

FCC ID: 2ADPX-FGEN4 Report No.: T190508W02-RP IC: 12548A-FGEN4

Page: 1 / 37 Rev.: 01

FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.231+ IC RSS-210 Issue 9
Trade name	GIOBERT SPA
Product name	Keyfob F173
Model No.	Ferrari Gen4 keyfob
Operation Freq.	TX 433.66~433.92MHz; RX 125kHz
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Tested by:

Komil Ismi

Kevin Tsai Deputy Manager

ally. Hong

Dally Hong Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document company be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

Page: 2 / 37 Rev.: 01

Revision History

Rev.	Issue Date	Revisions	Effect page	Revised By
00	June 28, 2019	Initial Issue	ALL	Allison Chen
01	November 27, 2019	See the following note Rev.(01)	P.21-22, P.24	Allison Chen

Rev.(01)

1. Modify test data in section 4.3.4.

2. Modify test limit in section 4.4.1.

Table of contents

1.	GENERAL INFORMATION	ł
1.1	EUT INFORMATION	ł
1.2	EUT CHANNEL INFORMATION	;
1.3	ANTENNA INFORMATION	;
1.4	MEASUREMENT UNCERTAINTY6	;
1.5	FACILITIES AND TEST LOCATION	,
1.6	INSTRUMENT CALIBRATION7	,
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	\$
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	;
2.	TEST SUMMERY)
3.	DESCRIPTION OF TEST MODES 10)
3.1	THE WORST MODE OF OPERATING CONDITION10)
3.2	THE WORST MODE OF MEASUREMENT10)
3.3	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS 11	
3.4	EUT DUTY CYCLE	\$
4.	TEST RESULT14	ł
4.1	AC POWER LINE CONDUCTED EMISSION 14	ŀ
4.2	EMISSION BANDWIDTH	;
4.3	FIELD STRENGTH OF FUNDAMENTAL	\$
4.4	RADIATION UNWANTED EMISSION	\$
-	OPERATION RESTRICTION	;

Page: 4 / 37 Rev.: 01

1. GENERAL INFORMATION

1.1 EUT INFORMATION

FCC Applicant	GIOBERT SPA Via Pavia 82 Rivoli, Torino, 10098 Italy				
IC Applicant	Giobert S.P.A				
	Via Pavia 82 Rivoli Italy				
FCC Manufacturer	GIOBERT SPA Via Pavia 82 Rivoli, Torino, 10098 Italy				
IC Manufacturer	Giobert S.P.A Via Pavia 82 Rivoli Italy				
Factory	GIOBERT SPA Via Pavia 82 Rivoli, Torino, 10098 Italy				
Equipment	Keyfob F173				
Model Name	Ferrari Gen4 keyfob				
Model Discrepancy	N/A				
Received Date	May 8, 2019				
Date of Test	June 3 ~ 12, 2019				
Periodic operation	 (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation (3) Periodic transmissions at regular predetermined intervals are not permitted. (4) Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec. 				
Power Operation	Power from battery: DC 3V				
Operation Frequency	TX 433.66~433.92MHz ; RX 125kHz				
S/W Version	FERRARI_PEPS_GEN4_ID_433_2buttons_Metal				
H/W Version	7.0943.01				

Page: 5 / 37 Rev.: 01

1.2 EUT CHANNEL INFORMATION

Frequency Range	ASK: 433.92MHz FSK: 433.66MHz
Modulation Type	ASK & FSK
Bandwidth	ASK: 72.3589kHz FSK: 78.1476kHz
Number of Channels	1 channel

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
🔀 1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.3 ANTENNA INFORMATION

Antenna Type	Internal PCB antenna (433.92MHz) 3D Coil (125kHz)		
Antenna Gain	-17.95 dBi		
Antenna Connector	N/A		

Page: 6 / 37 Rev.: 01

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 37 Rev.: 01

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT doesn't connect to AC Main Source direct.
Radiation	Dally Hong	-
RF Conducted	Dally Hong	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Equipment	Equipment Manufacturer Model S/N Cal Date Cal Due						
Signal Analyzer	R&S	FSV 40	101073	09/27/2018	09/26/2019		
Software	N/A						

