

Report No: JYTSZB-R12-2101781

FCC REPORT

Applicant:	Eluktronics Inc
Address of Applicant:	861 Newtown Yardley Road Newtown, Pennsylvania, USA 18940
Equipment Under Test (E	EUT)
Product Name:	Wireless eSports Gaming Mouse
Model No.:	Covert Varmint
FCC ID:	2A3CGCOVERTVARMI
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	31 Aug., 2021
Date of Test:	31 Aug., to 16 Sep., 2021
Date of report issued:	17 Sep., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	17 Sep., 2021	Original

Tested by:

Date: 17 Sep., 2021

Mike.OU Test Engineer Winner Mang

Reviewed by:

Project Engineer

Date: 17 Sep., 2021

Project No.: JYTSZE2108130

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	-
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY	
5.8 LABORATORY LOCATION	-
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	-
6.6 HOPPING CHANNEL NUMBER	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A - 2.4G	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A - 2.4G	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A - 2.4G	Pass
Hopping Channel Number	15.247 (a)(1)	Appendix A - 2.4G	Pass
Dwell Time	15.247 (a)(1)	Appendix A - 2.4G	Pass
Conducted Band Edge	45 205 8 45 200	Appendix A - 2.4G	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission		Appendix A - 2.4G	Pass
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass
Remark:	1	1	

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Toot Mathadi	ANSI C63.10-2013
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Eluktronics Inc
Address:	861 Newtown Yardley Road Newtown, Pennsylvania, USA 18940
Manufacturer:	Eluktronics Inc
Address:	861 Newtown Yardley Road Newtown, Pennsylvania, USA 18940

5.2 General Description of E.U.T.

Product Name:	Wireless eSports Gaming Mouse
Model No.:	Covert Varmint
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	2 Mbits/s
Number of channel:	16
Modulation type:	GFSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-1dBi (Max.)
Power supply:	Rechargeable Li-ion Battery DC3.7V, 500mAh
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for GFSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	5	2407MHz	9	2414MHz	13	2419MHz
2	2426MHz	6	2422MHz	10	2436MHz	14	2439MHz
3	2441MHz	7	2445MHz	11	2459MHz	15	2453MHz
4	2463MHz	8	2466MHz	12	2473MHz	16	2480MHz
Remark: Channel 1, 3 &16 selected for GFSK							

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.
Padiated Emission: The same	he was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-044	03-07-2021	03-06-2022	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	N	Version: 10.50.4	0	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022		
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022		
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2108130

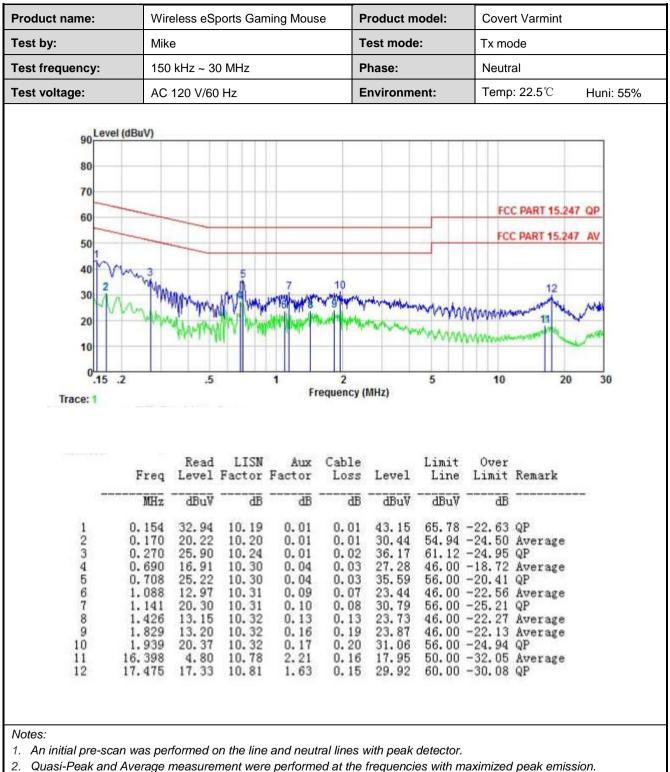
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0	

