M. Phantom used for 800MHz	TP-1005	
Dipole Validation Kit, D1800V2	251TR	
S.A.M. Phantom used for 1900MHz	TP-1159	
Dipole Validation Kit, D1800V2	259TR	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04845	8/22/2006
Signal Generator HP8648C	3847A04810	8/19/2006
Power Meter E4419B	GB39511087	12/28/2005
Power Meter E4419B	GB39511088	12/16/2005
Power Sensor #1 - 9301A	MY41495336	12/28/2005
Power Sensor #2 - 9301A	US39211007	8/29/2006
Power Sensor #1 - 9301A	US39210930	8/29/2006
Power Sensor #2 - 9301A	US39211006	8/29/2006
Network Analyzer HP8753ES	US39172529	2/21/2006
Dielectric Probe Kit HP85070B	US99360070	

4 Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the HP85070 Dielectric Probe Kit These values, along with the temperature of the tissue simulate are shown in the table below. The recommended limits for maximum permittivity and minimum conductivity are also shown. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. It is seen that the measured parameters are satisfactory for compliance testing.

f	Tissue		Dielectric Parameters				
(MHz)	type	Limits / Measured	ε,	σ (S/m)	Temp (°C)		
	Head	Measured, 11/1/2005	42.4	0.92	20.2		
	пеац	Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25		
835	Dody	Measured, 11/4/2005	53.9	0.98	19.6		
	Body	Recommended Limits	55.2 ±5%	0.97 ±5%	18-25		
	Head	Measured, 11/3/2005	39.2	1.45	19.5		
пеац		Recommended Limits	$40.0 \pm 5\%$	$1.40 \pm 5\%$	18-25		
1880	Dody	Measured, 11/7/2005	51.1	1.59	20.5		
	Body	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		

APPLICANT: MOTOROLA, INC.

FCC ID: IHDT56FQ1

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien t	800MHz Head	800MHz Body	1900MHz Head	1900MHz Body
Sugar	57.0	44.9		
DGBE			47.0	30.80
Water	40.45	53.06	52.8	68.91
Salt	1.45	0.94	0.2	0.29
HEC	1.0	1.0		
Bact.	0.1	0.1		

5 System Accuracy Verification

A system accuracy verification of the DASY4 v4.5 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within center section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated in Section 8.3.7 Reference SAR Values in IEEE 1528, or Appendix 7 for the 900Mhz target reference SAR value. These tests were done at 900MHz, 1800MHz. These frequencies are within 100MHz of the mid-band frequency of the test device. This is within the allowable window given in Supplement C 01-01 *Appendix D System Verification* section item #5. The test was conducted on the same days as the measurement of the DUT. Recommended limits for maximum permittivity, minimum conductivity are shown in the table below. These come from the Federal Communication Commission, OET Bulletin 65 Supplement C 01-01. The obtained results from the system accuracy verification are displayed in the table below. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm \pm 0.5cm. Z-axis scans showing the SAR penetration are also included in Appendix 1. SAR values are normalized to 1W forward power delivered to the dipole.

f (MHz)	Description	SAR (W/kg), 1gram	Dielectric Parameters ε _r σ (S/m)		Parameters Ambient σ (S/m) (°C)	
()	Measured, 11/01/2005	11.2	41.6	0.98	22.0	(°C) 20.7
900	Measured, 11/04/2005	11.0	40.7	0.97	22.0	20.0
	Recommended Limits	11.3	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, 11/03/2005	37.8	39.6	1.37	23.0	19.7
1800	Measured, 11/07/2005	38.2	39.0	1.37	21.0	19.8
	Recommended Limits	38.1	$40.0\pm5\%$	1.4 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1397	900	6.38	8 of 9
ET3DV6R	51(15)7	1800	5.17	8 of 9
E-Field Probe	SN1506	900	5.89	8 of 9
ET3DV6R	5111300	1800	4.83	8 of 9

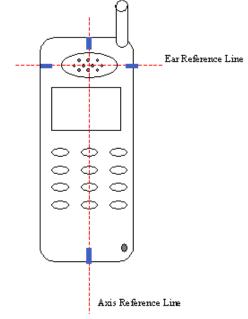
6 Test Results

The test sample was operated in a test mode that allows control of the transmitter without the need to place actual phone calls. For the purposes of this test the unit is commanded to test mode and manually set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in OET Bulletin 65 Supplement C 01-01. Motorola also followed the requirements in Supplement. C / Appendix D: SAR Measurement Procedures, section titled "*Devices Operating Next To A Person's Ear*". These directions state "The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)."

The DASY4 v4.5 SAR measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The phone was positioned into the measurement configurations using the positioner supplied with the DASY4 v4.5 SAR measurement system. The measured dielectric constant of the material used for the positioner is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and use for measurements. The grid spacing of the course scan was set to 15cm as shown in the SAR plots included in appendix 2 and 3. Please refer to the DASY manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone (FCC ID IHDT56FQ1) has the following battery options:

Model #1 – SNN5765A - 1640mAH Battery Model #2 – SNN5783A - 1130mAH Battery


The battery with the highest capacity is the SNN5765A. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configuration that resulted in the highest SAR values were tested using the other batteries listed above.

6.1 Head Adjacent Test Results

To aid in positioning repeatability, the ear reference line of the device and the axis reference line of the device have been physically added using a non-metallic marker.

- Per Figure 1, the "Ear Reference Line" is centered vertically through the center of the listening area (as defined by the speaker holes in the housing).
- The "Axis Reference Line" bisects the front surface of the device at its top and bottom edges.
- The intersection of these two lines defines the location of the "Ear Reference Point".

The lines drawn on the device extended to the outside edges, as shown in blue in the figure below, & wrap around the sides of the device.

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and tissue simulate are used for the system accuracy verification as the device SAR measurements, the Z-axis scans included in within Appendix 1 are applicable for verification of tissue simulate depth to be 15.0cm \pm 0.5cm. Note that 800MHz digital mode SAR measurements were performed in accordance with Supplement C.

APPLICANT: MOTOROLA, INC.

FCC ID: IHDT56FQ1

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1397	900	6.38	8 of 9
ET3DV6R	51(15)7	1800	5.17	8 of 9
E-Field Probe	SN1506	900	5.89	8 of 9
ET3DV6R	5111500	1800	4.83	8 of 9

			Cheek / Touch Position							
		Conducted		Let	ft Head			Rig	ht Head	
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D: :-1	Channel 1013	26.13	0.807	-0.31	0.87	20.2	0.853	0.1	0.85	20.1
Digital 800MHz	Channel 384	26.11	0.83	-0.07	0.84	20.2	0.878	0.2	0.88	20.2
	Channel 777	25.84	0.763	0.11	0.76	20.2	0.821	-0.29	0.88	20.1
	Channel 25	25.10								
Digital 1900MHz	Channel 600	25.09	0.605	0.15	0.61	19.5	0.734	-0.26	0.78	19.5
.,.,	Channel 1175	25.12								

 Table 1: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the head in the Cheek/Touch Position.