3M 966 Chamber Test Site					
Equipment	Manufacturer	Model S/N		Cal Date	Cal Due
Bilog Antenna	Sunol Sciences	JB3	A030105	07/13/2018	07/12/2019
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	02/26/2019	02/25/2020
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/26/2019	02/25/2020
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/30/2019	01/29/2020
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	08/20/2018	08/19/2019
High Pass Filter	SOLVANG TECHNOLOGY INC.	STI15	9923	02/26/2019	02/25/2020
Loop Ant	COM-POWER	AL-130	121051	03/22/2019	03/21/2020
Pre-Amplifier	EMEC	EM330	060609	02/26/2019	02/25/2020
Pre-Amplifier	HP	8449B	3008A00965	02/26/2019	02/25/2020
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/29/2019	05/28/2020
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Software	e3 6.11-20180413				

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 8 / 37 Rev.: 01

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

There are no accessories and support equipment be used during the test.

EUT Accessories Equipment						
No. Equipment Brand Model Series No. FCC ID						
	N/A					

		Supp	ort Equipment		
No.	Equipment	Brand	Model	Series No.	FCC ID
	N/A				

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231, IC RSS-210, IC RSS-Gen Rules.

Page: 9 / 37 Rev.: 01

2. TEST SUMMERY

FCC Standard Sec.	IC Standard Sec.	Chapter	Test Item	Result
15.203	RSS-GEN Sec. 8.3	1.3	Antenna Requirement	Pass
15.207	RSS-GEN Sec. 8.8	4.1	AC Power-line Conducted Emission	Not applicable
15.231(c)	RSS-210 A.1.3	4.2	Emission Bandwidth	Pass
15.231(b)	RSS-210 A.1.2	4.3	Fundamental Emission	Pass
15.209(b)	RSS-GEN Sec. 8.9	4.4	Transmitter Radiated Emission	Pass
15.231(a)(1)	RSS-210 A.1.1(a)	4.5	Operation Restriction	Pass

Page: 10 / 37 Rev.: 01

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	433.92MHz & 433.66MHz
RF Filed strength	ASK Peak: 75.60 dBuv/m Average : 70.99 dBuv/m FSK Peak: 76.30 dBuv/m Average : 71.69 dBuv/m
Development Field etway with a sufferment of Assessment	

Remark: Field strength performed Average level at 3m.

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G		
Test Condition	Band edge, Emission for Unwanted and Fundamental	
Power supply Mode	Mode 1: EUT power by Battery	
Worst Mode	🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4	
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 	
Worst Polarity	Horizontal 🗌 Vertical	

Radiated Emission Measurement Below 1G		
Test Condition	Radiated Emission Below 1G	
Power supply Mode	Mode 1: EUT power by Battery	
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4	

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report

Page: 11 / 37 Rev.: 01

3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

According to FCC 15.231(b), 15.231(e),

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

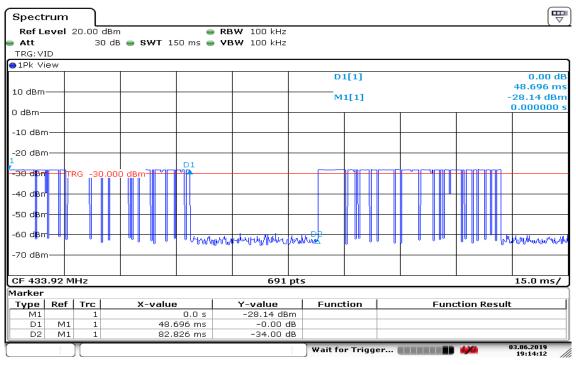
Page: 12 / 37 Rev.: 01

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.



Page: 13 / 37 Rev.: 01

3.4 EUT DUTY CYCLE

<u>433.92MHz</u>

	Duty	Cycle	
TX ON (ms)	TX All(ms)	Duty Cycle	Duty Factor(dB)
48.696	82.826	58.79%	-4.61

Date: 3.JUN.2019 19:14:13

Notes:

- 1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by 20 log (Time_(on) / [Period or 100 ms whichever is the lesser])
- 2. The EUT transmits for a Time(on) of 48.696 milliseconds.

20 log (Time_(on) / [Period or 100 ms whichever is the lesser]).