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. bewer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this in as of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an antenna is-1 dBi.	PCB antenna which permanently attached, and the best case gain of the

6.2 Conducted Emissions


Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (c	BuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logari	thm of the frequency.	
Test setup:	AUX Equipment E.U.T Test table/Insulation plane Remark E UT Equipment Under Test LISN Line Impedence Stabilization Networ Test table height=0.8m	EMI Receiver	
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order t positions of equipment 	tion network (L.I.S.N.). Th npedance for the measurir	is provides a ng equipment. main power through a ance with 50ohm the test setup and n conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for deta	ails	
Test mode:	Hopping mode		
Test results:	Pass		

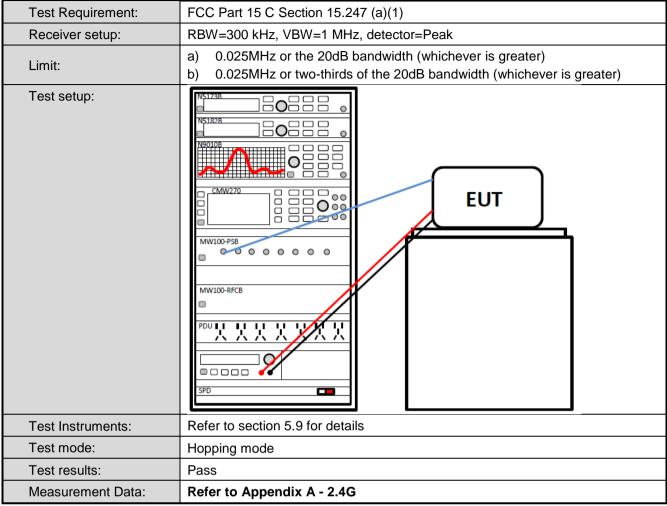
Measurement Data:

	Wireless e	Sports Gami	ng Mous	e P	roduct m	nodel:	Cove	rt Varmint		
ſest by:	Mike			Т	est mode	e:	Tx mo	ode		
Test frequency:	150 kHz ~	30 MHz		Р	hase:		Line			
fest voltage:	AC 120 V/6	60 Hz		E	nvironm	ent:	Temp	: 22.5 ℃	Huni:	55%
90 Level (d) 80 70 60 50 40 20 20 10		3	5 8 ********	10 19 10	Winantina		FC	C PART 15.		
0.15 .2 Trace: 3	.5			2 equency (M	AHz)	5	10	3	20 30	
	.5 Rea Freq Leve MHz dBu	d LISN 1 Factor F	Fre Aux		AHz) Level dBuV	5 Limit Line dBuV	Over	Remark	20 30	

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - 2.4G

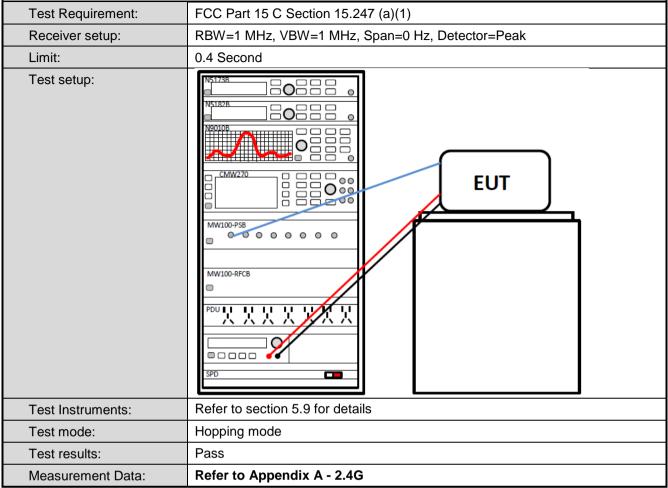
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

