
Test Report

Report No.:	MTi240905007-01E1
Date of issue:	2024-09-20
Applicant:	Sunstar Digi CO., LTD
Product name:	TWS Earphones
Model(s):	SX-216, EK-E216, 216, MINISO-SX216, SX-220, SX-221, SX-219
FCC ID:	2AEEF-SX216

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumn	nary of Test Result	8
3	Test F	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	f test equipment	10
5	Evalu	ation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	
	-	phs of the test setup	
	-	phs of the EUT	
		A: 20dB Emission Bandwidth	
Арр	pendix	B: Maximum conducted output power	38
		C: Carrier frequency separation	
Арр	pendix	D: Time of occupancy	43
Арр	pendix	E: Number of hopping channels	48
Арр	pendix	r F: Band edge measurements	50
Арр	pendix	G: Conducted Spurious Emission	53

Test Result Certification						
Applicant:	Sunstar Digi CO., LTD					
Address:	2-3 Floor, F Building, Guanlong 1st Industrial Zone, Xili Town, Nanshan District Shenzhen, China					
Manufacturer:	Sunstar Digi CO., LTD					
Address:	2-3 Floor, F Building, Guanlong 1st Industrial Zone, Xili Town, Nanshan District Shenzhen, China					
Product description						
Product name:	TWS Earphones					
Trademark:	ANCwear					
Model name:	SX-216					
Series Model(s):	EK-E216, 216, MINISO-SX216, SX-220, SX-221, SX-219					
Standards:	47 CFR Part 15.247					
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020					
Date of Test	Date of Test					
Date of test:	2024-09-12 to 2024-09-14					
Test result:	Pass					

Test Engineer	•	James Qin
		(James Qin)
Reviewed By	••	Dowid. Cee
		(David Lee)
Approved By	•	(con chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	TWS Earphones
Model name:	SX-216
Series Model(s):	EK-E216, 216, MINISO-SX216, SX-220, SX-221, SX-219
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: DC 5V Battery: DC 3.7V, 35mAh
Accessories:	N/A
Hardware version:	20240903_v0.4
Software version:	2306-73D-V1
Test sample(s) number:	MTi240905007-01S1001
RF specification	
Bluetooth version:	V5.3
Operating frequency range:	2402-2480MHz
Channel number:	79
Modulation type:	GFSK, π/4-DQPSK
Antenna(s) type:	Ceramic
Antenna(s) gain:	2.8dBi
Decorintion of toot	•

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK
Mode2	TX-π/4-DQPSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

Page 6 of 58

Report No.: MTi240905007-01E1

102412302432502452702472112413312433512453712473122414322434522454722474132415332435532455732475142416342436542456742476152417352437552457752477162418362438562458762478172419372439572459772479182420382440582460782480192421392441592461								
12 2414 32 2434 52 2454 72 2474 13 2415 33 2435 53 2455 73 2475 14 2416 34 2436 54 2456 74 2476 15 2417 35 2437 55 2457 75 2477 16 2418 36 2438 56 2458 76 2478 17 2419 37 2439 57 2459 77 2479 18 2420 38 2440 58 2460 78 2480	10	2412	30	2432	50	2452	70	2472
13 2415 33 2435 53 2455 73 2475 14 2416 34 2436 54 2456 74 2476 15 2417 35 2437 55 2457 75 2477 16 2418 36 2438 56 2458 76 2478 17 2419 37 2439 57 2459 77 2479 18 2420 38 2440 58 2460 78 2480	11	2413	31	2433	51	2453	71	2473
14 2416 34 2436 54 2456 74 2476 15 2417 35 2437 55 2457 75 2477 16 2418 36 2438 56 2458 76 2478 17 2419 37 2439 57 2459 77 2479 18 2420 38 2440 58 2460 78 2480	12	2414	32	2434	52	2454	72	2474
15 2417 35 2437 55 2457 75 2477 16 2418 36 2438 56 2458 76 2478 17 2419 37 2439 57 2459 77 2479 18 2420 38 2440 58 2460 78 2480	13	2415	33	2435	53	2455	73	2475
16 2418 36 2438 56 2458 76 2478 17 2419 37 2439 57 2459 77 2479 18 2420 38 2440 58 2460 78 2480	14	2416	34	2436	54	2456	74	2476
17 2419 37 2439 57 2459 77 2479 18 2420 38 2440 58 2460 78 2480	15	2417	35	2437	55	2457	75	2477
18 2420 38 2440 58 2460 78 2480	16	2418	36	2438	56	2458	76	2478
	17	2419	37	2439	57	2459	77	2479
19 2421 39 2441 59 2461	18	2420	38	2440	58	2460	78	2480
	19	2421	39	2441	59	2461	-	-