20 log (48.696/82.826) = -4.61dB

Page: 14 / 37 Rev.: 01

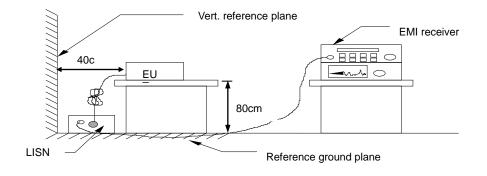
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a), RSS-Gen Sec.8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete

4.1.3 Test Setup

4.1.4 Test Result

Page: 15 / 37 Rev.: 01

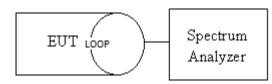
4.2 EMISSION BANDWIDTH

4.2.1 Test Limit

According to §15.231(c), RSS-210 A.1.3,

Limit

☑ 70 MHz – 900 MHz : Fc * 0.25 %
 ☑ Above 900 MHz : Fc * 0. 5 %


4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.9.2,

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=20KHz, VBW=30KHz, Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the 20dB Bandwidth.

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. SA set RBW = $1\% \sim 5\%$ OBW, VBW = three times the RBW and Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth (99%).

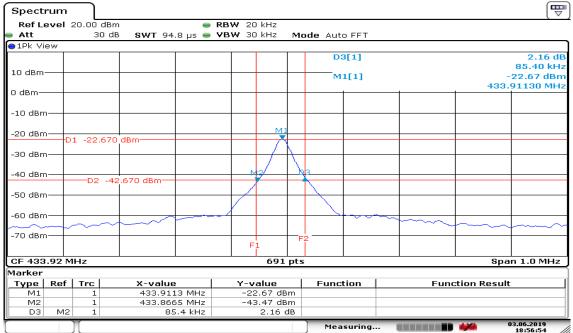
4.2.3 Test Setup

4.2.4 Test Result

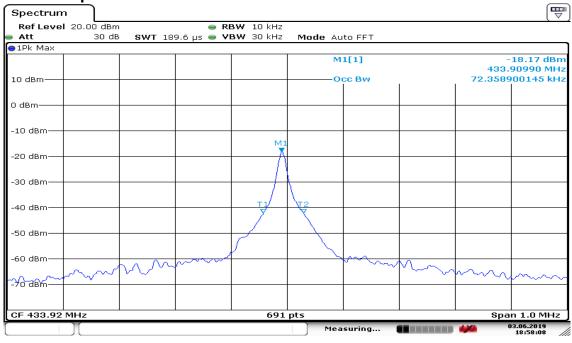
ASK

	Spectrum Bandwidth			
Frequency (MHz)	20dB Bandwidth (KHz)	20dB Bandwidth Limits (MHz)	99% Occupied BW (KHz)	99% Bandwidth Limits (MHz)
433.92	85.4	1.0848	72.3589	1.0848

FSK


Spectrum Bandwidth				
Frequency (MHz)	20dB Bandwidth (KHz)	20dB Bandwidth Limits (MHz)	99% Occupied BW (KHz)	99% Bandwidth Limits (MHz)
433.66	79.6	1.08415	78.1476	1.08415