				15° Tilt Position						
		Conducted	Left Head				Right Head			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D: :-1	Channel 1013	26.13	·							
Digital 800MHz	Channel 384	26.11	0.589	0.06	0.59	20.2	0.545	0.05	0.55	20.2
	Channel 777	25.84								
D: : 1	Channel 25	25.10	0.639	0.2	0.64	19.5	0.67	0.18	0.67	19.5
Digital 1900MHz	Channel 600	25.09	0.805	0.07	0.81	19.5	0.855	0.14	0.86	19.5
	Channel 1175	25.12	1.05	-0.12	1.08	19.5	1.03	-0.32	1.11	19.5

 Table 2: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the head in the 15° Tilt Position.

				Cheek/Touch Position With SNN5783A battery						
		Conducted	Left Head				Right Head			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D: :1	Channel 1013	26.13								
Digital 800MHz	Channel 384	26.11								
00000000	Channel 777	25.84					0.827	-0.15	0.86	20.2
	Channel 25	25.10								
Digital 1900MHz	Channel 600	25.09					0.729	-0.06	0.74	19.5
	Channel 1175	25.12								

 Table 3: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the head in the Cheek/Touch Position.

FCC ID: IHDT56FQ1

					15° Tilt Pos	sition Wit	h SNN578.	3A batt	ery	
		Conducted		Left Head			Right Head			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D:.:(1	Channel 1013	26.13								
Digital 800MHz	Channel 384	26.11	0.607	-0.2	0.64	20.2				
	Channel 777	25.84								
D: : 1	Channel 25	25.10								
Digital 1900MHz	Channel 600	25.09								
	Channel 1175	25.12					0.983	-0.13	1.01	20.4

 Table 4: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the head in the 15° Tilt Position.

6.2 Body Worn Test Results

The SAR results shown in tables 5 through 9 are the maximum SAR values averaged over 1 gram of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASYTM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800MHz digital mode SAR measurements were performed in accordance with OET Bulletin 65 Supplement C 01-01.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures $52.7 \text{cm}(\log) \times 26.7 \text{cm}(\text{wide}) \times 21.2 \text{cm}(\text{tall})$. The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessories of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are two Body-Worn Accessories available for this phone: Slim Holster Wide Holster

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN1397	900	6.22	8 of 9
ET3DV6R	51(15)7	1800	4.77	8 of 9
E-Field Probe	SN1506	900	5.55	8 of 9
ET3DV6R	5111300	1800	4.30	8 of 9

					Body V	Vorn 15m	m from ph	antom		
		Conducted	Front				Back			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D: :-1	Channel 1013	26.13					0.839	0.05	0.84	20.4
Digital 800MHz	Channel 384	26.11	0.536	0.03	0.54	20.4	0.903	-0.05	0.91	20.4
00011111	Channel 777	25.84					0.672	-0.07	0.68	20.4
D ¹ 1 1	Channel 25	25.10								
Digital 1900MHz	Channel 600	25.09	0.345	0.146	0.35	20.5	0.532	-0.05	0.54	20
	Channel 1175	25.12								

Table 5: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the body.

				Bo	ody Worn 15	mm from	phantom V	With Bl	uetooth	
		Conducted	Front				Back			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
Dividul	Channel 1013	26.13					0.985	-0.13	1.02	20.5
Digital 800MHz	Channel 384	26.11					1.03	0.05	1.03	20.5
	Channel 777	25.84					0.987	-0.09	1.01	20.5
D · · · · ·	Channel 25	25.10								
Digital 1900MHz	Channel 600	25.09					0.468	-0.04	0.47	19.9
	Channel 1175	25.12								

 Table 6: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the body.

				Body Worn 15mm from phantom With Battery SNN5783A						
		Conducted	Bluetooth				Back			
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)
D: 1	Channel 1013	26.13	1.25	-0.01	1.25	20.5				
Digital 800MHz	Channel 384	26.11	1.32	0	1.32	20.5				
coonnin	Channel 777	25.84	1.18	-0.17	1.23	20.5				
	Channel 25	25.10								
Digital 1900MHz	Channel 600	25.09					0.663	0.07	0.66	19.9
	Channel 1175	25.12								

 Table 7: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the body.

FCC ID: IHDT56FQ1

			Body	Body Worn Back of Phone With Slim Holster and Battery SNN5783A							
			Phon	Phone on Holster Rotated 90°				Phone on Holster Rotated 90°			
		Conducted	Clockwise					Counte	r-Clockwise		
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
D: :/ 1	Channel 1013	26.13	1.26	0.09	1.26	20.5					
Digital 800MHz	Channel 384	26.11	1.44	-0.08	1.47	19.6					
	Channel 777	25.84	1.37	-0.3	1.47	20.5					
	Channel 25	25.10					0.984	-0.23	1.04	20.5	
Digital 1900MHz	Channel 600	25.09					0.995	0.032	1.00	19.0	
	Channel 1175	25.12					1.03	0.12	1.03	20.5	

 Table 8: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the body.

			Body	Body Worn Back of Phone With Wide Holster and Battery SNN5783A							
			Phon	Phone on Holster Rotated 90°				Phone on Holster Rotated 90°			
		Conducted		Cle	ockwise			Counte	r-Clockwise		
f (MHz)	Description	Output Power (dBm)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	Measured (W/kg)	Drift (dB)	Extrapolated (W/kg)	Simulate Temp (°C)	
D: :-1	Channel 1013	26.13									
Digital 800MHz	Channel 384	26.11	1.18	0.07	1.18	19.2					
	Channel 777	25.84									
D ¹ 1	Channel 25	25.10									
Digital 1900MHz	Channel 600	25.09					0.686	-0.15	0.71	19.0	
	Channel 1175	25.12									

 Table 9: SAR measurement results for the portable cellular telephone FCC ID IHDT56FQ1 at highest possible output power. Measured against the body.