Test Channel List

Operation Band: 2400-2483.5 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)	
(MHz)	(MHz)	(MHz)	(MHz)	
1	2402	2441	2480	

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	10	10	10
π/4-DQPSK	10	10	10

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list						
Description Model Serial No. Manufacturer						
/	/					
Support cable list						
Description	Length (m)	From	То			
1	1	/	/			

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
3	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
4	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
5	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
6	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: The device is a DC power supply and does not apply to conducted emissions.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due		
	Channel Separation Number of Hopping Frequencies Dwell Time Emissions in non-restricted frequency bands Occupied Bandwidth							
	Wideband Radio		nducted Output					
1	Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19		
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20		
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20		
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20		
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20		
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20		
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19		
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20		
		Band edge Emissions in frequ	emissions (Radi uency bands (ab					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16		
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19		
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20		
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16		
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20		
		Emissions in freq	uency bands (be	elow 1GHz)				
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10		
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22		
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19		

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

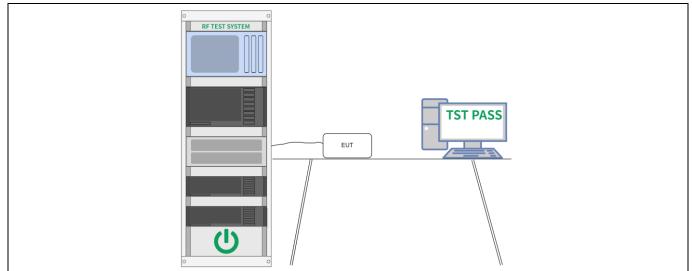
Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

6.1 Occupied Bandwidth

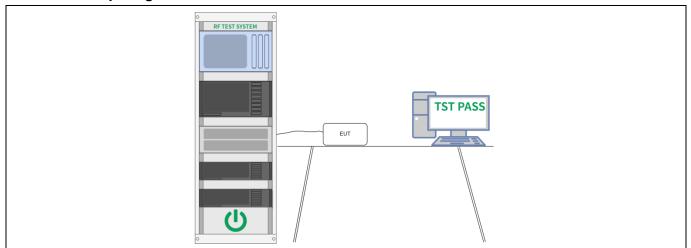

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2020, section 7.8.6, For occupied bandwidth measurements, use the procedure in 6.9.3. Frequency hopping shall be disabled for this test. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be at least three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max-hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the lower frequency. The proces is reported in addition to the plot(s).

6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mod		Mode	e1, Mode2			
Final test mode: Mode		e1, Mode2				

6.1.2 Test Setup Diagram:

6.1.3 Test Data:


6.2 Maximum Conducted Output Power

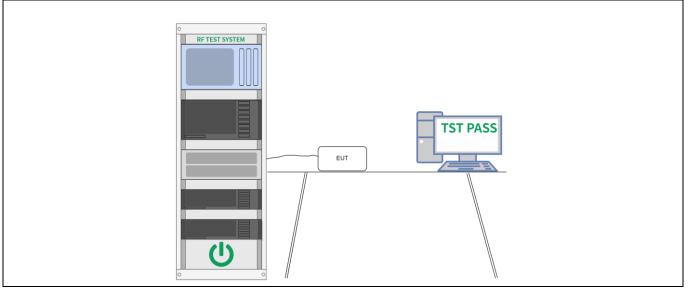
Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. b) RBW > 20 dB bandwidth of the emission being measured. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow trace to stabilize. h) Use the marker-to-peak function to set the marker to the peak of the emission. i) The indicated level is the peak output power, after any corrections for external attenuators and cables. j) A spectral plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.2.1 E.U.T. Operation:

Operating Envi	Operating Environment:					
Temperature:	23 °C	23 °C Humidity: 55 % Atmospheric Pressure: 101 kPa				
Pre test mode: Mo		Mode	e1, Mode2			
Final test mode: Mod		e1, Mode2				

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Channel Separation

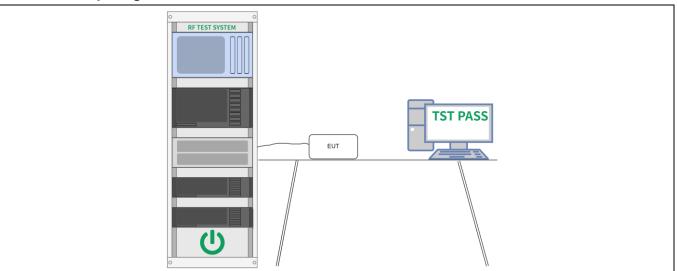
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode		e1, Mode2				
Final test mode: Mode		e1, Mode2				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize.
	all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

