

ESP32-JCI-R
User Manual

Prerelease version 0.1

Espressif Systems

Copyright © 2018

https://manuals.plus/m/9c07470269dd41ec05491f8c8e491764ea701c6de9ea086591eff60e683a2f19

About This Guide
This document is intended to help users set up the basic software development

environment for developing applications using hardware based on the ESP32-JCI-R

module.

Release Notes

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to

technical documentation. Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/

certificates.

Date Version Release notes

2020.7 V0.1 Preliminary release.

Table of Contents
1.Introduction to ESP32-JCI-R	 1

1.1. ESP32-JCI-R	 1

1.2. ESP-IDF	1

1.3. Preparation	 1

2. Get Started with ESP32-JCI-R	 2

2.1. Toolchain Setup	 2

2.2. Get ESP-IDF	 2

2.3. Set up Path to ESP-IDF	 2

3. Start a Project	 4

4. Connect	 5

5. Configure	 6

6. Build and Flash	 7

7. Monitor	 8  

8. Introduction to ESP32-JCI-R

8.1. ESP32-JCI-R

ESP32-JCI-R is a powerful, generic Wi-Fi+BT+BLE MCU module that targets a wide

variety of applications, ranging from low-power sensor networks to the most

demanding tasks, such as voice encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-D0WD-V3 chip. The chip embedded is

designed to be scalable and adaptive. There are two CPU cores that can be

individually controlled, and the CPU clock frequency is adjustable from 80 MHz to 240

MHz. The user may also power off the CPU and make use of the low-power co-

processor to constantly monitor the peripherals for changes or crossing of thresholds.

ESP32 integrates a rich set of peripherals, ranging from capacitive touch sensors, Hall

sensors, SD card interface, Ethernet, high-speed SPI,UART, I2S and I2C.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of

applications can be targeted, and that the module is future proof: using Wi-Fi allows a

large physical range and direct connection to the internet through a Wi-Fi router, while

using Bluetooth allows the user to conveniently connect to the phone or broadcast low

energy beacons for its detection. The sleep current of the ESP32 chip is less than 5

μA, making it suitable for battery powered and wearable electronics applications.

ESP32 supports a data rate of up to 150 Mbps, and 20 dBm output power at the

antenna to ensure the widest physical range. As such the chip does offer industry-

leading specifications and the best performance for electronic integration, range,

power consumption, and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwIP; TLS 1.2 with

hardware acceleration is built in as well. Secure (encrypted) over the air (OTA) upgrade

is also supported, so that developers can continually upgrade their products even after

their release.

8.2. ESP-IDF

The Espressif IoT Development Framework (ESP-IDF for short) is a framework for

developing applications based on the Espressif ESP32. Users can develop

applications in Windows/Linux/MacOS based on ESP-IDF.

8.3. Preparation

To develop applications for ESP32-JCI-R you need:

• PC loaded with either Windows, Linux or Mac operating system

• Toolchain to build the Application for ESP32

• ESP-IDF that essentially contains API for ESP32 and scripts to operate the

toolchain

• A text editor to write programs (Projects) in C, e.g., Eclipse

• The ESP32 board itself and a USB cable to connect it to the PC 

9. Get Started with ESP32-JCI-

R

9.1. Toolchain Setup

The quickest way to start development with ESP32 is by installing a prebuilt toolchain.

Pick up your OS below and follow provided instructions.

• Windows

• Linux

• Mac OS

Depending on your experience and preferences, instead of using a prebuilt toolchain,

you may want to customize your environment. To set up the system your own way go

to section Customized Setup of Toolchain.

Once you are done with setting up the toolchain then go to section Get ESP-IDF.

9.2. Get ESP-IDF

Besides the toolchain (that contains programs to compile and build the application),

you also need ESP32 specific API / libraries. They are provided by Espressif in ESP-

IDF repository.

To get it, open terminal, navigate to the directory you want to put ESP-IDF, and clone it

using git	clone command:

ESP-IDF will be downloaded into ~/esp/esp-idf.

9.3. Set up Path to ESP-IDF

The toolchain programs access ESP-IDF using IDF_PATH environment variable. This

variable should be set up on your PC, otherwise projects will not build. Setting may be

done manually, each time PC is restarted. Another option is to set up it permanently by

defining IDF_PATH in user profile. To do so, follow instructions in Add IDF_PATH to

User Profile.

📖 Note:

We are using ~/esp directory to install the prebuilt toolchain, ESP-IDF and sample applications. You can

use different directory, but need to adjust respective commands.

cd	~/esp

git	clone	--recursive	https://github.com/espressif/esp-idf.git

📖 Note:

Do not miss the --recursive option. If you have already cloned ESP-IDF without this option, run

another command to get all the submodules:

cd	~/esp/esp-idf

git	submodule	update	--init

10. Start a Project
Now you are ready to prepare your application for ESP32. To start off quickly, we will

use hello_world project from examples directory in IDF.

Copy get-started/hello_world to ~/esp directory:

You can also find a range of example projects under the examples directory in ESP-

IDF. These example project directories can be copied in the same way as presented

above, to begin your own projects.

cd	~/esp

cp	-r	$IDF_PATH/examples/get-started/hello_world	.