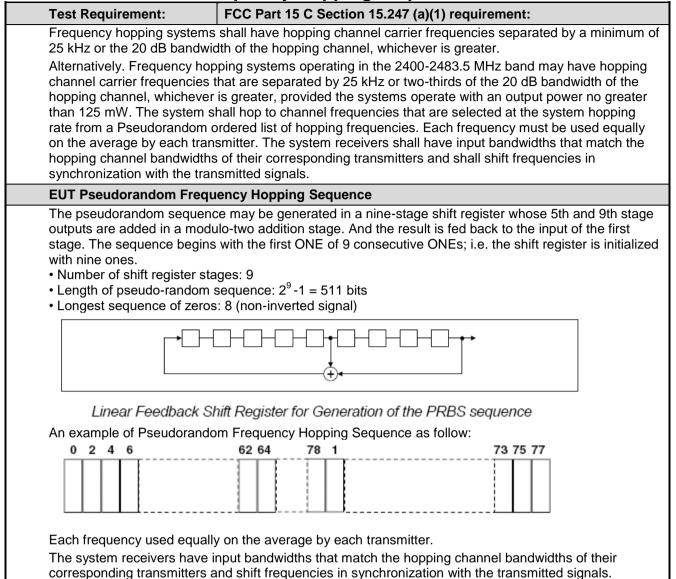
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - 2.4G

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz,
	Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - 2.4G



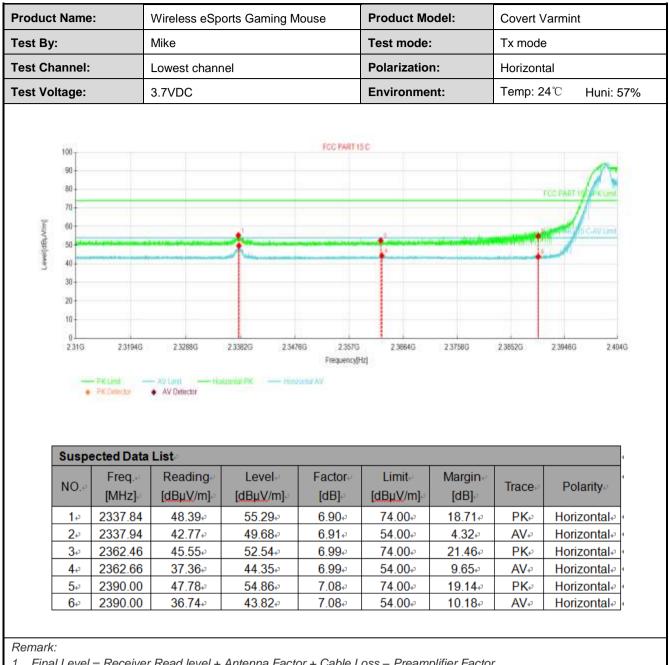
6.7 Dwell Time

6.8 Pseudorandom Frequency Hopping Sequence

6.9 Band Edge 6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - 2.4G

6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C	Section 15.2	209 a	and 15.205			
Test Frequency Range:	2310 MHz to 23	390 MHz and	d 248	33.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	V	BW	Remark
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value
	Above IGHZ	RMS		1MHz	31	MHz	Average Value
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G	H7		54.00		Av	verage Value
				74.00		F	Peak Value
Test setup:	AE united	EUT ttable)	3m Marketerer r		enna Towe		
Test Procedure:	 determine the The EUT was antenna, whi tower. The antenna ground to de horizontal an measuremen For each sus and then the the rota table maximum rea The test-rece Bandwidth w If the emission limit specified EUT would b margin would 	a meter cam e position of s set 3 meter ch was mouth height is vanter termine the id vertical point. spected emise antenna was a was turned ading. eiver system ith Maximum on level of th d, then testim re reported. d be re-teste	ber. f the ers a untec max blariz ssior as tun f fror n was n Ho ne El ong cc Othe ed or	The table was highest radiati way from the in on the top of from one mete imum value of cations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo build be stoppe	rotat ion. nterfe a vari er to fe the fi antenr s arra from 0 360 0 Detect de wa d and ssions g pea	ed 360 or rence-re able-he our meta eld strein ha are s nged to 1 meter degrees Function as 10dB I the pea s that dia k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section						
Test mode:	Non-hopping m	ode					
Test results:	Passed						