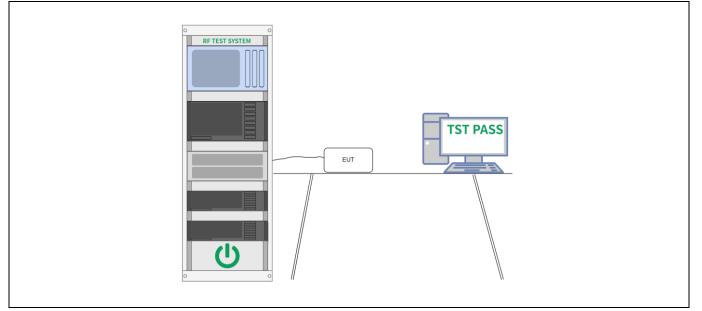
Operating Envi	ronment:					
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

6.5 Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission.
	The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.
	The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest dwell time with the minimum number of channels.
	Use the following spectrum analyzer settings to determine the dwell time per hop:
	 a) Span: Zero span, centered on a hopping channel. b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop. c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this. d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel. e) Detector function: Peak. f) Trace: Clear-write, single sweep. g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between these two markers.
	To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be



sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.
The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3 / 0.5 \times 10$, or 60 hops.
The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

6.5.1 E.U.T. Operation:

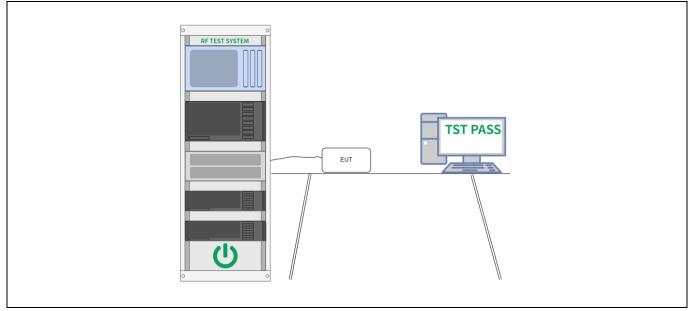
Temperature:25 °CHumidity:55 %	Atmospheric Pressure: 101 kPa
Pre test mode: Mode1, Mode2	
Final test mode: Mode1, Mode2	

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

6.6 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 7.8.7.1 General considerations To demonstrate compliance with the relative out-of-band emissions requirements conducted spurious emissions shall be measured for the transmit frequencies, per 5.5 and 5.6, and at the maximum transmit powers. Frequency hopping shall be disabled for this test with the exception of measurements at the allocated band-edges which shall be repeated with hopping enabled.
	Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The frequency range of testing shall span 30 MHz to 10 times the operating frequency and this may be done in a single sweep or, to aid resolution, across a number of sweeps. The resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector.
	The limit is based on the highest in-band level across all channels measured using the same instrument settings (resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector). To help clearly demonstrate compliance a display line may be set at the required offset (typically 20 dB) below the highest in-band level. Where the highest in-band level is not clearly identified in the out-of-band measurements a separate spectral plot showing the in-band level shall be provided.
	When conducted measurements cannot be made (for example a device with integrated, non-removable antenna) radiated measurements shall be used. The reference level for determining the limit shall be established by maximizing the field strength from the highest power channel and measuring using the resolution and video bandwidth settings and peak detector as described above. The field strength limit for spurious emissions outside of restricted-bands shall then be set at the required offset (typically 20 dB) below the highest in-band level. Radiated measurements will follow the standards measurement procedures described in Clause 6 with the exception that the resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector. Note that use of wider measurement bandwidths are acceptable for measuring the spurious emissions provided that the peak detector is used and that the measured value of spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine compliance.



7.8.7.2 Band-edges Compliance with a relative limit at the band-edges (e.g., -20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.
For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.
For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.

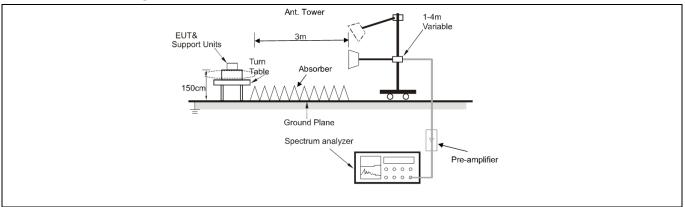
6.6.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	24 °C		Humidity:	58 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

6.7 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sec	ction 6.10.5.2	

6.7.1 E.U.T. Operation:

Operating Env	ironment					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1, Mode2			
Final test mode	e:			re-test mode w ded in the repo	vere tested, only the data only the data on the data of the data o	of the worst mode
Note:			·	•		

