FCC Part 15.407 RSS-247 Issue 2, February 2017 Dynamic Frequency Selection TEST REPORT For # YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD. No.666 Hu'an Rd, Huli District Xiamen City, Fujian, P.R. China FCC ID: T2C-T34W IC: 10741A-T34W Report Type:Product Type:Original ReportClassic IP Phone Report Producer: Coco Lin Report Number: RXZ230919076RF01 Report Date : <u>2023-10-25</u> Reviewed By: Andy Shih Prepared By: Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) 70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C. Tel: +886 (2) 2647 6898 Fax: +886 (2) 2647 6895 www.bacl.com.tw # **Revision History** | Revision | No. | Report Number | Issue Date | Description | Author/
Revised by | |----------|--------------|------------------|------------|-----------------|-----------------------| | 0.0 | RXZ230919076 | RXZ230919076RF01 | 2023-10-25 | Original Report | Coco Lin | Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 2 of 25 # TABLE OF CONTENTS | 1 | Ge | eneral Information | 4 | |---|------------|--|----| | | 1.1 | Product Description for Equipment under Test (EUT) | | | | 1.2 | Objective | | | | 1.3 | Test Methodology | | | | 1.4 | Statement | | | | 1.5
1.6 | Measurement Uncertainty | | | | 1.7 | Test Facility | | | 2 | | rest Tuelity restern Test Configuration | | | _ | • | | | | | 2.1 2.2 | Description of Test Configuration | | | | 2.2 | Equipment Modifications EUT Software | | | | 2.3 | Support Equipment List and Details | | | | 2.4 | External Cable List and Details | | | | 2.5 | Block Diagram of Test Setup | | | 3 | Su | ımmary of Test Results | | | ٠ | | · | | | 4 | Te | est Equipment List and Details | 9 | | 5 | Ap | pplicable Standards | 10 | | | 5.1 | DFS Requirement | 10 | | | 5.2 | DFS Measurement System | | | | 5.3 | Test Procedure | 14 | | 6 | Te | est Result | 15 | | | 6.1 | Description of EUT | 15 | | | 6.2 | Channel Loading | | | | 6.3 | Radar Waveform Calibration | | | 7 | Ch | hannel Move Time and Channel Closing Transmission Time | 17 | | | 7.1 | Test Procedure | 17 | | | 7.2 | Test Results | | | 8 | No | on-Occupancy Period | 24 | | | 8.1 | Test Procedure | | | | 8.2 | Test Result | | #### 1 General Information 1.1 Product Description for Equipment under Test (EUT) | Amalicant | YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD. | |---------------------------|--| | Applicant | No.666 Hu'an Rd, Huli District Xiamen City, Fujian, P.R. China | | Brand(Trade) Name | Yealink | | Product (Equipment) / PMN | Classic IP Phone | | Main Model Name | SIP-T34W | | HVIN | T34W | | Emagyamay Damas | 5250 MHz ~ 5350 MHz, 5470 MHz ~ 5725 MHz | | Frequency Range | Note: frequency range 5600-5650MHz can't be used in Canada | | Modulation Technique | OFDM | | | PCB Antenna | | Antenna Specification | Band 2 Gain: -0.08 dBi | | | Band 3 Gain: 2.03 dBi | | Power Operation | \int AC 120V/60Hz \int Adapter I/P: 100-240V 50~60Hz 0.2A, O/P: 5Vdc, 1.2A \int By AC Power Cord \int PoE: DC 48V/ 0.27A | | (Voltage Range) | ☐ DC from Battery ☐ DC from Adapter ☐ Host System | | Received Date | 2023/9/19 | | Date of Test | 2023/9/22~2023/10/24 | ^{*}All measurement and test data in this report was gathered from production sample serial number: RXZ230919076-01 (Assigned by BACL, New Taipei Laboratory). Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 4 of 25 #### 1.2 Objective This report is prepared on behalf of YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD. in accordance with Part 2 Subpart J, Part 15 Subparts E of the Federal Communication Commission's rules and RSS-247 Issue 2, February 2017 and RSS-GEN Issue 5, February 2021 Amendment 2 of the Innovation, Science and Economic Development Canada. No.: RXZ230919076RF01 The tests were performed in order to determine compliance with FCC Part 15.407(h) and RSS-247 Issue 2, February 2017 Radar Detection Function of Dynamic Frequency Selection (DFS). #### 1.3 Test Methodology FCC CFR 47 Part15.407 (h) RSS-247 Issue 2, February 2017 FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 #### 1.4 Statement Decision Rule: No, (The test results do not include MU judgment) It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification. Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results. #### 1.5 Measurement Uncertainty | Parameter | Uncertainty | |-------------|-------------| | DFS Level | ±3.06 dB | | Time Domain | ±0.21 s | | Temperature | ±0.79 °C | | Humidity | ±0.44 % | Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 5 of 25 | Test Site Test Date | | Temperature (°C) | Relative