GFSK Mode:

	Name			orts Gaming N	louse	Product Mc	bael:	Covert \	ammu	
est By			Mike			Test mode:		Tx mode	9	
est Ch	annel:	:	Lowest chanr	nel		Polarizatio	n:	Vertical		
est Vo	Itage:		3.7VDC			Environme	nt:	Temp: 2	24℃ Huni:	57%
Lewei(dBLV/m)	100 90 80 70 60 50 40				FCC PART I				FEE PART IS C. D.C.	
	20 10 2.31G	2.31946 – Pic Lind – Pic Chilo –	2.3288G - AV Lanci • AV Detector	23382G 2347 Sicil PK — Velical	Frequency[H		237586	2 38520	2.3946G 2.40	04G
	20	- PKLint -	AV Lini Ve AV Detector		Frequency[H		237586	2 38520	2.3946G 2.40	04G
	20	PKLind PKDebdor	AV Lini Ve AV Detector		Frequency[H		.237596 .237596 Margin⊷ [dB],₀	2 38525	2:3946G 240	04G
	20 10 2.316	ected Data	AV Lini Ve AV Detector List.o Reading.o	Levele	Frequency() AV Factore	tz] Limit⊷	Margin≓			040
	20 10 2316 Susp NO.4	ected Data Freq.* [MHz]-2	AV Lond AV Detector Liste Readinge [dBµV/m]e	Cog FK → Valcat Levele [dBµV/m]. ²	Frequency() AV Factore [dB]-2	±] Limit⊮ [dBµV/m]⊮	Margin⊮ [dB]₽	Trace	Polarity	046
	20 10 2316 Suspe NO.4 1-2	ected Data Freq.4 [MHz]- 2329.95	AV Linti Ve AV Ortector Liste Readinge [dBµV/m]e 37.93e	Level [dBµV/m] 44.81	Frequency() Factor.e [dB].e 6.88.e	Limit.₀ [dBµV/m].₀ 54.00.₀	Margin⊮ [dB]⊮ 9.19₽	Trace -	Polarity. Vertical.	046
	20 10 0 2316 Suspe NO.4 14 24	ected Data Freq.*/ [MHz]-/ 2329.95 2330.77	- AV Cenector • AV Cenector EList.₀ Reading.₀ [dBµV/m].₀ 37.93.₀ 46.07.₀	Level↔ [dBµV/m]↔ 44.81↔ 52.95↔	Frequency() Factor [dB] 6.88 6.88 6.88	Limit. [dBµV/m] 54.00+ 74.00+	Margin⊮ [dB]⊮ 9.19₽ 21.05₽	Trace. AV. PK.	Polarity. Vertical. Vertical.	046
	20 2310 Susp NO.~ 1.~ 2.~ 3.~	ected Data Freq.4 [MHz]-2 2329.95 2330.77 2370.66	AV Lini AV Detector List Reading [dBµV/m] 37.93 46.07 37.08 2 37.08 37	Level⊮ [dBµV/m]⊮ 44.81₽ 52.95₽ 44.09₽	Frequency() Factor,-/ [dB]-/ 6.88-/ 6.88-/ 7.01-/	Limit. [dBµV/m] 54.00 74.00 54.00 54.00	Margin.⊷ [dB].∘ 9.19.∘ 21.05.∘ 9.91.∘	Trace AVe PKe AVe	Polarity Vertical Vertical Vertical	040