Page: 16 / 37 Rev.: 01

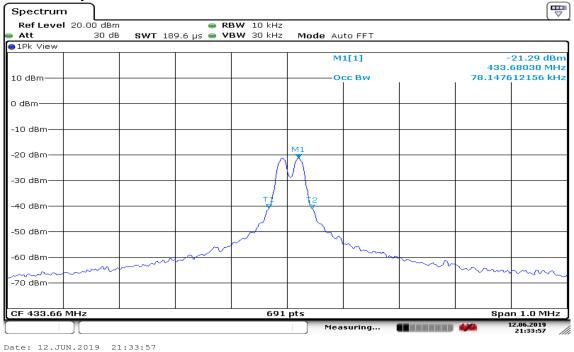

Test Data

ASK 20dB Bandwidth

Date: 3.JUN.2019 18:56:55

99% Occupied BW

Date: 3.JUN.2019 18:58:09



Page: 17 / 37 Rev.: 01

19 dBm	Auto FFT D3[1] 0.14 79.60 k 79.60 k 433.65130 M 433.65130 M
1Pk View 10 dBm 0 dBm -10 dBm -20 dBm 01 -21.250 dBm -30 dBm 10 lBm	D3[1] 0.14 (79.60 ki M1[1] -21.25 dB
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -20 dBm -21 -21.250 dBm -30 dBm -30 dBm	79.60 ki
10 dBm 0 dBm -10 dBm -20 dBm D1 -21.250 dBm -30 dBm -30 dBm -20 dBm	79.60 ki
0 dBm	M1[1] -21.25 dB
0 dBm	
-10 dBm -20 dBm D1 -21.250 dBm M1	
-20. dBm	
-20. dBm	
-20 dBm D1 -21.250 dBm	
-30 dBm	
Ma In	
Ma In Ma	
-40 dBm D2 -41.250 dBm	
D2 -41.250 dBm	
-50 dBm	<u>~</u>
-60 dBm	
-70 dBm	
F1	
CF 433.66 MHz 691 pts	Span 1.0 MH
Marker	· · · · · · · · · · · · · · · · · · ·
Type Ref Trc X-value Y-value Fui	unction Function Result
M1 1 433.6513 MHz -21.25 dBm	
M2 1 433.6253 MHz -41.23 dBm D3 M2 1 79.6 kHz 0.14 dB	

Date: 12.JUN.2019 21:34:40

99% Occupied BW

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 18 / 37 Rev.: 01

4.3 FIELD STRENGTH OF FUNDAMENTAL

4.3.1 Test Limit

According to §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

According to RSS-210 A.1.2

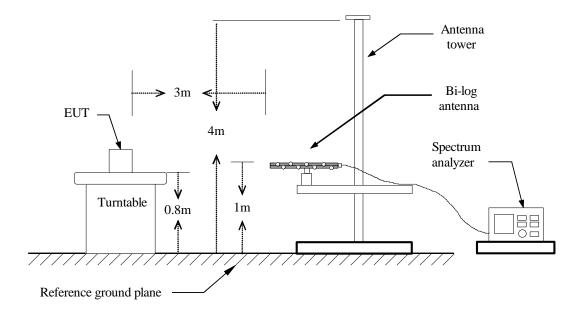
Fundamental Frequency (MHz), Excluding Restricted Frequency Bands Specified in RSS-Gen	Field Strength of the Fundamental Emissions (μV/m at 3 m)
70-130	1,250
130-174	1,250 to 3,750*
174-260 (Note 1)	3,750
260-470 (Note 1)	3,750 to 12,500*
Above 470	12,500

* Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength (μ V/m) = (56.82 × f)-6136 For 260-470 MHz: Field Strength (μ V/m) = (41.67 × f)-7083

Note 1: Frequency bands 225-328.6 MHz and 335.4-399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

4.3.2 Test Procedure


Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5

clause 4.1.4	\boxtimes 4.1.4.2.2: Measurement Peak value. \square 4.1.4.2.3: Duty cycle ≥ 100%. \boxtimes 4.1.4.2.4: Measurement Average value.
clause 4.1.4	

Page: 19 / 37 Rev.: 01

4.3.3 Test Setup

Page: 20 / 37 Rev.: 01

4.3.4 Test Result

ASK

Field Strength						
Frequency (MHz)	Fundamental (dBuV/m) at 3m	Limit (dBuV/m) at 3m	Margin (dB)	Axis/Pol.	Remark	
433.92	70.99	80.82	-9.83	X/H	AVG	

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

- 2. Average result = Peak result + Duty factor = 75.60 dBuV/m -4.61= 70.99dBuV/m
- 3. 260MHz ~ 470MHz limit is 41.6667 * (Frequency, MHz) 7083.3333

Limit = 41.6667 * (433.92 MHz) - 7083.3333 =10996.68116 (uV/m) dBuv/m = 20 Log(uV/m) = 20 Log (10996.68116 uV/m)= 80.82dBuV/m

FSK

Field Strength						
Frequency (MHz)	Fundamental (dBuV/m) at 3m	Limit (dBuV/m) at 3m	Margin (dB)	Axis/Pol.	Remark	
433.66	71.69	80.82	-9.13	X/H	AVG	

