FCC RF EXPOSURE REPORT

EUT	Thermal Imaging Riflescopes				
FCC ID	2AWAA-RS1				
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation)				
Exposure classification	 ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) 				
Antenna diversity	Single antenna ☐Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity				
Evaluation applied	✓ MPE Evaluation*✓ SAR Evaluation✓ N/A				

Report No.: SEFI2004062

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Cerpass Technology Corp.

Issued date : Apr. 16, 2020

Page No. : 1 of 2

Maximum Permissible Exposure

Maximum tune up tolerance

				Max.Tuneu		Antenna		
	Frequency	Peak output	Tuneuptoleranc	pPower(dB	Peak output	gain	Distance	Power density
Mode	band (MHz)	power(dBm)	e(dBm)	m)	power(mW)	(Numeric)	(cm)	(mW/cm2)
WLAN 2.4G	2412-2462	18.69	18.69±1	19.69	93.11078755	1.13	20	0.020937823

Report No.: SEFI2004062

Cerpass Technology Corp. Issued date : Apr. 16, 2020

Page No. : 2 of 2