Humidity
(%) | ATM Pressure (hPa) | Test
Engineer | |---------------------|----------------------|------------------|-----------------------------|--------------------|------------------| | DFS | 2023/9/22~2023/10/24 | 24.7~25.9 | 51~52 | 1010 | Jing | No.: RXZ230919076RF01 #### 1.7 Test Facility The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on 70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C. Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: TW3732. # 2 System Test Configuration #### 2.1 Description of Test Configuration The EUT was configured for testing in a normal mode which was provided by the manufacturer. No.: RXZ230919076RF01 #### 2.2 Equipment Modifications No modification was made to the EUT. #### 2.2 EUT Software EUT the firmware version is "124.86.254.135" #### 2.3 Support Equipment List and Details | Description | Manufacturer | Model Number | |-------------|--------------|-----------------| | Adapter | Yealink | YLPS051200B1-US | | NB | DELL | E6410 | | AP Router | NETGEAR | R7800 | Master device FCC ID: PY315100319 #### 2.4 External Cable List and Details N/A #### 2.5 Block Diagram of Test Setup Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 7 of 25 # 3 Summary of Test Results The following result table represents the list of measurements required under the CFR §47 Part 15.407(h) and RSS-247, Issue 2, February 2017, KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02 No.: RXZ230919076RF01 | Items | Items Description of Test | | |--------------------------|---|----------------| | Detection Bandwidth | UNII Detection Bandwidth | Not applicable | | Performance Requirements | Initial Channel Availability Check Time (CAC) | Not applicable | | Check | Radar Burst at the Beginning of the CAC | Not applicable | | | Radar Burst at the End of the CAC | Not applicable | | | Channel Move Time | Compliant | | In-Service Monitoring | Channel Closing Transmission Time | Compliant | | | Non-Occupancy Period | Compliant | | Radar Detection | Statistical Performance Check | Not applicable | Not applicable: the EUT is a client unit without radar detection. # 4 Test Equipment List and Details | Description | Manufacturer | Model | Serial
Number | Calibration
Date | Calibration Due Date | |----------------------|--------------------|--------------|------------------|---------------------|----------------------| | Spectrum
Analyzer | Rohde &
Schwarz | FSV40 | 101939 | 2023/3/23 | 2024/3/22 | | Signal
Generator | Rohde &
Schwarz | SMBV100A | 261748 | 2023/2/10 | 2024/2/9 | | Cable | UTIFLEX | UFA210A | 9435 | 2022/10/3 | 2023/10/2 | | Cable | UTIFLEA | UFAZIUA | 9433 | 2023/10/2 | 2024/9/30 | | Cable | UTIFLEX | UFA210A | 6679 | 2022/10/3 | 2023/10/2 | | Cable | UTIFLEA | OFA210A 0079 | 00/9 | 2023/10/2 | 2024/9/30 | | Attenuator | MCL | BW-S10W5+ | 1419 | 2023/2/2 | 2024/2/1 | | Attenuator | MCL | BW-S20W5+ | 1430 | 2023/6/6 | 2024/6/4 | | Power Splitter | Mini-Circuits | ZFRSC-183-S+ | S F448201614 | 2023/6/6 | 2024/6/4 | | Power Splitter | Mini-Circuits | ZFRSC-183-S+ | S F112701513 | 2023/2/1 | 2024/1/31 | No.: RXZ230919076RF01 ^{*}Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements ## 5 Applicable Standards #### 5.1 DFS Requirement CFR §47 Part 15.407(h) and RSS-247, Issue 2, February 2017 FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 Table 1: Applicability of DFS Requirements Prior to Use of a Channel No.: RXZ230919076RF01 | Requirement | Operational Mode | | | | |---------------------------------|------------------|---|--------------------------------------|--| | | Master | Client
Without
Radar
Detection | Client
With
Radar
Detection | | | Non-Occupancy Period | Yes | Not
required | Yes | | | DFS Detection Threshold | Yes | Not
required | Yes | | | Channel Availability Check Time | Yes | Not
required | Not
required | | | U-NII Detection Bandwidth | Yes | Not
