

Certificate Number: 5055.02

TEST REPORT FOR SAR TESTING

Report No.: SRTC2020-9004(F)-20082801(H)

Product Name: Fi Smart Collar 2

Product Model: FC2

Applicant: Barking Labs

Manufacturer: Barking Labs

Specification: Part 2.1093

IEEE Std 1528

KDB Procedures

FCC ID: 2ARXN-FC2

The State Radio_monitoring_center Testing Center (SRTC)

15th Building, No.30 Shixing Street, Shijingshan District, Beijing, P.R. China

Tel: 86-10-57996183 Fax: 86-10-57996388

Contents

1. GENERAL INFORMATION	2
1.1 Notes of the test report	2 2 2
2. DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1 FINAL EQUIPMENT BUILD STATUS	
3. REFERENCE SPECIFICATION	5
4. TEST CONDITIONS	6
4.1 PICTURE TO DEMONSTRATE THE REQUIRED LIQUID DEPTH	6 6 7
5 RESULT SUMMAR	11
6 TEST RESULT	12
6.1 MANUFACTURING TOLERANCE	
7 MEASUREMENT UNCERTAINTY	35
8 TEST EQUIPMENTS	37
ANNEX A – TEST PLOTS	42
ANNEX B - RELEVANT PAGES FROM CALIBRATION REPORTS	51

Tel: 86-10-57996183 Fax: 86-10-57996388

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC).

The test results relate only to individual items of the samples which have been tested. The certification and accreditation identifiers used in this report shall not be applicable to the tested or calibrated samples thereof. The manufacturer shall not mark the tested samples or items (or a separate part of the item) with the identifiers of certification and accreditation to

mislead relevant parties about the tested samples or items.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)
Address:	15th Building, No.30 Shixing Street, Shijingshan District, Beijing P.R.
	China.
City:	Beijing
Country or Region:	P.R. China
Contacted person:	Liu Jia
Tel:	+86 10 57996183
Fax:	+86 10 57996388
Email:	liujiaf@srtc.org.cn

1.3 Applicant's details

Company:	Barking Labs
Address:	215 Plymouth St., Fl. 1
City:	Brooklyn, NY
Country or Region:	USA
Contacted person:	Bob Blake
Tel:	+1-914-249-9347
Email:	bob@tryfi.com
Company:	Barking Labs Corp.

1.4 Manufacturer's details

Company:	Barking Labs
Address:	215 Plymouth St., Fl. 1
City:	Brooklyn, NY
Country or Region:	USA
Contacted person:	Bob Blake
Tel:	+1-914-249-9347
Email:	bob@tryfi.com
Company:	Barking Labs Corp.

The State Radio_monitoring_center Testing Center (SRTC)Page number: 2 of 109
Tel: 86-10-57996183

1.5 Test Environment

Date of Receipt of test sample at SRTC:	2020.08.28	
Testing Start Date:	2020.08.28	
Testing End Date:	2020.09.04	

Environmental Data:	Temperature (°C)	Humidity (%)
Ambient	25	40

Normal Supply Voltage (Vdc.):	3.85
-------------------------------	------

V3.0.0

2. DESCRIPTION OF THE DEVICE UNDER TEST

2.1 Final Equipment Build Status

Wireless Technology and Frequency Bands	GSM Band: GSM850/GSM1900 WCDMA Band: FDD II/IV/V LTE CAT-M: 2/4/12 Wi-Fi Band: 2.4GHz BT
Mode	GSM
Note	For licensed cellular network duty cycle is inherent. For unlicensed network WLAN Duty cycle is depends on the data traffic, and the traffic allocation in operating mode could be the most conservative condition which with 100% duty cycle. SAR measurement also use non signalling mode, so the duty factor shall be taken into consideration.

<u>2.2 Support Equipment</u>
The following support equipment was used to exercise the DUT during testing:

State of sample	Normal
H/W Version	Rev.A
S/W Version	1.0
	ON12089MBJ0007(CAT-M)
SN	ON12089MBJ0026(WIFI)
	ON12089MBJ002E(BLE)
	As the information described above, we use test sample offered by the
Notes	customer. The relevant tests have been performed in order to verify in
	which combination case the EUT would have the worst features.

Tel: 86-10-57996183 Fax: 86-10-57996388 Page number: 4 of 109

Page number: 5 of 109

3. REFERENCE SPECIFICATION

Specification	Version	Title
Part 2.1093	2019	Radiofrequency radiation exposure evaluation: portable devices.
IEEE Std 1528	2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 447498 D01	v06	General RF Exposure Guidance
KDB 648474 D04	v01r03	Handset SAR
KDB 865664 D01	v01r04	SAR Measurement from 100 MHz to 6 GHz
KDB 865664 D02	v01r02	RF Exposure Reporting
KDB 941225 D05	v02r05	SAR for LTE Devices

The State Radio_monitoring_center Testing Center (SRTC)
Tel: 86-10-57996183
Fax: 86-10-57996388 V3.0.0

4. TEST CONDITIONS

4.1 Picture to demonstrate the required liquid depth

The liquid depth is large than 15cm in the used SAM phantoms in flat section, and the depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements.