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode2 /	Polarizatio	on: Horizonta	al / CH: L						
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
	1	2310.000	48.77	-4.83	43.94	74.00	-30.06	peak	-
	2	2310.000	38.93	-4.83	34.10	54.00	-19.90	AVG	_
	3	2390.000	53.29	-4.31	48.98	74.00	-25.02	peak	_
	4 *	2390.000	44.40	-4.31	40.09	54.00	-13.91	AVG	-

Mode2 / Polarization: Vertical / CH: L

<u>, 7</u>	FUlan	zalio								
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		2310.000	48.38	-4.83	43.55	74.00	-30.45	peak	
	2		2310.000	38.75	-4.83	33.92	54.00	-20.08	AVG	_
	3		2390.000	49.19	-4.31	44.88	74.00	-29.12	peak	
	4	*	2390.000	39.68	-4.31	35.37	54.00	-18.63	AVG	

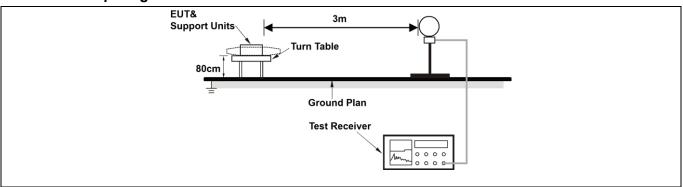
No. Mk. Free	Reading q. Level	Correct Factor	Measure- ment	Limit	Over	
MHz	z dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1 2483.50	00 56.06	-4.21	51.85	74.00	-22.15	peak
2 2483.50	00 42.32	-4.21	38.11	54.00	-15.89	AVG
3 2500.00	00 53.94	-4.10	49.84	74.00	-24.16	peak
4 * 2500.00	00 44.32	-4.10	40.22	54.00	-13.78	AVG

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	49.02	-4.21	44.81	74.00	-29.19	peak
2		2483.500	39.58	-4.21	35.37	54.00	-18.63	AVG
3		2500.000	48.87	-4.10	44.77	74.00	-29.23	peak
4	*	2500.000	39.51	-4.10	35.41	54.00	-18.59	AVG

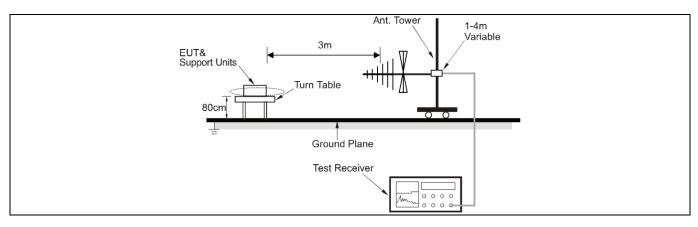
6.8 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sec	ction 6.6.4	

6.8.1 E.U.T. Operation:

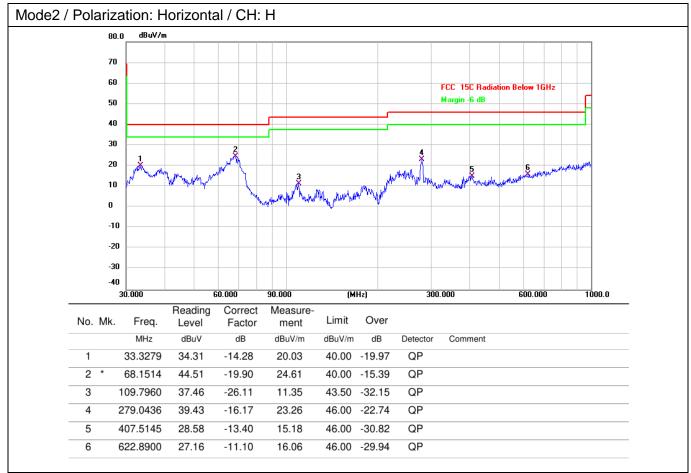

Operating Env	ironment					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:			re-test mode w ded in the repo	vere tested, only the data ort	of the worst mode
Mater						

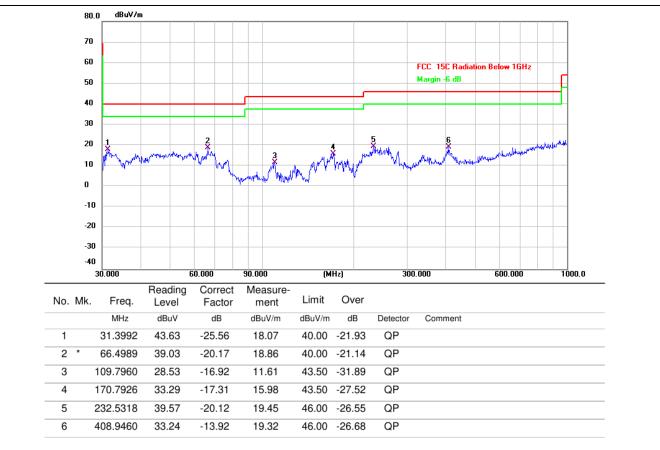
Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