required | Yes | | Table 2: Applicability of DFS requirements during normal operation | Requirement | Operational Mode | | | |-----------------------------------|---|-----------------------------------|--| | | Master Device or Client
with Radar Detection | Client Without
Radar Detection | | | DFS Detection Threshold | Yes | Not required | | | Channel Closing Transmission Time | Yes | Yes | | | Channel Move Time | Yes | Yes | | | U-NII Detection Bandwidth | Yes | Not required | | | Additional requirements for devices with multiple bandwidth modes | Master Device or Client
with Radar Detection | Client Without
Radar Detection | |---|---|-----------------------------------| | U-NII Detection Bandwidth and | All BW modes must be | Not required | | Statistical Performance Check | tested | | | Channel Move Time and Channel | Test using widest BW mode | Test using the widest | | Closing Transmission Time | available | BW mode available | | | | for the link | | All other tests | Any single BW mode | Not required | Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection No.: RXZ230919076RF01 | Maximum Transmit Power | Value | |--|-------------------------| | | (See Notes 1, 2, and 3) | | EIRP ≥ 200 milliwatt | -64 dBm | | EIRP < 200 milliwatt and | -62 dBm | | power spectral density < 10 dBm/MHz | | | EIRP < 200 milliwatt that do not meet the power spectral | -64 dBm | | density requirement | | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. **Note 2:** Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. Table 4: DFS Response Requirement Values | Parameter | Value | |-----------------------------------|------------------------| | Non-occupancy period | Minimum 30 minutes | | Channel Availability Check Time | 60 seconds | | Channel Move Time | 10 seconds | | | See Note 1. | | Channel Closing Transmission Time | 200 milliseconds + an | | | aggregate of 60 | | | milliseconds over | | | remaining 10 second | | | period. | | | See Notes 1 and 2. | | U-NII Detection Bandwidth | Minimum 100% of the U- | | | NII 99% transmission | | | power bandwidth. See | | | Note 3. | Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. **Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. Table 5 - Short Pulse Radar Test Waveforms | Radar | Pulse | PRI | Number of Pulses | Minimum | Minimum | |-------------|-------------|--|---|---------------|----------| | Type | Width | (µsec) | | Percentage of | Number | | | (µsec) | | | Successful | of | | | | | | Detection | Trials | | 0 | 1 | 1428 | 18 | See Note 1 | See Note | | | | | | | 1 | | 1 | 1 | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A | Roundup $ \left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right) \right\} $ | 60% | 30 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggregate (| Radar Types | 1-4) | | 80% | 120 | Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B. For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses would be Roundup $\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$ No.: RXZ230919076RF01 | Pulse Repetition
Frequency
Number | Pulse Repetition Frequency
(Pulses Per Second) | Pulse Repetition
Interval
(Microseconds) | |---|---|--| | 1 | 1930.5 | 518 | | 2 | 1858.7 | 538 | | 3 | 1792.1 | 558 | | 4 | 1730.1 | 578 | | 5 | 1672.2 | 598 | | 6 | 1618.1 | 618 | | 7 | 1567.4 | 638 | | 8 | 1519.8 | 658 | | 9 | 1474.9 | 678 | | 10 | 1432.7 | 698 | | 11 | 1392.8 | 718 | | 12 | 1355 | 738 | | 13 | 1319.3 | 758 | | 14 | 1285.3 | 778 | | 15 | 1253.1 | 798 | | 16 | 1222.5 | 818 | | 17 | 1193.3 | 838 | | 18 | 1165.6 | 858 | | 19 | 1139 | 878 | | 20 | 1113.6 | 898 | | 21 | 1089.3 | 918 | | 22 | 1066.1 | 938 | | 23 | 326.2 | 3066 | The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections. | Radar Type | Number of Trials | Number of Successful
Detections | Minimum Percentage
of Successful | | |--|------------------|------------------------------------|-------------------------------------|--| | | | | Detection | | | 1 | 35 | 29 | 82.9% | | | 2 | 30 | 18 | 60% | | | 3 | 30 | 27 | 90% | | | 4 | 50 | 44 | 88% | | | Aggregate $(82.9\% + 60\% + 90\% + 88\%)/4 = 80.2\%$ | | | | | Table 6 - Long Pulse Radar Test Waveform | Radar
Type | Pulse
Width
(μsec) | Chirp