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

		wireless eop	orts Gaming M	louse	Product Mo	odel:	Covert V	armint/	
Test By:		Mike			Test mode:	:	Tx mode)	
Test Channe	1:	Highest channel			Polarization:		Vertical		
Test Voltage		3.7VDC			Environme	nt:	Temp: 2	4℃ Hu	uni: 57%
100 90 80 70 00 50 40				FCC PART 1	5C			PLO PART IS C.P.	
40 30 20 10 2.4780	PK Lind PK Lind	2.4524G AV Linel • AV Detector	248465 24868 Gar FK — Verkal	Frequency()	2.4912G [2]	2.4934G	2.4956G	2 4978G	256
30 20 10 2.4780	 PK Lind PK Date://cr 	Av Linti Vie Av Detector		Frequency()		2.4534G	2.4956G	2 4978G	250
30 20 10 2.4780	Pitchiller Pitchiller Pitchiller Pitchiller Pitchiller	• AV Linel Ve • AV Detector	narfik — Valcal	Frequency()	四		2.4956G	2 49785	250
30 20 10 2.4780	PKUM -	AV Linti AV Detector	Sor FK Valian Levele	Frequency()	时 Limite	24934G Margin e [dB]-2	2.4956G	24978G Polarit	
30- 20- 10- 2.4780 Susp NO.4	ected Data	• AV Lind Ve • AV Detector • List Reading [dBµV/m]	log PK — Valcat Level∉ [dBµV/m]∘	Frequency() AV Factor _e / [dB] ₁ 2	لimit⊮ [dBµV/m]⊷	Margin⊮ [dB]₀	Trace	Polarit	y +3
30 20 10 2.4780 Sust	PKUM -	AV Linti AV Detector	Sor FK Valian Levele	Frequency()	时 Limite	Margine			y.∂ 1 .∂
30- 20- 10- 2.4780 Susp NO.4	PKUM PROmeter PROmeter PROmeter PROmeter PROmeter PROmeter PROmeter PROmeter PROME	• AV Cetector • AV Cetector • List Reading [dBµV/m] • 44.19 •	Level⊮ [dBµV/m]∞ 51.88₽	Frequency() AV Factor [dB] 7.69.0	±] Limit⊷ [dBµV/m]↩ 74.00↩	Margin.∉ [dB]⊮ 22.12⊷	Trace.₀ PK⊷	Polarit Vertica	प्र⇔ श्री₽ श्री₽
30-20- 10- 2.4780 Susp NO.4 1.e ² 2.4	 Freq.4 Freq.4 [MHz]-3 2483.50 2483.50 	• AV Detector • AV Detector	Level [dBµV/m] 51.88₽ 43.82₽	Frequency() Factor [dB] 7.69 7.69	Limit. [dBµV/m] 74.00+ 54.00+	Margin [dB] 22.12 10.18	Trace.₀ PK.₀ AV.₀	Polarit Vertica Vertica	प्रब श्रेवि श्रीव्य
30 20 10 2.4780 Susp NO.4 1+2 2+3 3+3	 PK Deeds PK Deeds<	• AV Detector • AV Detector	Level⊮ [dBµV/m]⊮ 51.88₽ 43.82₽ 52.85₽	Frequency() Factor [dB] 7.69 7.69 7.73 7.75 7.7	Limite [dBµV/m]e 74.00e 54.00e 74.00e	Margin.₄ [dB]₄ 22.12₊ 10.18₊ 21.15₊	Trace.⇒ PK.↔ AV.↔ PK.↔	Polarit Vertica Vertica	y≠ । ।। ।। ।। ।। । । । । । । । । । । । ।