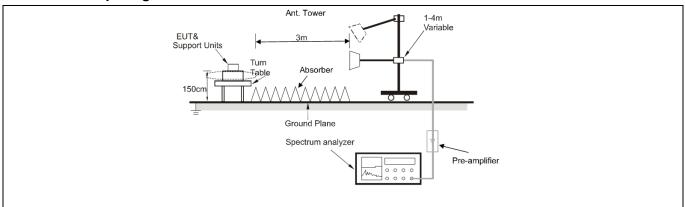
6.8.2 Test Setup Diagram:





6.8.3 Test Data:

Mode2 / Polarization: Vertical / CH: H


6.9 Radiated emissions (above 1GHz)

Test Requirement:	-	nissions which fall in the rest comply with the radiated em 5(c)).`	-
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 I hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sec	ction 6.6.4	

6.9.1 E.U.T. Operation:

Operating Env	ironment					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mod	e:			re-test mode w ded in the repo	vere tested, only the data ort	of the worst mode
attenuated mo	re than 2	0 dB b	elow the lim	its are not rep	itude of spurious emission orted. d only the worst-case rest	

6.9.2 Test Setup Diagram:

6.9.3 Test Data:

Mode2 /	Polari	zatio	n: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	46.25	0.53	46.78	74.00	-27.22	peak
	2		4804.000	39.83	0.53	40.36	54.00	-13.64	AVG
	3		7206.000	42.52	7.90	50.42	74.00	-23.58	peak
	4		7206.000	36.67	7.90	44.57	54.00	-9.43	AVG
	5		9608.000	42.92	8.85	51.77	74.00	-22.23	peak
	6	*	9608.000	36.63	8.85	45.48	54.00	-8.52	AVG

Mode2 /	Polarization:	Vertical / C	CH: L
1110000			···· 🗆

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4	4804.000	43.04	0.53	43.57	74.00	-30.43	peak
2	4	4804.000	37.03	0.53	37.56	54.00	-16.44	AVG
3		7206.000	42.77	7.90	50.67	74.00	-23.33	peak
4		7206.000	36.67	7.90	44.57	54.00	-9.43	AVG
5	ę	9608.000	42.75	8.85	51.60	74.00	-22.40	peak
6	* (9608.000	36.74	8.85	45.59	54.00	-8.41	AVG

Mode2 / Polarization: Horizontal / CH: M Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dB Detector 1 4882.000 42.76 0.57 43.33 74.00 -30.67 peak 2 4882.000 36.91 0.57 37.48 54.00 -16.52 AVG 3 7323.000 42.87 7.57 50.44 74.00 -23.56 peak 4 7323.000 36.79 7.57 44.36 54.00 -9.64 AVG 5 9764.000 43.55 9.33 52.88 74.00 -21.12 peak 6 * 9764.000 37.26 9.33 46.59 54.00 -7.41 AVG										
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 1 4882.000 42.76 0.57 43.33 74.00 -30.67 peak 2 4882.000 36.91 0.57 37.48 54.00 -16.52 AVG 3 7323.000 42.87 7.57 50.44 74.00 -23.56 peak 4 7323.000 36.79 7.57 44.36 54.00 -9.64 AVG 5 9764.000 43.55 9.33 52.88 74.00 -21.12 peak	Mode2 /	Polariz	zatio	n: Horizonta	al / CH: M					
14882.00042.760.5743.3374.00-30.67peak24882.00036.910.5737.4854.00-16.52AVG37323.00042.877.5750.4474.00-23.56peak47323.00036.797.5744.3654.00-9.64AVG59764.00043.559.3352.8874.00-21.12peak		No.	Mk.	Freq.	•			Limit	Over	
2 4882.000 36.91 0.57 37.48 54.00 -16.52 AVG 3 7323.000 42.87 7.57 50.44 74.00 -23.56 peak 4 7323.000 36.79 7.57 44.36 54.00 -9.64 AVG 5 9764.000 43.55 9.33 52.88 74.00 -21.12 peak				MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
37323.00042.877.5750.4474.00-23.56peak47323.00036.797.5744.3654.00-9.64AVG59764.00043.559.3352.8874.00-21.12peak		1		4882.000	42.76	0.57	43.33	74.00	-30.67	peak
47323.00036.797.5744.3654.00-9.64AVG59764.00043.559.3352.8874.00-21.12peak		2		4882.000	36.91	0.57	37.48	54.00	-16.52	AVG
5 9764.000 43.55 9.33 52.88 74.00 -21.12 peak		3		7323.000	42.87	7.57	50.44	74.00	-23.56	peak
		4		7323.000	36.79	7.57	44.36	54.00	-9.64	AVG
6 * 9764.000 37.26 9.33 46.59 54.00 -7.41 AVG		5		9764.000	43.55	9.33	52.88	74.00	-21.12	peak
		6	*	9764.000	37.26	9.33	46.59	54.00	-7.41	AVG