Width
(MHz) | PRI
(µsec) | Number
of Pulses
per <i>Burst</i> | Number
of <i>Bursts</i> | Minimum
Percentage of
Successful | Minimum
Number of
Trials | |---------------|--------------------------|-------------------------|---------------|---|----------------------------|--|--------------------------------| | 5 | 50-100 | 5-20 | 1000-
2000 | 1-3 | 8-20 | Detection
80% | 30 | No.: RXZ230919076RF01 Table 7 - Frequency Hopping Radar Test Waveform | Radar
Type | Pulse
Width
(µsec) | PRI
(µsec) | Pulses
per
Hop | Hopping
Rate
(kHz) | Hopping
Sequence
Length | Minimum
Percentage of
Successful | Minimum
Number of
Trials | |---------------|--------------------------|---------------|----------------------|--------------------------|-------------------------------|--|--------------------------------| | | | | | | (msec) | Detection | | | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | #### 5.2 DFS Measurement System BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem. #### **5.3** Test Procedure A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. #### 6 Test Result #### 6.1 Description of EUT The EUT operates in 5250-5350 MHz and 5470-5725 MHz range. The rated output power of master device is >23 dBm (EIRP), therefore the required interference threshold level is -64 dBm, the required radiated threshold at antenna port is -64dBm. Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. No.: RXZ230919076RF01 The calibrated radiated DFS detection threshold level is set to -64+(Master anttenna gain:)= Band 2: -64+1.11= -62.89 dBm. Band 3:-64+1.61=-62.39 dBm #### 6.2 Channel Loading WLAN traffic is generated by software "Lan Test20", software is used by IP and Frame based systems for loading the test channel during the In service compliance testing of the U-NII device. Data pakes streamed from the Access Point to the Client using the software "Lan Test20". Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 15 of 25 #### 6.3 Radar Waveform Calibration #### Radar Type 0 #### 5290 MHz: Date: 22.SEP.2023 18:05:02 #### 5530 MHz: Date: 22.SEP.2023 17:09:48 Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 16 of 25 ### 7 Channel Move Time and Channel Closing Transmission Time #### 7.1 Test Procedure Perform type 0 short pulse radar waveform. The aggregate channel closing transmission time is calculated as follows: No.: RXZ230919076RF01 Aggregate Transmission Time = N*Dwell Time N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8001) #### 7.2 Test Results | Frequency
(MHz) | Bandwidth
(MHz) | Radar Type | Results | |--------------------|--------------------|------------|-----------| | 5290 | 80 | Type 0 | Compliant | | 5530 | 80 | Type 0 | Compliant | Please refer to the following tables and plots. Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 17 of 25 #### 5290 MHz #### Type 0 radar channel move time result: | Item | Time (s) | Limit (s) | |-------------------|----------|-----------| | Channel move time | 0 | 10 | Date: 24.OCT.2023 12:58:35 # Type0 radar channel closing transmission time result: | Item | Time (ms) | Limit (ms) | |---------------------------|-----------|------------| | Closing Transmission Time | 0 | 60 | Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 19 of 25 #### 5530 MHz Type 0 radar channel move time result: | Item | Time (s) | Limit (s) | |-------------------|----------|-----------| | Channel move time | 0 | 10 | Date: 24.OCT.2023 13:25:08 # Type0 radar channel closing transmission time result: | Item | Time (ms) | Limit (ms) | |---------------------------|-----------|------------| | Closing Transmission Time | 0 | 60 | Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 22 of 25 # 8 Non-Occupancy Period #### 8.1 Test Procedure Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time) No.: RXZ230919076RF01 #### 8.2 Test Result | Frequency(MHz) | Bandwidth (MHz) | Spectrum Analyzer Display | |----------------|-----------------|-----------------------------------| | 5290 | 80 | No transmission within 30 minutes | | 5530 | 80 | No transmission within 30 minutes | Please refer to the following plots. #### 5290 MHz Date: 23.SEP.2023 12:46:37 #### 5530 MHz Date: 23.SEP.2023 12:01:19 ***** END OF REPORT *****