Product Nan	ie:	Wireless eSp	orts Gaming N	louse	Product Mo	del:	Covert Varmint		
Test By:		Mike		Test mode:		Tx mode Horizontal			
Fest Channe	l:	Highest chan	inel	Polarization	n:				
Fest Voltage	:	3.7VDC			Environme	nt:	Temp: 2	4℃ Huni: 57%	
100 _T				FCC PART 1	5C	1			
90 - 80 - 70 -					1			FCO PART 15 C-PK umi	
	/	A MARKET			the strength of the strength of the			FICE PART IS CAVLINE	
60 50 40		Madage.			desirated interaction	Advertise (Consequent		the additional concernments	
		-							
							1		
30-							1		
30- 20-									
30-	G 24802G	2.4624/3	2,4846G 2,486	8G 2.489G Frequency[2.4912G 12]	2.4934G	2.4956G	249785 256	
30 - 20 - 10 - 2.473	PKLint PKDirodor	Av Lind Av Cotector	2.48466 2.486 stunite PX — Hint	Frequency		2.4934G	2.4956G	24978G 25G	
30 - 20 - 10 - 2.473	Product Product Product	Av Linti Av Detector Liste	olaberal PX — Him	Frequency[42]		2.4956G	249786 256	
30 - 20 - 10 - 2.473	Picled Picled	Av Lind Av Cotector		Frequency		2.4934G Margin.e ² [dB]-2	2.4956G Trace+	249785 256 Polarity	
30- 20- 10- 2.478 Sus	PK Unit	• AV Onlector	Levele	Frequency(التراجيع Limite	Margine			
30- 20- 10- 2.478 Sus NO.	• Products • Products • Products • Preq.+ [MHz]-	Av Lind — the Av Detector Liste Readinge [dBµV/m]e	uuna IX — Han Level⊮ [dBμV/m]₀	Frequency Frequency Factore [dB]	Limite [dBµV/m]e	Margin.∉ [dB]⊵	Trace	Polarity⇔	
30- 20- 10- 2.478 Sus NO.	• Pronda • Pronda • Freq.+ [MHz]- 2483.50	Av Lini Av Detector List Reading [dBµV/m] 48.34	Level [dBµV/m] 56.03+	Frequency Factor [dB] 7.69.0	لنmit. [dBµV/m]، 74.00،	Margin.∉ [dB]₂ 17.97₊	Trace.∘ PK.∘	Polarity. Horizontal.	
30- 20- 10- 0- 2.478 Sus NO. 1.2 2.478	 Productor Productor Freq.+ [MHz]- 2483.50 2483.50 	AV Detector AV Detector List Reading [dBµV/m] 48.34 37.43 2	Level⊷ [dBµV/m]∞ 56.03↔ 45.12↔	Frequency(Party AV Factor e ¹ [dB]e ³ 7.69e ³ 7.69e ³	Limit. [dBµV/m]. 74.00. 54.00.	Margin.∉ [dB]₂ 17.97€ 8.88₽	Trace. PK. AV.	Polarity Horizontal Horizontal	
30- 20- 10- 2.478 Sus NO. 1.0 2.0 3.0	 Products Products Preq.+/ [MHz]-/ 2483.50 2483.50 2488.89 	AV Lord • AV Detector List Reading [dBµV/m] 48.34 37.43 47.60 •	Levele ^J [dBµV/m] _{e^J} 56.03e ^J 45.12e ^J 55.32e ^J	Frequency(Factor,-/ [dB],-/ 7.69,-/ 7.69,-/ 7.72,-/	Limite [dBµV/m]e 74.00e 54.00e 74.00e	Margin.∉ [dB]- 17.97.€ 8.88.€ 18.68.€	Trace PK AV PK	Polarity₀ Horizontal₀ Horizontal₀ Horizontal₀	

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							
Measurement Data:	Refer to Appendix A - 2.4G							