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

2. Average result = Peak result + Duty factor = 76.30 dBuV/m -4.61= 71.69dBuV/m

3. 260MHz ~ 470MHz limit is 41.6667 * (Frequency, MHz) – 7083.3333

Limit = 41.6667 * (433.66 *MHz*) – 7083.3333

=10985.84782 (uV/m)

dBuv/m = 20 Log(uV/m) = 20 Log (10985.84782 uV/m)= 80.82dBuV/m

Page: 21 / 37 Rev.: 01

Test Data

ASK

	Test Mode:		TX-433MHz	Ter	np/Hum	24(°C)/ 51%RI		
	Test Item	F	Fundamental		Test Date 2019		2019/06/06	
ŀ	Axis/Polarize	×	K-Plane/Hor.	Test	Engineer	Dally H	long	
	Detector	F	Peak & AVG	Test	Voltage:	3Vo	bc	
116.99	Level (dBuV/m)							
110		· · · · · · · · · · · · · · · · · · ·						
90								
70								
50	~~~~~							
30								
10								
0	432.42	433.02	433.62 Frequency	434.22 (MHz)	4	134.82	435.42	
	_			-				
No	Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	
1	433.92	Peak	79.83	-4.23	75.60	100.82	-25.22	
*	433.92	Average	-	-	70.99	80.82	-9.83	
lote: Avera	age result = Pea	ak result + Dut	y Factor = 75.60 dB	uV/m -4.61	= 70.99 dBu\	//m		

FSK

	Test Mode:		TX-433MHz	Ten	np/Hum	24(°C)/ 5	1%RH
	Test Item	F	Fundamental		Test Date		6/06
A	xis/Polarize	×	X-Plane/Hor.		Engineer	Dally H	long
	Detector	F	Peak & AVG	Test	Voltage:	3Vo	bc
106 99 I	Level (dBuV/m)						
100							
80							
60						+	
00				1		m	· · · ·
	manne						· ····
40							
20	·			·			
o	433.4474	433.532	433.618	433.703	4	33.788	433.8727
			Frequency	(MHz)			
No	Frequency	Detector	Spectrum	Factor	Actual	Limit	Margir
	(MHz)	Mode PK/QP/AV	Reading Level (dBuV)	(dB)	FS (dBuV/m)	@3m (dBuV/m)	(dB)
1	433.66	Peak	80.54	-4.24	76.30	100.82	-24.52
*	433.66	Average	-	-	71.69	80.82	-9.13
ote:			y Factor = 76.30 dB			11	

Page: 23 / 37 Rev.: 01

4.4 RADIATION UNWANTED EMISSION

4.4.1 Test Limit

According to §15.231(b) and §15.209, §15.205

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

According to RSS-210 A1.2 and RSS-GEN Sec. 8.9

Unwanted emissions shall comply with the general field strength limits specified in RSS-Gen or 10 times below the fundamental emissions field strength limit in table as below, whichever is less stringent.

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

According to §15.231(b)

¹Linear interpolations.

Below 30MHz

_	Field Strength						
Frequency (MHz)	(µV/m)	(dBµV/m)	Measurement Distance (meter)	(dBµV/m)	Measurement Distance (meter)		
0.009 - 0.490	2400/F(kHz)	48.52 – 13.80	300	128.52–104.84	3		
0.490 - 1.705	24000/F(kHz)	33.80 - 22.97	30	73.80– 62.97	3		
1.705 – 30.0	30	29.54	30	69.54	3		

Above 30MHz

Frequency	Field Strength		Measurement Distance
(MHz)	(µV/m)	(dBµV/m)	(meter)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 24 / 37 Rev.: 01

According to RSS-Gen, Section 8.9 and 8.10.

<u>RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> ^(Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement Distance (m)
9-490 kHz ^{Note}	6.37/F (F in kHz)	300
490-1,705 kHz	63.7/F (F in kHz)	30
1.705-30 MHz	0.08	30

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector..