Appendix 1

SAR distribution comparison for the system accuracy verification

Test Laboratory: Motorola

110105 900Mhz GOOD-0.7%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:080

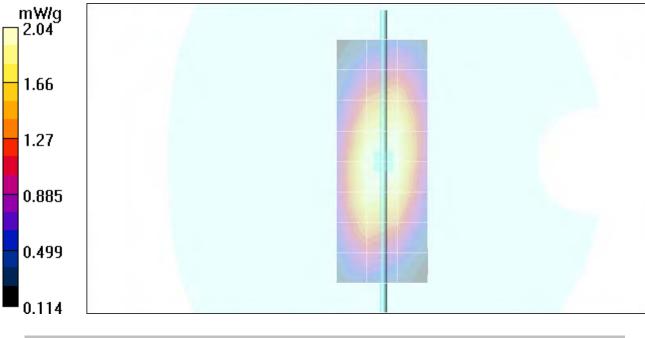
Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 80 PM1 Power = 200 mW Sim.Temp@meas = 20.7 C Sim.Temp@SPC = 20.7 C Room Temp @ SPC = 22 C Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: $\sigma = 0.98$ mho/m, $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³ DASY4 Configuration:

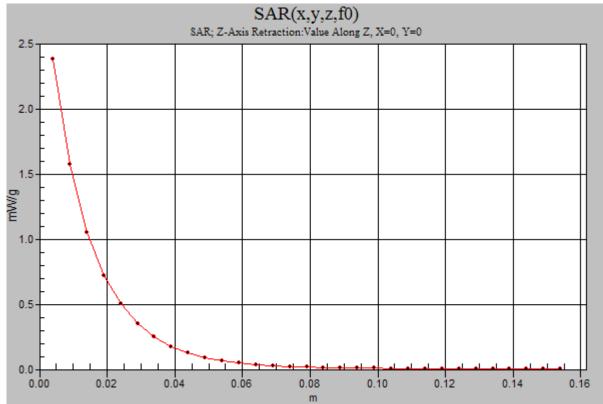
- Probe: ET3DV6R SN1397; ConvF(6.38, 6.38, 6.38); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 3/24/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 2.04 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 51.2 V/m; Power Drift = -0.054 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.18 mW/g; SAR(10 g) = 1.4 mW/g Maximum value of SAR (measured) = 2.38 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 51.2 V/m; Power Drift = -0.054 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.48 mW/g Maximum value of SAR (measured) = 2.51 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Test Laboratory: Motorola

110305 1800Mhz GOOD-0.9%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:251tr

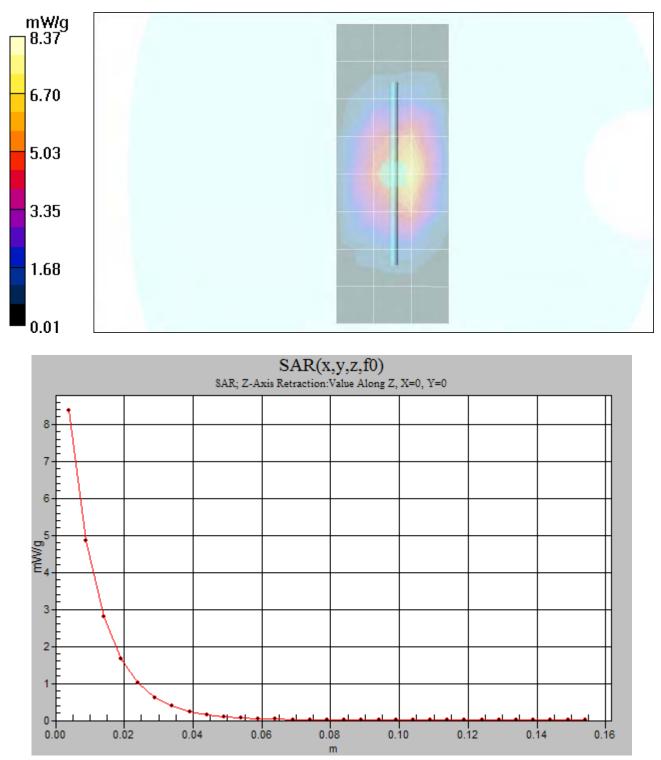
Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 251tr PM1 Power = 200 mW Sim.Temp@meas = 20.0&C Sim.Temp@SPC = 19.7&C Room Temp @ SPC = 23&C Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: σ = 1.37 mho/m, ε_r = 39.6; ρ = 1000 kg/m³ DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 3/24/2005
- Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1159;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 7.05 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 82.4 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 12.6 W/kg SAR(1 g) = 7.4 mW/g; SAR(10 g) = 3.98 mW/g Maximum value of SAR (measured) = 8.34 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 82.4 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 13.0 W/kg SAR(1 g) = 7.7 mW/g; SAR(10 g) = 4.14 mW/g Maximum value of SAR (measured) = 8.64 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mmMaximum value of SAR (measured) = 8.37 mW/g

Date/Time: 11/4/2005 8:39:53 AM

Test Laboratory: Motorola

110405 900MHz -3.1%

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:091

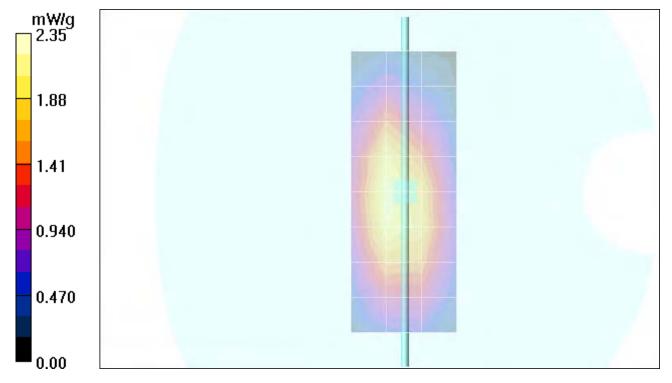
Procedure Notes: 900MHz System Performance Check / Dipole Sn# 091 PM1 Power = 200 mW Sim.Temp@meas = 20.7 Sim.Temp@SPC = 20.0 Room Temp@ SPC = 22 Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: $\sigma = 0.97$ mho/m, $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ DASY4 Configuration:

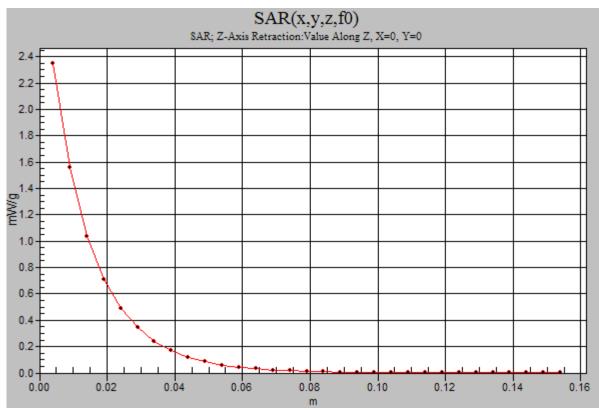
- Probe: ET3DV6R SN1506; ConvF(5.89, 5.89, 5.89); Calibrated: 5/26/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 2.18 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 50.4 V/m; Power Drift = -0.070 dB Peak SAR (extrapolated) = 3.19 W/kg **SAR(1 g) = 2.16 mW/g; SAR(10 g) = 1.39 mW/g** Maximum value of SAR (measured) = 2.34 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 50.4 V/m; Power Drift = -0.070 dB Peak SAR (extrapolated) = 3.30 W/kg SAR(1 g) = 2.22 mW/g; SAR(10 g) = 1.43 mW/g Maximum value of SAR (measured) = 2.33 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.35 mW/g