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209				
Test Frequency Range:	9 kHz to 25 GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detector	r	RBW	VBW	,	Remark
	30MHz-1GHz	Quasi-pea	ak	120kHz	300kH	lz Q	uasi-peak Value
		Peak		1MHz	3MHz	2	Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value	
Limit:	Frequenc	;y	Limit	t (dBuV/m @	⊉10m)		Remark
	30MHz-88N	ЛНz		30.0		Qua	isi-peak Value
	88MHz-216	MHz		33.5		Qua	isi-peak Value
	216MHz-960	MHz		36.0		Qua	isi-peak Value
	960MHz-10	GHz		44.0		Qua	si-peak Value
	Frequenc	у	Lim	nit (dBuV/m @	@3m)		Remark
	Above 1G	H7		54.0			erage Value
				74.0		F	Peak Value
	EUT Tur Tal Ground Above 1GHz	hie A				RF Test Receiver	
			Test Rec	3m Ground Reference Plane ceiver	Pre-		
Test Procedure:	1GHz)/1.5m (below 1GH 360 degree	n(above 1G lz)or 3 mete s to determi	GHz) er cha ine th	above the amber(abov he position o	ground a /e 1GHz) of the hig	at a 10). The ta ghest ra	ble 0.8m(below meter chamber able was rotated diation. rs(above 1GHz)

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2108130

	away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:		Wireless eSports Gaming Mouse			e Pr	Product Model:		Covert Varmint				
Fest B	ſest By:		Mike	Mike			Те	Test mode: Polarization:		Tx mode Vertical & Horizontal		
Fest F	reque	ncy:	30 MHz	30 MHz ~ 1 GHz								
Fest Voltage:			3.7VDC	3.7VDC			Er	Environment:		Temp: 24°C Huni: 57		Huni: 57%
						Full	Spectrum					
		45 T								- CC PART	15.247	10 m
		40										
		30-										
	Level in dBµV/										*	
	vel in	20								الله الم المحقق ال		
	_	1.0		* -	*		*					
		10	in the second	Wły								00000
		0						r				
30M			50	60	80	100M F	20 requency		400	500	800	1G

Critical Freqs.

-	Frequency↓	MaxPeak↓	Limit↓	Margin↓	Height↓	Pole	Azimuth↓	Corr.↓
	(MHz)↩	(dBµ V/m)∛	(dBµV/m)⊮	(dB)↩	(cm) <i>⊷</i>		(deg)↩	(dB/m)↩
-	52.407000 ↔	10.08 ₽	30.00↩	19.92 ₽	100.0 ₽	V	284.0↩	-15.9e
-	62.592000 ↔	10.67 ₽	30.00↩	19.33 ₽	100.0 ₽	V	265.0↩	-16.9e
-	71.128000∉	11.04 ₽	30.00↩	18.96 ↩	100.0 ₽	V	239.0∉	-18.5e
-	149.407000 ↔	10.75 ₽	33.50↩	22.75↩	100.0↩	H₽	94.0 ∻	-15.3 ₽
-	687.563000 ↔	23.04 ₽	36.00↩	1 2.96 ↩	100.0 ₽	V	20.0↩	-5.1e
•	864.006000 ↔	27.61₽	36.00↩	<mark>8.39</mark> ₽	100.0 ₽	H₽	13.0↩	- 1.9 @

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	61.11	-9.60	51.51	74.00	22.49	Vertical
4804.00	64.24	-9.60	54.64	74.00	19.36	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	56.17	-9.60	46.57	54.00	7.43	Vertical
4804.00	62.64	-9.60	53.04	54.00	0.96	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	le	1	-
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4882.00	59.36	-9.05	50.31	74.00	23.69	Vertical
4882.00	60.31	-9.05	51.26	74.00	22.74	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4882.00	55.20	-9.05	46.15	54.00	7.85	Vertical
4882.00	56.17	-9.05	47.12	54.00	6.88	Horizontal
			annel: Highest ch tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	58.30	-8.45	49.85	74.00	24.15	Vertical
4960.00	61.80	-8.45	53.35	74.00	20.65	Horizontal
		Dete	ctor: Average Va	alue		
Frequency	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
(MHz)	(abav)					
(MHz) 4960.00	54.00	-8.45	45.55	54.00	8.45	Vertical

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.