Liquid depth for SAR Measurement

4.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on middle channel, and few of them were also performed on lowest and highest channels.

4.3 SAR Measurement Set-up

The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02mm. Special E-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit. A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the

Page number: 6 of 109 Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

V3.0.0

robot motors.

The PC consists of the Micron Pentium IV computer with Win7 system and SAR Measurement Software DASY5 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot.

A data acquisition electronic (DAE) circuit performs the signal amplification; signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines.

The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection

The robot uses its own controller with a built in VME-bus computer.

4.4 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.5 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528. All tests were carried out using simulants whose dielectric parameters were within ± 10% below 3GHz and ± 5% above 3GHz of the recommended values when use DASY system according to KDB865664D01. All tests were carried out within 24 hours of measuring the dielectric parameters.

The State Radio_monitoring_center Testing Center (SRTC)
Page number: 7 of 109
Tel: 86-10-57096183

Tissue Stimulant Recipes			
Name	Broadband tissue-equivalent liquid		
Type	HBBL600-6000V6 Simulating Liquid		
Note: The stimulant could be the same for head and body.			

4.6 DESCRIPTION OF THE TEST PROCEDURE

4.6.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

V3.0.0

4.6.2 Test Exposure Conditions

4.6.2.1 Head Configuration

Measurements were made in "cheek" and "tilt" positions on both the left hand and right-hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

4.6.2.2 Body Worn Configuration

The device was placed in the SPEAG holder below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance using a separate flat spacer that was removed before the start of the measurements. And the distance is normally determined according to the actual scene which might be the worst use condition for general exposure. The device's front and rear were oriented facing the phantom since these orientations give higher results for most regular portable devices.

4.6.2.3 Hotspot Configuration

Hotspot mode SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge; for the data modes, wireless technologies and frequency bands supporting hotspot mode.

4.6.3 Scan Procedure

First, area scans were used for determination of the field distribution and the approximate location of the local peak SAR values. The SAR distribution is scanned along the inside surface, at least for an area larger than the projection of the handset and antenna. The angle between the probe axis and the surface normal line is recommended but not required to be less than 30°. The SAR distribution is first measured on a 2-D coarse grid. The scan region should cover all areas that are exposed and encompassed by the projection of the handset. There are 15 mm × 15 mm (equal or less than 2GHz), 12 mm × 12 mm (from 2GHz~4GHz) and 10mm x 10mm (from 4GHz~6GHz) measurement grid used when two staggered one-dimensional cubic splines are used to estimate the maximum SAR location.

When the reported 1g-SAR estimated by area scan is less than 1.40 w/kg.

Zoom scan was performed by using the configuration mentioned below or more conservative scan area and step to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

Below 3GHz: 32mmX32mmX30mm scan area with 8 mm X8 mm X5 mm steps 2GHz-3GHz: 32mmX32mmX30mm scan area with 8 mm X8 mm X5 mm steps 3GHz-4GHz: 28mmX28mmX28mm scan area with 7 mm X7 mm X4 mm steps 4GHz-5GHz: 25mmX25mmX24mm scan area with 5 mm X5 mm X3 mm steps 5GHz-6GHz: 25mmX25mmX22mm scan area with 5 mm X5 mm X2 mm steps

The State Radio_monitoring_center Testing Center (SRTC)Page number: 9 of 109
Tel: 86-10-57996183

No.: SRTC2020-9004(F)-20082801(H) FCC ID:2ARXN-FC2

4.6.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within DASY5 are all based on the modified Quadratic Shepard's method (Robert J. Renka, Multivariate Interpolation of Large Sets of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A triradiate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighboring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics. In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

Fax: 86-10-57996388

Page number: 10 of 109

Page number: 11 of 109

<u>5 RESULT SUMMAR</u>
The maximum reported SAR values for Limbs configuration are given as follows. The device conforms to the requirements of the standard(s) when the maximum reported SAR value is less than or equal to the limit.

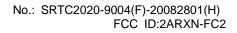
less than or equal to the limit.					
Standalone Transmission Summary(10g- SAR)					
Exposure Position	Frequency Band	SAR Result(W/kg)	Highest SAR Result(W/kg)	Limit(W/kg)	Result
	LTE CAT-M 2	1.02			
	LTE CAT-M 4	0.50			
Limbs(0mm)	LTE Band 12	0.45	1.02	4.0	Pass
	BT/BLE	0.02			
	WLAN 2.4GHz	0.28			
Simultaneous Transmission Summary(10g- SAR)					
Exposure Position	Frequency Band	Highest SAR Result(W/kg)		Limit(W/kg)	Result
Limbs(0mm)	LTE CAT-M1 + Wi-Fi	1.19		4.0	Pass

This Test Report Is Approved by:	Review by:
Mr. Peng Zhen	Mr. Li Bin
 数	AM)
Tested and issued by:	Approved date:
Mr. Chang Tianyu アスタ	2020/09/14

Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

Page number: 12 of 109

6 TEST RESULT


6.1 Manufacturing Tolerance

Cat M

Note: RB allocation mentioned below is for all Bandwidths, and the Frequency Range are divided to 3 ranges (Low, Mid, High)