Test Laboratory: Motorola

110705 1800MHz +0.3%

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:259TR

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 259TR PM1 Power = 200 mW

Sim.Temp@meas = 20.1C Sim.Temp@SPC = 19.8C Room Temp @ SPC = 21C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: $\sigma = 1.37$ mho/m, $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

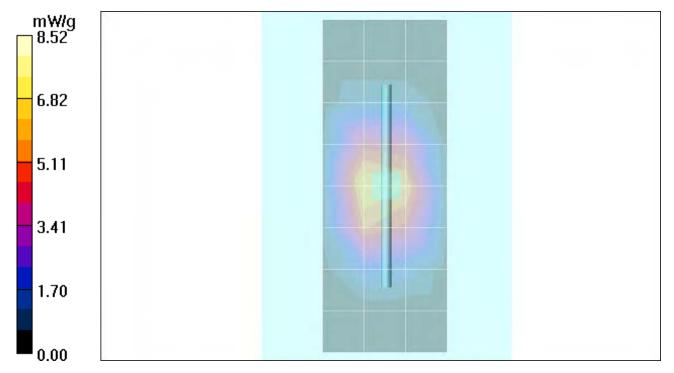
DASY4 Configuration:

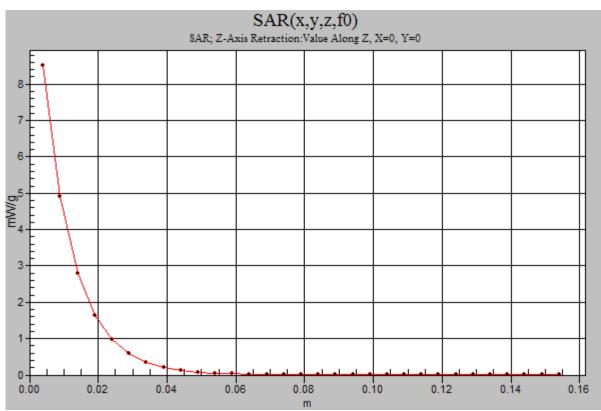
- Probe: ET3DV6R SN1506; ConvF(4.83, 4.83, 4.83); Calibrated: 5/26/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 147

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 6.41 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 84.3 V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 13.1 W/kg SAR(1 g) = 7.62 mW/g; SAR(10 g) = 4.03 mW/g Maximum value of SAR (measured) = 8.58 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 84.3 V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 13.2 W/kg SAR(1 g) = 7.67 mW/g; SAR(10 g) = 4.06 mW/gMaximum value of SAR (measured) = 8.53 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mmMaximum value of SAR (measured) = 8.52 mW/g

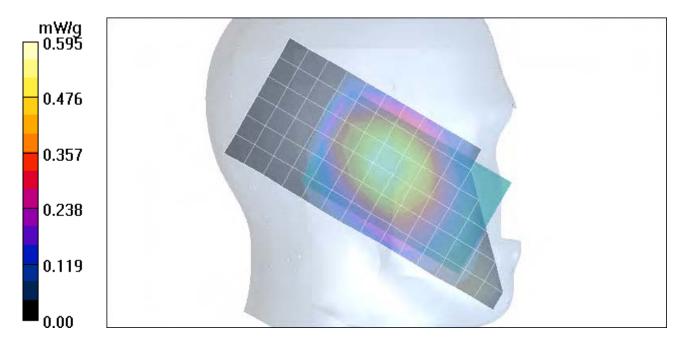
Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Test Laboratory: Motorola Serial: 5281C085

835 LH Tilt ch384

Procedure Notes: Pwr Step: Always Up Antenna Position: Internal Battery Model #: SNN5783A DEVICE POSITION (cheek or rotated): Rotated Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1 Medium: Low Freq Head; Medium parameters used: $\sigma = 0.92$ mho/m, $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³ DASY4 Configuration:


- Probe: ET3DV6R SN1397; ConvF(6.38, 6.38, 6.38); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 3/24/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Left Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 0.595 mW/g

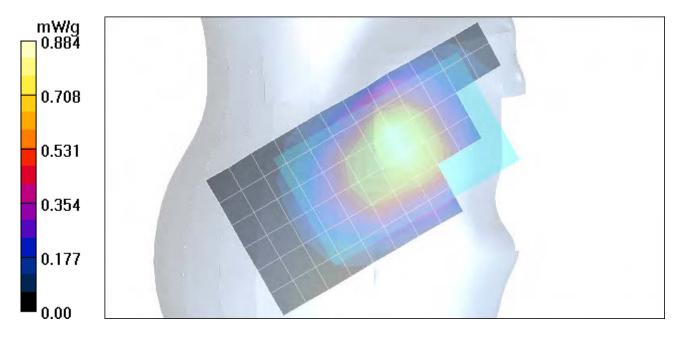
Left Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 26.5 V/m; Power Drift = -0.197 dB Peak SAR (extrapolated) = 0.737 W/kg SAR(1 g) = 0.607 mW/g; SAR(10 g) = 0.457 mW/g Maximum value of SAR (measured) = 0.652 mW/g

Test Laboratory: Motorola

835 RH Cheek ch384

Serial: 5281C085Procedure Notes: Pwr Step: Always Up
Battery Model #: SNN5765AAntenna Position: Internal
DEVICE POSITION (cheek or rotated): CHEEKCommunication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1
Medium: Low Freq Head; Medium parameters used: $\sigma = 0.92$ mho/m, $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³DASY4 Configuration:


- Probe: ET3DV6R SN1397; ConvF(6.38, 6.38, 6.38); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 3/24/2005
- Phantom: R3: Sugar Water SAM; Type: SAM; Serial: TP-1153;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Right Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.884 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