Page: 25 / 37 Rev.: 01

4.4.2 Test Procedure

Test method Refer as ANSI 63.10:2013

Unwanted Emission	 ☐ clause 4.1.4.2.2: Measurement Peak value. ☐ clause 4.1.4.2.3: Duty cycle ≥ 100%. ☑ clause 4.1.4.2.4: Measurement Average value.
-------------------	---

Radiated Emission	 ➢ clause 6.4: below 30 MHz and test distance is 3m. ➢ clause 6.5: below 30 MHz -1 GHz and test distance is 3m. ➢ clause 6.6: Above 30 MHz and test distance is 3m.
-------------------	--

- 1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

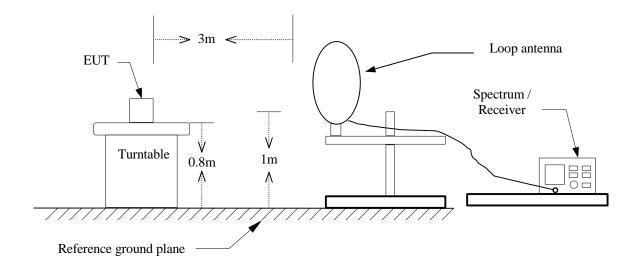
(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz,

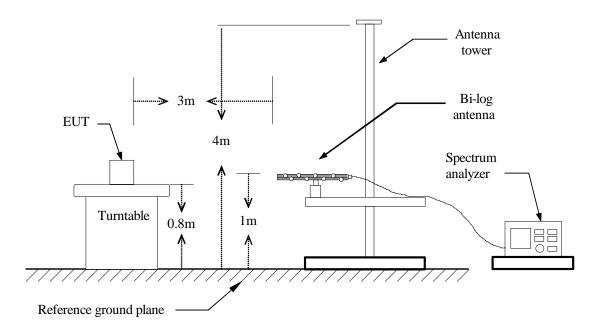
7. Repeat above procedures until the measurements for all frequencies are complete.

Remark.

1. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

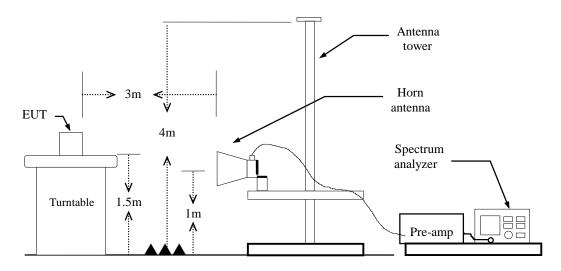

2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

3. Note * : Duty factor reference to section 3.4 EUT DUTY CYCLE. Average result = Peak result + Duty factor



Page: 26 / 37 Rev.: 01

4.4.3 Test Setup <u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1 GHz</u>

Page: 27 / 37 Rev.: 01

<u>Above 1 GHz</u>

4.4.4 Test Result

<u>Pass.</u>

Page: 28 / 37 Rev.: 01

Test Data

Below 1GHz

ASK

Test Mo	de:	TX-	433MHz		Temp/	Hum	24(°C)/ 51%RH
Test Ite	m	Belo	ow 1GHz		Test E	Date	2019/06/	
Polariz	e	V	ertical		Test En	gineer	D	ally Hong
Detecto	or		Peak		Test Vo	ltage:		3Vdc
100 Level (dBuV	/m)							
90					· · · · · · · · · · · · · · · · · · ·			
80					· · · · · · · · · · · · · · · · · · ·			
70								
60	, , , , , , , , , , , , , , , , , , ,							
50	· · · · · · · · · · · · · · · · · · ·							
40	2	3	4		· · · · · · · · · · · · · · · · · · ·		56	
30					· · · · · · · · · · · · · · · · · · ·			
20								
10								
030	224.		418.		612.		806.	1000
				quency (N	(III~)			

Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
		· · · · · ·		· · · · · ·		
75.59	Peak	46.75	-14.79	31.96	40.00	-8.04
161.92	Peak	42.98	-10.23	32.75	43.50	-10.75
299.66	Peak	40.24	-8.25	31.99	46.00	-14.01
468.44	Peak	38.87	-3.44	35.43	46.00	-10.57
792.42	Peak	37.82	1.03	38.85	46.00	-7.15
867.84	Peak	35.32	2.92	38.24	46.00	-7.76