No. N	٨k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto
1		4882.000	42.69	0.57	43.26	74.00	-30.74	peak
2		4882.000	36.99	0.57	37.56	54.00	-16.44	AVG
3		7323.000	42.15	7.57	49.72	74.00	-24.28	peak
4		7323.000	35.68	7.57	43.25	54.00	-10.75	AVG
5		9764.000	43.36	9.33	52.69	74.00	-21.31	peak
6 *	ł.	9764.000	37.26	9.33	46.59	54.00	-7.41	AVG

Mode2 / I	Polari	zatio	on: Horizonta	al / CH: H						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
_	1		4960.000	44.09	0.66	44.75	74.00	-29.25	peak	
_	2		4960.000	37.48	0.66	38.14	54.00	-15.86	AVG	_
-	3		7440.000	43.16	7.94	51.10	74.00	-22.90	peak	
_	4		7440.000	37.53	7.94	45.47	54.00	-8.53	AVG	
-	5		9920.000	44.33	9.69	54.02	74.00	-19.98	peak	_
-	6	*	9920.000	38.93	9.69	48.62	54.00	-5.38	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	43.59	0.66	44.25	74.00	-29.75	peak
2		4960.000	37.79	0.66	38.45	54.00	-15.55	AVG
3		7440.000	43.79	7.94	51.73	74.00	-22.27	peak
4		7440.000	37.63	7.94	45.57	54.00	-8.43	AVG
5		9920.000	45.18	9.69	54.87	74.00	-19.13	peak
6	*	9920.000	39.00	9.69	48.69	54.00	-5.31	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Page 33 of 58

Appendix

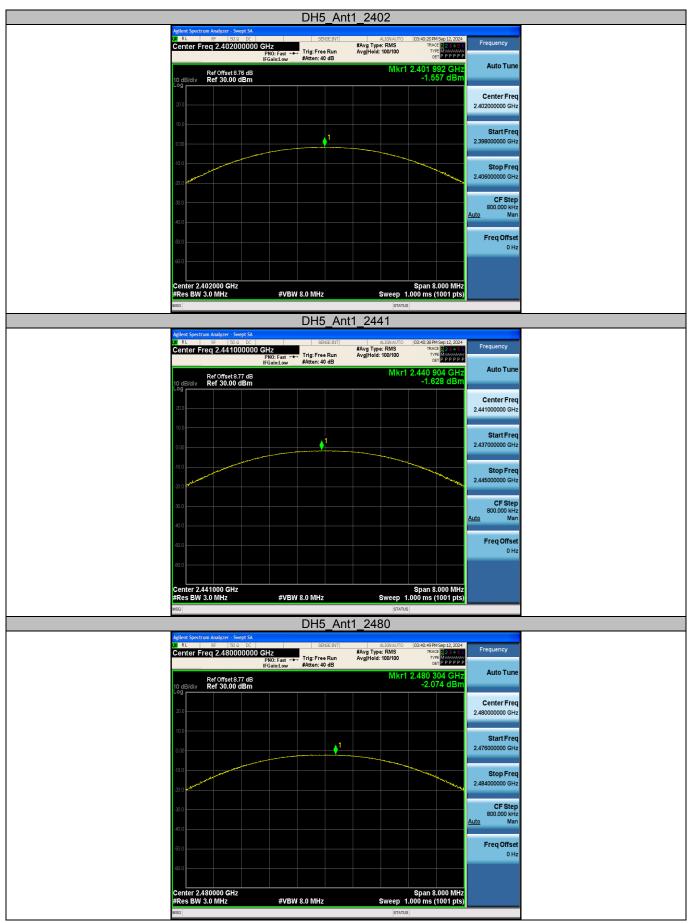
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