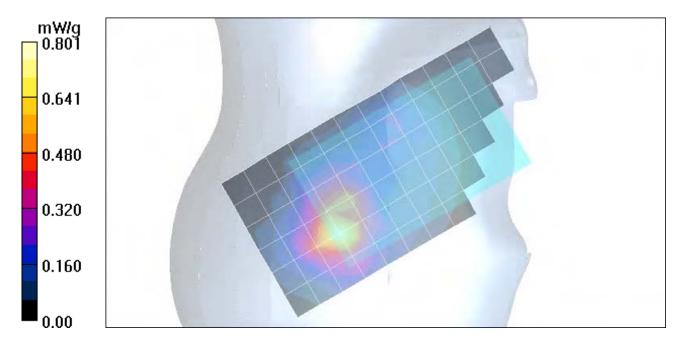
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 30.2 V/m; Power Drift = 0.199 dB Peak SAR (extrapolated) = 1.24 W/kg **SAR(1 g) = 0.880 mW/g; SAR(10 g) = 0.646 mW/g** Maximum value of SAR (measured) = 0.981 mW/g

Date/Time: 11/3/2005 1:19:41 PM

Test Laboratory: Motorola Serial: 5281C085

1900 RH Cheek ch600

Procedure Notes: Pwr Step: Alway Up Battery Model #: SNN5765A A Stream Position: Internal DEVICE POSITION (cheek or rotated): Cheek DEVICE POSITION (cheek or rotated): Cheek Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1 Medium: Back-Up Glycol Head; Medium parameters used: $\sigma = 1.45$ mho/m, $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³ DASY4 Configuration:


- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 3/24/2005
- Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1159;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Right Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 0.801 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

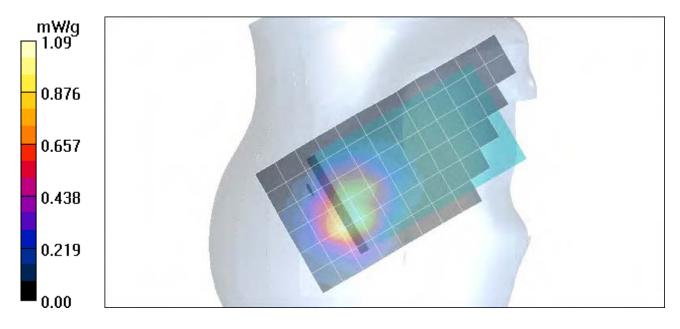
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 21.8 V/m; Power Drift = -0.258 dB Peak SAR (extrapolated) = 1.50 W/kg **SAR(1 g) = 0.734 mW/g; SAR(10 g) = 0.402 mW/g** Maximum value of SAR (measured) = 0.877 mW/g

Date/Time: 11/3/2005 3:11:58 PM

Test Laboratory: Motorola Serial: 5281C085

1900 RH Tilt ch1175

Procedure Notes: Pwr Step: Alway Up Battery Model #: SNN5765A Antenna Position: Internal DEVICE POSITION (cheek or rotated): Rotated Communication System: CDMA 1900; Frequency: 1908.75 MHz; Channel Number: 1175; Duty Cycle: 1:1 Medium: Back-Up Glycol Head; Medium parameters used: $\sigma = 1.45$ mho/m, $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³ DASY4 Configuration:


- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/22/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn437; Calibrated: 3/24/2005
- Phantom: R3: Glycol SAM; Type: SAM; Serial: TP-1159;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Right Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.09 mW/g

Right Head Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 28.1 V/m; Power Drift = -0.315 dB Peak SAR (extrapolated) = 2.11 W/kg **SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.577 mW/g** Maximum value of SAR (measured) = 1.20 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

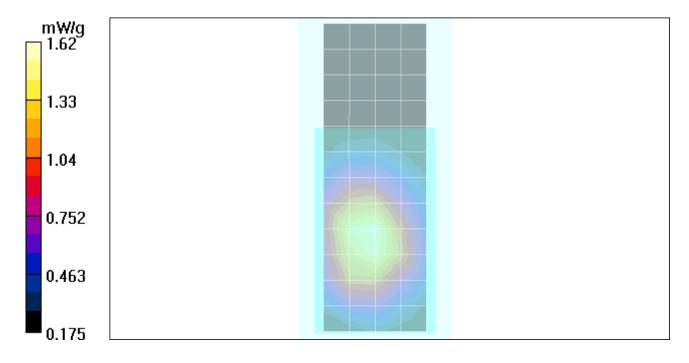
Test Laboratory: Motorola

835 BW Slim Holster ch384

Serial: 5281C085Procedure Notes: Pwr Step: all upAntenna Position: internalBattery Model #: SNN5783AAccessory Model # = SLIM Holster and Phone on Holster Rotated 90 Degrees CLOCKWISECommunication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

Medium: Low Freq Body; Medium parameters used: $\sigma = 0.98$ mho/m, $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:


- Probe: ET3DV6R SN1506; ConvF(5.55, 5.55, 5.55); Calibrated: 5/26/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R1: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 147

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 1.55 mW/g

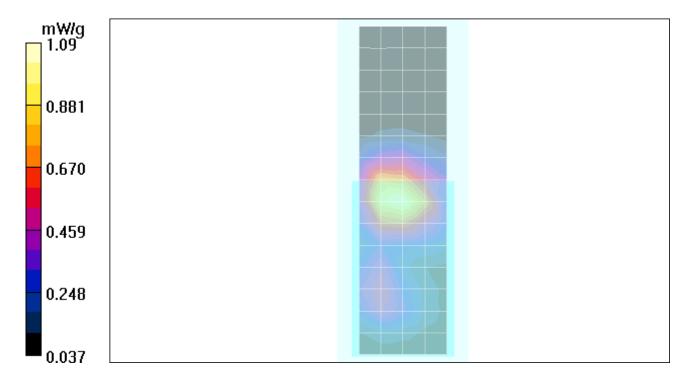
Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 39.9 V/m; Power Drift = -0.082 dB Peak SAR (extrapolated) = 2.11 W/kg SAR(1 g) = 1.44 mW/g; SAR(10 g) = 1.07 mW/g Maximum value of SAR (measured) = 1.62 mW/g

Test Laboratory: Motorola

1900 BW Slim Holster ch25

Serial: 5281C085Procedure Notes: Pwr Step: always upAntenna Position: internalBattery Model #: snn5783aAccessory Model # = slim holster rotated 90 degree counter clockwiseCommunication System: CDMA 1900; Frequency: 1851.25 MHz; Channel Number: 25; Duty Cycle: 1:1Medium: Regular Glycol Body; Medium parameters used: $\sigma = 1.59$ mho/m, $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³DASY4 Configuration:


- Probe: ET3DV6R SN1506; ConvF(4.3, 4.3, 4.3); Calibrated: 5/26/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 8/26/2005
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 147

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (16x7x1):

Measurement grid: dx=15mm, dy=15mmMaximum value of SAR (measured) = 1.04 mW/g

Amy Twin Phone Template/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 24.7 V/m; Power Drift = -0.230 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 0.984 mW/g; SAR(10 g) = 0.602 mW/g Maximum value of SAR (measured) = 1.09 mW/g