Test Mod	de:	TX-433MHz		emp/Hum	24(°C)/ 51%RH	
Test Iter	m	Below 1GHz Test Date		2019/	06/06	
Polariz	e	Horizontal		st Engineer	r Dally Hong	
Detecto	or	Peak	Te	st Voltage:	3V	dc
100	m)					
90				 		
80			· · · · · · · · · · · · · · · · · · ·	 		
70				 		
60				 		
50				 		
40	2 -	4 5		 		
30	2 3			 		
20				 		
10				 		
0 <mark></mark>	224.	418.	61	2	806.	1000
			uency (MHz)	-		1000
Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margiı (dB)
59.10	Peak	47.18	-15.96	31.22	40.00	-8.78
133.79	Peak	43.85	-9.31	34.54	43.50	-8.96
199.75	Peak	42.05	-9.29	32.76	43.50	-10.74
308.39	Peak	42.31	-7.97	34.34	46.00	-11.66
485.90	Peak	38.48	-2.90	35.58	46.00	-10.42
	Peak	36.19	2.92	39.11	46.00	-6.89

Page: 30 / 37 Rev.: 01

Below 1GHz

178.41

471.35

867.32

973.81

Peak

Peak

Peak

Peak

FSK

Test Mod	de:	TX-433MHz	Te	emp/Hum	24(°C)/ 5	52%RH
Test Ite	m	Below 1GHz	1	est Date	2019/06/06	
Polariz	e	Vertical		st Engineer	Dally	
Detecto	or	Peak	Te	st Voltage:	3V	dc
100 Level (dBuV/	m)					
90					· · · · · · · · · · · · · · · · · · ·	
80						
70					· · · · · · · · · · · · · · · · · · ·	
60					· · · · · · · · · · · · · · · · · · ·	
50					· · · · · · · · · · · · · · · · · · ·	
40	i	4			5	
30 1 2	3		····		·····	
20			· · · · · · · · · · · · · · · · · · ·	 		
10				 		
0 <mark>30</mark>	224.	418.	61	2.	806.	1000
		Freq	uency (MHz)			
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margi
(MHz)	Mode PK/QP/AV	Reading Level (dBuV)	(dB)	FS (dBuV/m)	@3m (dBuV/m)	(dB)
57.16	Peak	44.71	-15.91	28.80	40.00	-11.20
122.15	Peak	37.67	-8.78	28.89	43.50	-14.6 [°]

-11.17

-3.24

2.88

5.63

30.85

34.68

38.03

42.87

43.50

46.00

46.00

54.00

-12.65

-11.32

-7.97

-11.13

42.02

37.92

35.15

37.24

Test Mod	de:	TX-433MHz	Te	emp/Hum	24(°C)/ 5	52%RH
Test Iter	m	Below 1GHz	1	est Date	2019/06/06	
Polariz	e	Horizontal	Tes	st Engineer	Dally I	Hong
Detecto	or	Peak	Te	st Voltage:	3V	dc
100	m)					
90						
80						
70				 		
60						
50						
40				.5	6	
30	2	4				
20						
10						
030	224.	418. Fred	61. uency (MHz)	2.	806.	1000
Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margir (dB)
56.19	Peak	45.45	-15.96	29.49	40.00	-10.51
128.94	Peak	39.69	-8.95	30.74	43.50	-12.76
287.05	Peak	37.32	-8.41	28.91	46.00	-17.09
450.98	Peak	39.70	-3.92	35.78	46.00	-10.22
636.25	Peak	39.22	-0.30	38.92	46.00	-7.08
030.23					46.00	-6.98

Page: 32 / 37 Rev.: 01

Above 1GHz

ASK

Test Mo	de:	TX-433MHz	1	ſemp/Hum	24(°C)/ :	51%RH
Test Ite	m	Above 1GHz		Test Date	2019/	06/06
Polariz	e	Vertical	Те	st Engineer	Dally	Hong
Detect	or	Peak	Te	est Voltage:	3V	dc
100 Level (dBuV	/m)	- i i	1			
90						
80	· · · · · · · · · · · · · · · · · · ·					
70	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
60	· · · · · · · · · · · · · · · · · · ·					
50						
40	1 1 1 1 1 1 1 1 1 1		 			
30	1 1 1 7					
20						
10						
0 <mark></mark> 1000	1800.	2600. Freq	34 uency (MHz)	00.	4200.	5000
Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margir (dB)
1301.76	Peak	54.03	-8.11	45.92	74.00	-28.08

Remark:

N/A

Test Mod	de:	TX-433MHz	Т	emp/Hum	24(°C)/	51%RH
Test Iter	m	Above 1GHz	-	Test Date	2019/	06/06
Polariz	e	Horizontal		st Engineer	Dally	Hong
Detecto	or	Peak	Te	st Voltage:	3V	dc
100 Level (dBuV/	m)]
90						
80					· · · · · · · · · · · · · · · · · · ·	
70	 			 		
60					·	
501					· · · · · · · · · · · · · · · · · · ·	
40						
30						
20						
10				 		
0 <mark></mark>	1800.	2600.	34	00.	4200.	5000
			uency (MHz)			
Frequency	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margir
(MHz)	PK/QP/AV	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
1301.76	Peak	57.72	-8.11	49.61	74.00	-24.39
N/A						
						1

Remark:

Page: 34 / 37 Rev.: 01

Above 1GHz

FSK

Test Mod	de:	TX-433MHz	TX-433MHz Temp/Hum 24(°C)/ 52%F		52%RH							
Test Iter	m			Above 1GHz Test Date 20		Above 1GHz Test Date 2019		Above 1GHz Test Date 2019/0		Above 1GHz Test Date		06/06
Polariz	e	Vertical	Te	st Engineer	Dally	Hong						
Detecto	or	Peak	Te	est Voltage:	3V	dc						
100	m)											
90	 											
80												
70												
60			1									
501												
40												
30												
20												
10												
0 <mark>1000</mark>	1800.	2600.		00.	4200.	5000						
		Freq	uency (MHz)									
Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margir (dB)						
1300.98	Peak	55.15	-8.11	47.04	74.00	-26.96						
N/A												

Remark:

Test Mod	le:	TX-433MHz		Temp/Hum	24(°C)/ :	52%RH
Test Iter	n	Above 1GHz		Test Date	2019/06/0	
Polarize	е	Horizontal	Te	est Engineer	Dally	Hong
Detecto	or	Peak	Т	est Voltage:	3V	dc
100 Level (dBuV/	m)					
90						
80						
70	 					
60		· · · · · · · · · · · · · · · · · · ·				
50					· · · · · · · · · · · · · · · · · · ·	
40					· · · · · · · · · · · · · · · · · · ·	
30						
20				i i 		
10						
0 <mark></mark> 1000	1800.	2600. Freq	3 uency (MHz)	400.	4200.	5000
Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margir (dB)
1300.98	Peak	59.15	-8.11	51.04	74.00	-22.96
N/A						
	1	·		ł		1

Remark:

Page: 36 / 37 Rev.: 01

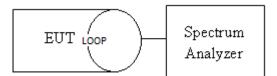
4.5 OPERATION RESTRICTION

4.5.1 Test Limit

15.231(a)(1),

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

RSS-210 A1.2,

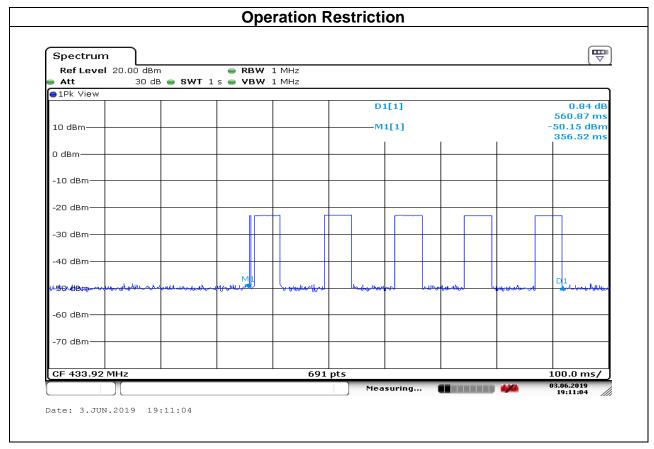

However, devices that are designed for limited use for thepurpose of initial programming, reprogramming or installing, and not forregular operations, may operate for up to 5 seconds, provided such devices are used only occasionally in connection with each unit being programmed or installed.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1MHz, VBW=1MHz, Detector = Peak, Trace mode = Max hold, Sweep = 1s. Measure

4.5.3 Test Setup


4.5.4 Test Result

Dwell Time									
Operation condition Pulse On Time (ms) Limits Result									
manually operated	560.87	5 sec	PASS						

Page: 37 / 37 Rev.: 01

Test Data

- End of Test Report -