Appendix A: 20dB Emission Bandwidth

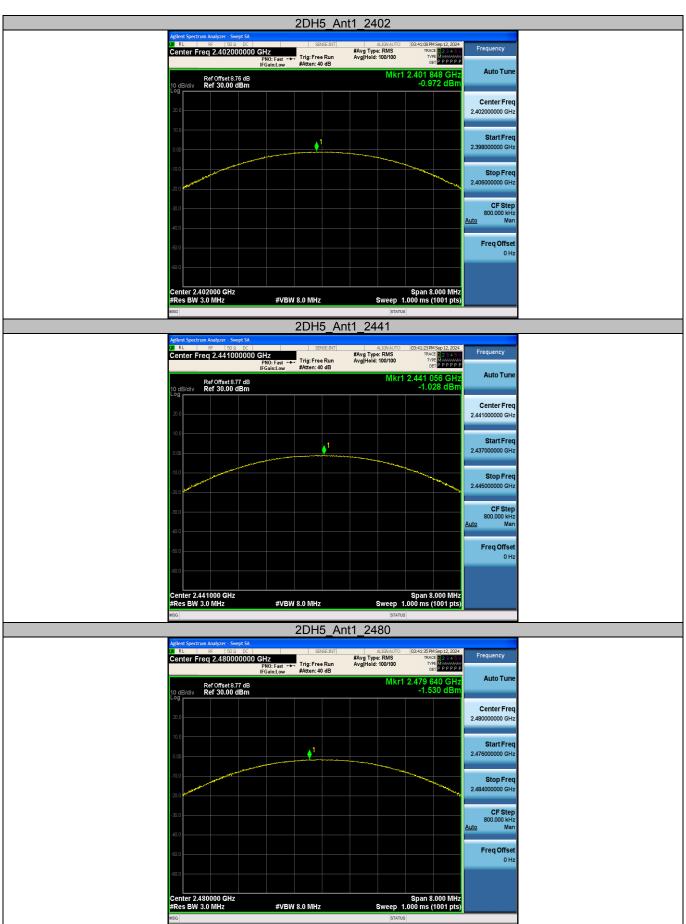
Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	1.035
DH5	Ant1	2441	1.044
		2480	1.071
2DH5		2402	1.320
	Ant1	2441	1.326
		2480	1.344

Test Graphs


Appendix B: Maximum conducted output power

Test Result Peak


Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	-1.56	≤20.97	PASS
DH5	Ant1	2441	-1.63	≤20.97	PASS
		2480	-2.07	≤20.97	PASS
2DH5	Ant1	2402	-0.97	≤20.97	PASS
		2441	-1.03	≤20.97	PASS
		2480	-1.53	≤20.97	PASS

Test Graphs

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1	≥0.714	PASS
2DH5	Ant1	Нор	1.004	≥0.896	PASS

Test Graphs

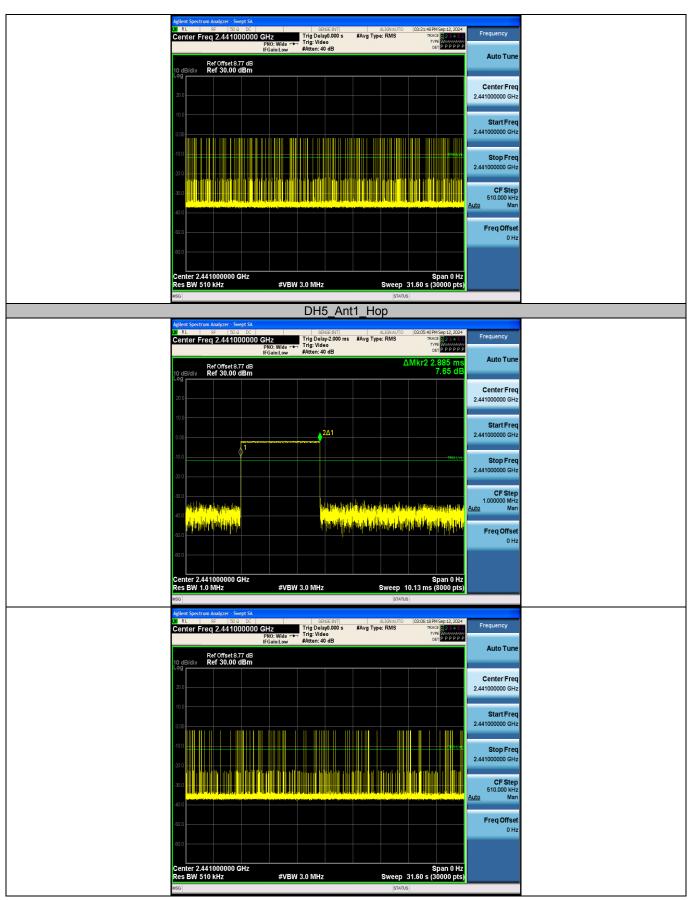
Appendix D: Time of occupancy

Test Result

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.380	317	0.12	≤0.4	PASS
DH3	Ant1	Нор	1.637	154	0.252	≤0.4	PASS
DH5	Ant1	Нор	2.885	90	0.26	≤0.4	PASS
2DH1	Ant1	Нор	0.390	316	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.643	156	0.256	≤0.4	PASS
2DH5	Ant1	Нор	2.889	109	0.315	≤0.4	PASS