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS C. D. ZO PRIBRATIO

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation	No.:	SCS	108
---------------	------	-----	-----

S

С

S

Multilate	ral Agreement for the re	ecognition of calibration	a certificates		
Client	MOGORMDD		Gertificate	n Marka Kara	897_Apr05
6AL		N == = N = == (09 15 P			
Object		ETSIDV6R SN	1 397		
Calibrati	on procedure(s)	OA CAL-01 v5 Calibration proc	edure for dosimetric Effection	18 5	
			Assessment of the State of the State		
Calibrati	on date:	April 22, 2005			
Conditio	n of the calibrated item	In Tolerance			
			tional standards, which realize the physical probability are given on the following pages		
All calib	rations have been conduc	cted in the closed laborat	ory facility: environment temperature (22 \pm	3)°C and hun	nidity < 70%.
Calibrati	ion Equipment used (M&	TE critical for calibration)			
Primary	Standards	ID #	Cal Date (Calibrated by, Certificate No.	.) So	cheduled Calibration
Power n	neter E4419B	GB41293874	5-May-04 (METAS, No. 251-00388)	M	ay-05
Power s	ensor E4412A	MY41495277	5-May-04 (METAS, No. 251-00388)	M	ay-05
Referen	ce 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403)	Au	ug-05
Referen	ce 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	M	ay-05
Referen	ce 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Au	ug-05
Referen	ce Probe ES3DV2	SN: 3013	7-Jan-05 (SPEAG, No. ES3-3013_Jan	05) Ja	an-06
DAE4		SN: 617	19-Jan-05 (SPEAG, No. DAE4-617_Ja	n05) Ja	an-06
Seconda	ary Standards	ID #	Check Date (in house)		cheduled Check
Power s	ensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check O	ct-03) In	house check: Oct 05
RF gene	erator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check De	c-03) In	house check: Dec-05
Network	Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check No	ov-04) In	house check: Nov 05
		Name	Function	S	ignature
Calibrat	ed by:	Nico Vetterii	Laboratory Technician	Ľ	
Approve	ed by:	Katja:Pokovic	Technical Manager	1	Kais Wife
This cal	ibration certificate shall n	ot be reproduced except	in full without written approval of the labora		sued: April 25, 2005

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6R

SN:1397

Manufactured: Last calibrated: Recalibrated:

October 24, 1999 May 21, 2004 April 22, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1397

Sensitivity in Free Space ^A			Diode Compression ^B		
NormX	1.81 ± 10.1%	μV/(V/m) ²	DCP X	95 mV	
NormY	1.69 ± 10.1%	μV/(V/m) ²	DCP Y	95 mV	
NormZ	1.95 ± 10.1%	μV/(V/m) ²	DCP Z	95 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm
-----	---------	----------------------------------

Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.2	4.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

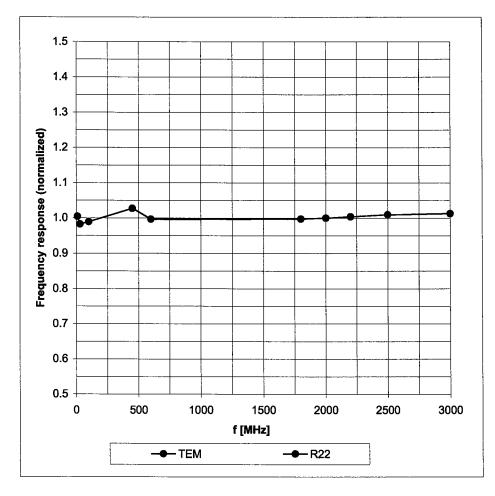
TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	13.5	9.1
SAR _{be} [%]	With Correction Algorithm	0.8	0.1

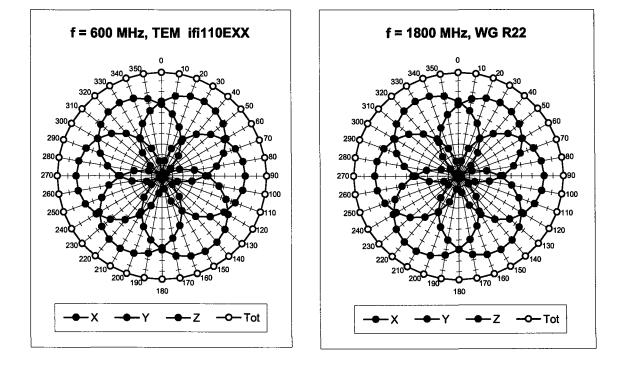
Sensor Offset

Probe Tip to Sensor Center

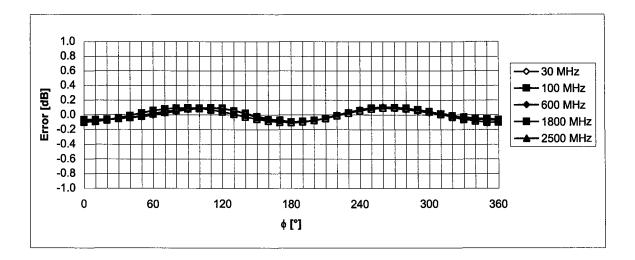
2.7 mm


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

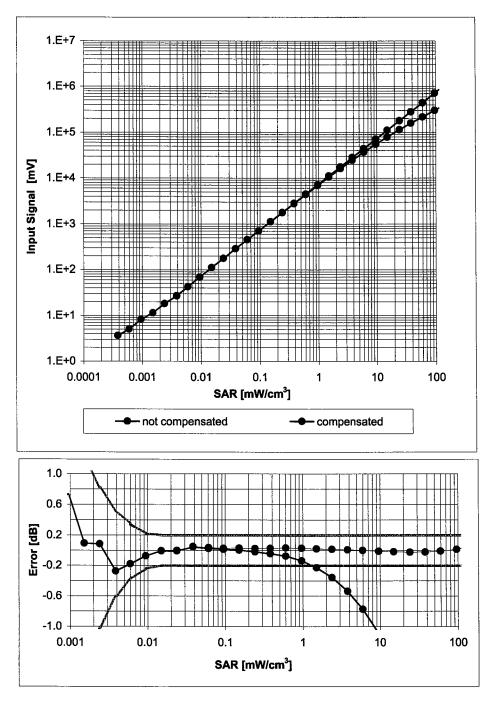
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