📖 Note:

The ESP-IDF build system does not support spaces in paths to ESP-IDF or to projects.

11. Connect
You are almost there. To be able to proceed further, connect ESP32 board to PC,

check under what serial port the board is visible and verify if serial communication

works. If you are not sure how to do it, check instructions in Establish Serial

Connection with ESP32. Note the port number, as it will be required in the next step. 

12. Configure
Being in terminal window, go to directory of hello_world application by typing cd	~/

esp/hello_world. Then start project configuration utility menuconfig:

If previous steps have been done correctly, the following menu will be displayed:

In the menu, navigate to Serial flasher config > Default serial port to configure the

serial port, where project will be loaded to. Confirm selection by pressing enter, save

configuration by selecting <Save> and then exit application by selecting <Exit>.

Here are couple of tips on navigation and use of menuconfig:

• Use up & down arrow keys to navigate the menu.

• Use Enter key to go into a submenu, Escape key to go out or to exit.

• Type ? to see a help screen. Enter key exits the help screen.

• Use Space key, or Y and N keys to enable (Yes) and disable (No) configuration

items with checkboxes “[*]“.

• Pressing ? while highlighting a configuration item displays help about that item.

• Type / to search the configuration items.

cd	~/esp/hello_world

make	menuconfig

📖 Note:

On Windows, serial ports have names like COM1. On MacOS, they start with /dev/cu.. On Linux, they

start with /dev/tty. (See Establish Serial Connection with ESP32 for full details.)

📖 Note:

If you are Arch Linux user, navigate to SDK tool configuration and change the name of Python 2

interpreter from python to python2.

13. Build and Flash
Now you can build and flash the application. Run:

This will compile the application and all the ESP-IDF components, generate

bootloader, partition table, and application binaries, and flash these binaries to your

ESP32 board.

If there are no issues, at the end of build process, you should see messages

describing progress of loading process. Finally, the end module will be reset and

“hello_world” application will start.

If you'd like to use the Eclipse IDE instead of running make, check out Build and Flash

with Eclipse IDE.  

make	flash

esptool.py	v2.0-beta2

Flashing	binaries	to	serial	port	/dev/ttyUSB0	(app	at	offset	0x10000)...

esptool.py	v2.0-beta2

Connecting........___

Uploading	stub...

Running	stub...

Stub	running...

Changing	baud	rate	to	921600

Changed.

Attaching	SPI	flash...

Configuring	flash	size...

Auto-detected	Flash	size:	4MB

Flash	params	set	to	0x0220

Compressed	11616	bytes	to	6695...

Wrote	11616	bytes	(6695	compressed)	at	0x00001000	in	0.1	seconds	(effective	920.5	kbit/
s)...

Hash	of	data	verified.

Compressed	408096	bytes	to	171625...

Wrote	408096	bytes	(171625	compressed)	at	0x00010000	in	3.9	seconds	(effective	847.3	
kbit/s)...

Hash	of	data	verified.

Compressed	3072	bytes	to	82...

Wrote	3072	bytes	(82	compressed)	at	0x00008000	in	0.0	seconds	(effective	8297.4	kbit/
s)...

Hash	of	data	verified.

Leaving...

Hard	resetting...

14. Monitor
To see if “hello_world” application is indeed running, type make	monitor. This

command is launching IDF Monitor application:

Several lines below, after start up and diagnostic log, you should see “Hello world!”

printed out by the application.

To exit the monitor use shortcut Ctrl+].

To execute make	flash and make	monitor in one go, type make	flash	monitor.

Check section IDF Monitor for handy shortcuts and more details on using this

application.

That's all what you need to get started with ESP32!

Now you are ready to try some other examples, or go right to developing your own

applications. 

$	make	monitor

MONITOR

---	idf_monitor	on	/dev/ttyUSB0	115200	---

---	Quit:	Ctrl+]	|	Menu:	Ctrl+T	|	Help:	Ctrl+T	followed	by	Ctrl+H	---

ets	Jun		8	2016	00:22:57

rst:0x1	(POWERON_RESET),boot:0x13	(SPI_FAST_FLASH_BOOT)

ets	Jun		8	2016	00:22:57

...

...

Hello	world!

Restarting	in	10	seconds...

I	(211)	cpu_start:	Starting	scheduler	on	APP	CPU.

Restarting	in	9	seconds...

Restarting	in	8	seconds...

Restarting	in	7	seconds...

📖 Note:

If instead of the messages above, you see a random garbage, or monitor fails shortly after upload, your

board is likely using 26MHz crystal, while the ESP-IDF assumes default of 40MHz. Exit the monitor, go

back to the menuconfig, change CONFIG_ESP32_XTAL_FREQ_SEL to 26MHz, then build and flash the

application again. This is found under make menuconfig under Component config –> ESP32-specific –

> Main XTAL frequency.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without

notice.

THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,

INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS

FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT

OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of

information in this document is disclaimed. No licenses express or implied, by estoppel or

otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is

a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are

property of their respective owners, and are hereby acknowledged.

Copyright © 2018 Espressif Inc. All rights reserved.

Espressif IoT Team

www.espressif.com

	ESP32-JCI-R
	ESP-IDF
	Preparation
	Toolchain Setup
	Get ESP-IDF
	Set up Path to ESP-IDF