Notes:

1. Period time = 0.4s * 79 = 31.6s


2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

Test Graphs

DH1_Ant1_Hop				
Agilent Spectrum Analyzer - Swept SA	SENSE:INT		03:07:50 PM Sep 12, 2024	
Caustan Enam 2 444000000 CI	Tria Dolaw-2 000 ms		TRACE 23456	Frequency
P1	10: Wide - Trig: Video Gain:Low #Atten: 40 dB			Auto Tune
Ref Offset 8.77 dB 10 dB/div Ref 30.00 dBm		1	∆Mkr2 380.0 µs 1.19 dB	
Log				Center Freq
20.0				2.441000000 GHz
10.0				
0.00 <u>∧</u> 1 △ ^{2∆1}				Start Freq
				2.441000000 GHz
-10.0			TRIG LVL	Stop Freq
-20.0				2.441000000 GHz
				05.04.0
-30.0 Bakaling at face alkinger ind ak-	a the second data of a state state of the second	Andread and the property of the second s	a hidde at statut an and a ba	CF Step 1.000000 MHz Auto Man
-40.0 at a bit of the second s	age and a substant of the second s	eriperan e diversitet accedentitettettettet	e tatalogica e vilitati e se estat. A tatalogica e vilitati e se estat	<u>Auto</u> Man
		weller in the pre-	is i watting i Milikus	Freq Offset
				0 Hz
-60.0				
Center 2.441000000 GHz			Span 0 Hz	
Res BW 1.0 MHz	#VBW 3.0 MHz		0.13 ms (8000 pts)	
MSG		STATUS		
Agilent Spectrum Analyzer - Swept SA	SENSE:INT	ALIGNAUTO	03:08:28 PM Sep 12, 2024	Frequency
Center Freq 2.441000000 GH	10: Wide Irig: Video	#Avg Type: RMS	TRACE 2 3 4 5 6 TYPE WWWWWWWWW DET P P P P P P	requercy
Ref Offset 8.77 dB	Gain:Low #Atten: 40 dB			Auto Tune
10 dB/div Ref 30.00 dBm				
				Center Freq
20.0				2.441000000 GHz
10.0				Start Freq
0.00				2.441000000 GHz
-10.0			1994 51	Stop Freq 2.441000000 GHz
-20.0	i konstrutettelle auf die Litter diteinen die bekender i	والمرواد والمروانية		2.44100000 GH2
-30.0				CF Step
				510.000 kHz <u>Auto</u> Man
-40.0				
-50.0				Freq Offset 0 Hz
-60.0				
Center 2.441000000 GHz Res BW 510 kHz	#VBW 3.0 MHz	Swoon	Span 0 Hz 31.60 s (30000 pts)	
NSG	#VBW 3.0 WH2	STATUS	51.00 S (30000 pts)	
	DH3_Ant	1 Hop		
Agilent Spectrum Analyzer - Swept SA				
04 RL RF 50.0 DC Center Freq 2.441000000 GH	Z Trig Delay-2.000 ms Trig: Video	#Avg Type: RMS	03:21:10 PM Sep 12, 2024 TRACE 1 2 3 4 5 6 TYPE	Frequency
Pi	10: Wide → Trig: Video Gain:Low #Atten: 40 dB		DETPPPP	Auto Tune
Ref Offset 8.77 dB		Δ	Mkr2 1.637 ms 4.16 dB	Autorune
				Contra Fra
20.0				Center Freq 2.441000000 GHz
10.0				
10.0	2Δ1			Start Freq
0.00				2.441000000 GHz
-10.0			TRIG LVL	Stop Freq
-20.0				2.441000000 GHz
-30.0	Daliti kayanishi pakiti daliti daliti da	nata	والمؤتاف والمرالية وا	CF Step 1.000000 MHz
-40.0	an a standalan kanan kanan kanan baharan sa	an de alter de la constant de la constant La constant de la cons	A DATA A CALLER AND A	<u>Auto</u> Man
50.0	hin with the			Freq Offset
				0 Hz
-60.0				
Center 2.441000000 GHz			Span 0 Hz	
Res BW 1.0 MHz	#VBW 3.0 MHz		0.13 ms (8000 pts)	
MSG		STATUS		