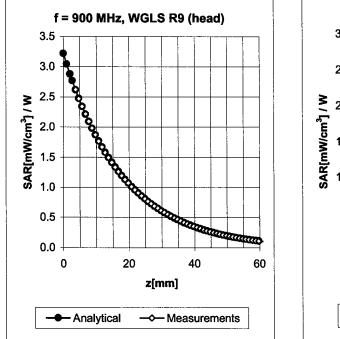
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

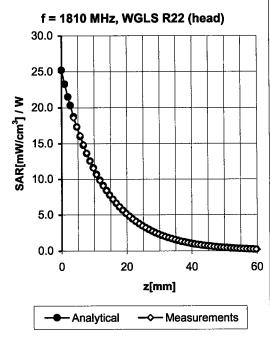
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

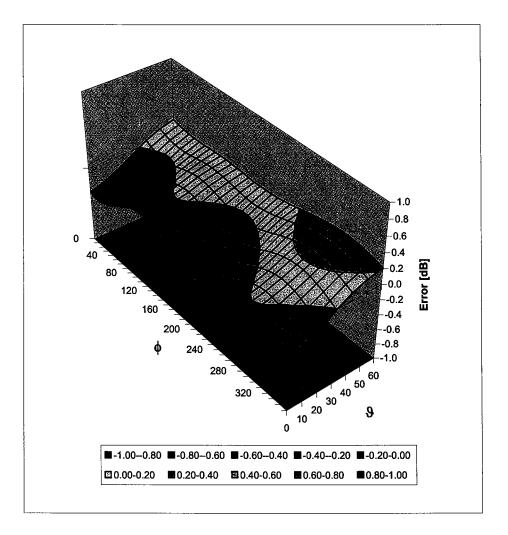


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.71	1.73	6.38 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.60	2.37	5.17 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.59	2.49	4.90 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.58	2.00	6.22 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.57	2.75	4.77 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.60	2.53	4.44 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Engineering AG Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Motorola MDb Client Centificate No GALERATION GERIEGATE Object ET3DV6R - SN:1506 QA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probe Calibration date: May 26, 2005 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Scheduled Calibration ID# Cal Date (Calibrated by, Certificate No.) Power meter E4419B GB41293874 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41495277 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41498087 3-May-05 (METAS, No. 251-00466) May-06 Reference 3 dB Attenuator Aug-05 SN: S5054 (3c) 10-Aug-04 (METAS, No. 251-00403) Reference 20 dB Attenuator SN: S5086 (20b) May-06 3-May-05 (METAS, No. 251-00467) Reference 30 dB Attenuator SN: S5129 (30b) Aug-05 10-Aug-04 (METAS, No. 251-00404) Reference Probe ES3DV2 SN: 3013 Jan-06 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) DAE4 SN: 617 Jan-06 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) ID# Scheduled Check Secondary Standards Check Date (in house) RF generator HP 8648C US3642U01700 In house check: Dec-05 4-Aug-99 (SPEAG, in house check Dec-03) Network Analyzer HP 8753E US37390585 In house check: Nov 05 18-Oct-01 (SPEAG, in house check Nov-04) Name Function Signature Calibrated by: Nico Vetterli Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: May 26, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	$\dot{\vartheta}$ rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx, v, z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or • Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6R

SN:1506

Manufactured: Last calibrated: Recalibrated: October 24, 1999 May 27, 2004 May 26, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

.

2

DASY - Parameters of Probe: ET3DV6R SN:1506

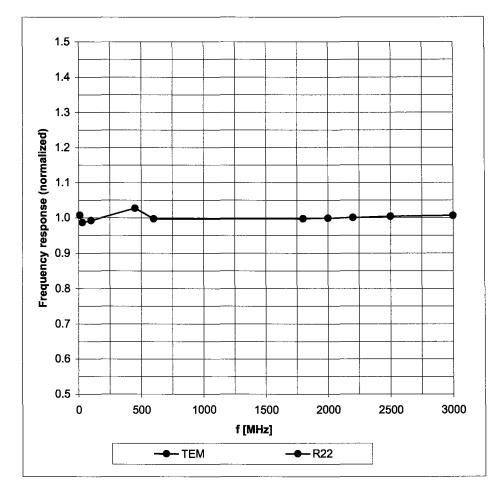
Sensitivity in Free	e Space ^A	Diode Compression ^B		
NormX	2.27 ± 10.1%	μV/(V/m) ²	DCP X	97 mV
NormY	2.08 ± 10.1%	μV/(V/m) ²	DCP Y	97 mV
NormZ	1.27 ± 10.1%	μV/(V/m) ²	DCP Z	97 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

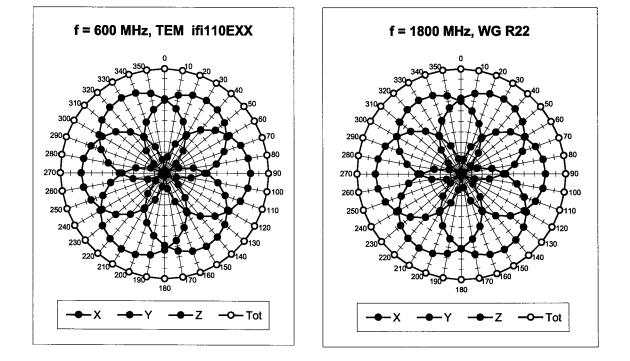
Please see Page 8.

Boundary Effect

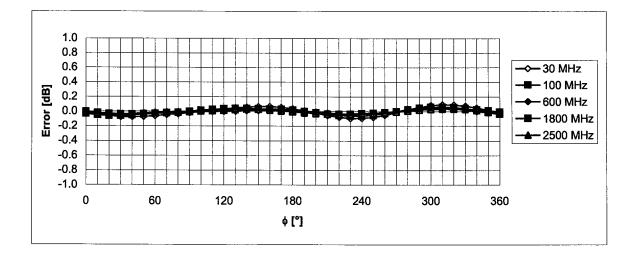
TSL	9	00 MHz	Typical SAR gradient: 5 % p	er mm	
	Sensor Cente SAR _{be} [%]		m Surface Distance Correction Algorithm	3.7 mm 11.1	4.7 mm 5.7
	SAR _{be} [%]		rrection Algorithm	0.1	0.3
TSL	18	10 MHz	Typical SAR gradient: 10 %	per mm	
	Sensor Cente SAR _{be} [%] SAR _{be} [%]	Without	m Surface Distance Correction Algorithm rrection Algorithm	3.7 mm 14.8 0.9	4.7 mm 9.4 0.0
Senso	or Offset				
	Probe Tip to S	Sensor Cen	ter	2.7 mm	


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

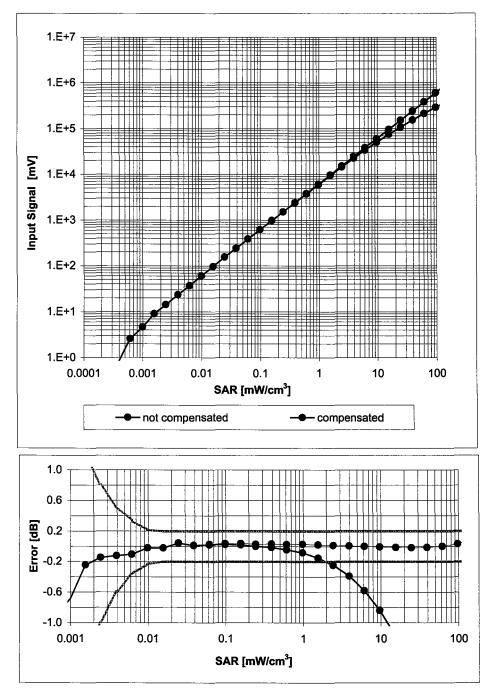
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

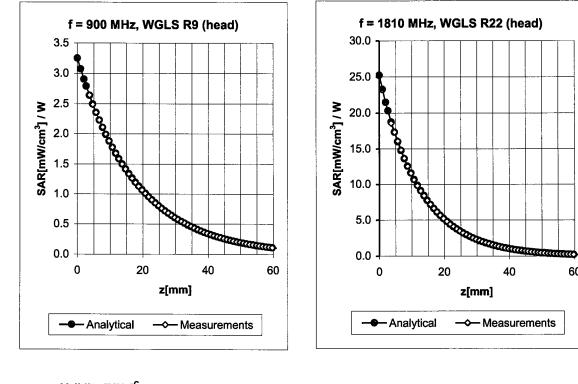
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

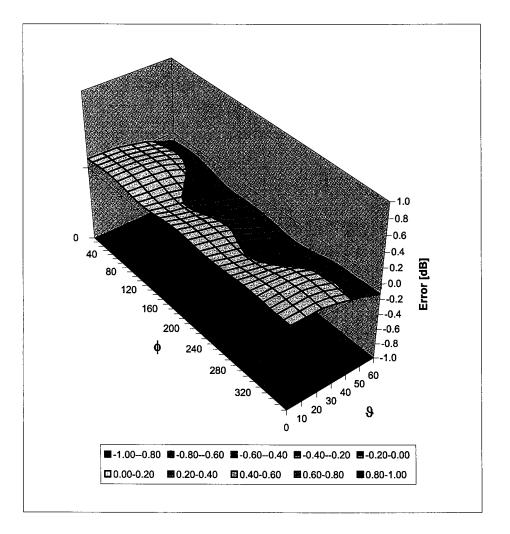
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

60


Conversion Factor Assessment

Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.79	1.78	5.89 ± 11.0% (k=2)
± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.77	2.15	4.83 ± 11.0% (k=2)
± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.71	2.29	4.53 ± 11.0% (k=2)
± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.85	2.02	4.22 ± 11.8% (k=2)
± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.68	1.91	5.55 ± 11.0% (k=2)
± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.70	2.51	4.30 ± 11.0% (k=2)
± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.76	2.28	4.08 ± 11.0% (k=2)
± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	1.03	1.72	3.97 ± 11.8% (k=2)
	$\pm 50 / \pm 100$ $\pm 50 / \pm 100$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

Measurement Uncertainty Budget

APPLICANT: MOTOROLA, INC.

Uncertainty Budget for Device Under Test: 30 – 3000 MHz

				e =			h = c x f	i= cxg	
а	b	С	d	f(d,k)	f	g	/e	/e	k
	IFFE	Tol.	Prob		Ci	Ci	1 g	10 g	
	IEEE 1528	(±				(10		1	
	section	%)	Dist		(1 g)	g)			
Uncertainty Component				Div.			(±%)	(±%)	Vi
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8 S
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t									
Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext.,		0.4		4 70			0.0	0.0	
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related	= 1 0								
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	Ν	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Liquid Conductivity									
(measurement)	E.3.3	3.3	Ν	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity									
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard									
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	

Uncertainty Budget for System Check: 30 – 3000 MHz

				e =			h = c x f/	i= cxg/	
а	b	С	d	f(d,k)	f	g	е	e	k
	IEEE 1528 section	Tol. (± %)	Prob. Dist.	Div	c _i (1 g)	c _i (10 g)	1 g <i>u_i</i>	10 g <i>u_i</i>	
Uncertainty Component				Div.			(±%)	(±%)	Vi
Measurement System Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	
	E.2.1 E.2.2	4.7	R	1.73	1	1	2.7	0.9 2.7	00
Axial Isotropy	E.2.2	4.7 9.6	R	1.73	0	0	0.0	0.0	00
Spherical Isotropy					-	-			×
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	00
System Detection Limits	E.2.5	1.0	R	1.73		1	0.6	0.6	00
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	00
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	00
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	00
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.2	0.2	00
	E.0.3	3.4	R	1.73	1	1	2.0	2.0	00
Max. SAR Evaluation (ext., int., avg.) Dipole	E.3	3.4	ĸ	1.73	1	<u> </u>	2.0	2.0	∞
	8,								
Dipole Axis to Liquid Distance	E.4.2	2.0	R	1.73	1	1	1.2	1.2	×
Input Power and SAR Drift	8,		_						
Measurement	6.6.2	5.0	R	1.73	1	1	2.9	2.9	00
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	×
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	×
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	×
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	ø
Combined Standard Uncertainty			RSS				9.0	8.8	9999 9
Expanded Uncertainty (95% CONFIDENCE LEVEL)			<i>k</i> =2				17.7	17.3	

Appendix 6

Dipole Characterization Certificate

Certification of System Performance Check Targets Based on APP-0396

-Historical Data-

	900MHz	
IEEE1528 Target:	10.8	(V
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	9-Nov-04 to 2-June-05	
# of tests performed:	813	
Grand Average:	11.3	(%
% Delta (Average - IEEE1528 Target)	4.4%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Historic data included the following 900MHz Dipoles:	
	69, 77	
	79, 80 91, 94	
	96, 97	
		-

-New System Performance Check Targets- per APP-0396

(based on analysis of historical data)

	Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
	900MHz	11.3	41.5 ± 5%	0.97 ± 5%
pprovals-	Marga Kaj	1000	T Doto:	2-Jun-05
Submitted by:		inas	Date:	2-Jun-05
Signed:	Marza Ka	was_		
Comments:	Spreadsheet detailing	referenced historical measuren	nents is available upon	request.
Approved by:	Mark Doug	glas	Date:	2-Jun-05
	Marke Daugla		-	-
Signed:	- Ware 1			