Band 2

BW	Modulation	RB allocation with different offset	Frequency range	Tolerance (dBm)	
			Low		
			Mid	18.5~22.5	
			High		
		50%	Low		
	QPSK		18.0~22.0		
			High		
All		100%	Low		
Bandwidth			Mid	18.0~22.0	
			High		
			Low		
		1	Mid	18.0~22.0	
	16QAM		High]	
	IOQAM		Low		
		50%	Mid	18.0~22.0	
			High		

Band 4

BW	Modulation	RB allocation with different offset	Frequency range	Tolerance (dBm)				
			Low					
		1	Mid	18.0~22.0				
			High					
		50%	Low					
	QPSK		Mid	18.0~22.0				
			High					
All		100%					Low	
Bandwidth			Mid	18.0~22.0				
Danuwiuin			High					
			Low					
		1	Mid	18.5~22.5				
	16QAM		High					
	IOQAM		Low					
		50%	Mid	18.5~22.5				
			High]				

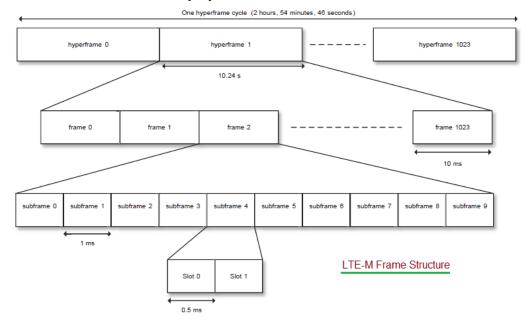
Band 12

BW BW	Modulation	RB allocation with different offset	Frequency range	Tolerance (dBm)
		1	Low Mid High	19.5~23.5
	QPSK	50%	Low Mid High	19.0~23.0
		100%	Low Mid High	18.5~22.5
Bandwidth	1 16QAM 50%(or partial RB)	1	Low Mid High	19.5~23.5
		Low Mid High Mid High	19.0~23.0	

V3.0.0

Bluetooth (BLE)

	Average Power Output (dBm)				
Modulation type	2402MHz	2440MHz	2480MHz		
	(Ch0)	(Ch19)	(Ch39)		
GFSK (LE 1Mbps)	-4.5~-0.5				

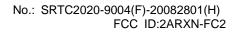

WLAN 2.4GHz

Modulation type	Tolerance (dBm)				
wodulation type	2412MHz	2462MHz			
11b	12.0~16.0				
11g	11.5~15.5				
11n HT20	11.5~15.5				

6.2 Measurement power

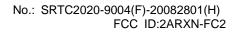
UE category M1 and M2 is designed to operate in the E-UTRA operating bands in both half duplex FDD mode and full-duplex FDD mode, as well as TDD mode. LTE-M follows 3GPP specifications similar to LTE technology. LTE-M Cat-0, Cat-M1 and Cat-M2 follow 3GPP TS 36 series of rel.12, rel.13 and rel.14 respectively.

The figure depicts LTE-M frame structure similar to LTE technology. One subframe duration is about 1ms. And the duty cycle is inherent as100%


Tel: 86-10-57996183 Fax: 86-10-57996388 Page number: 14 of 109

LTF CAT-M Band 2

Modulation	Carrier frequency	UL	BW	RB	RB	Conducted Power
Modulation	(MHz)	Channel		Size	Offset	(dBm)
				1	0	21.45
	1850.7	18607		3	0	21.02
]	6	0	19.44
				1	0	21.35
QPSK	1880	18900	1.4	3	0	20.67
] [6	0	19.70
				1	0	21.99
	1909.3	19193		3	0	21.05
				6	0	19.80
				1	0	20.04
	1050.7	10607		1	5	20.14
	1850.7	18607		5	0	19.48
				5	1	19.85
			1	1	0	20.24
	4000	40000		1	5	20.38
16QAM	1880	18900	1.4	5	0	20.02
				5	1	20.06
	1909.3]	1	0	20.42
		19193		1	5	20.51
				5	0	20.43
				5	1	20.29
	1851.7		-	1	0	21.37
		18615		3	0	20.39
				6	0	19.41
			1	1	0	21.19
QPSK	1880	18900	3	3	0	20.44
	1000			6	0	19.68
			1	1	0	21.84
	1908.5	19185		3	0	20.81
				6	0	19.77
				1	0	20.01
				1	5	20.12
	1851.7	18615		5	0	19.39
				5	1	19.76
			†	1	0	20.18
				<u>·</u> 1	5	20.32
16QAM	1880	18900	3	5	0	20.00
				5	1	20.03
ł			┪	1	0	20.37
				1	5	20.48
	1908.5	19185		5	0	20.32
				5	1	20.17

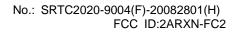

Page number: 15 of 109

Modulation	Carrier frequency (MHz)	UL Channel	BW	RB	RB Offeet	Conducted
				Size 1	Offset 0	Power (dBm) 21.78
	1852.5	18625		3	0	21.78
	1032.3	10023		6	0	20.36
				1	0	21.89
QPSK	1880	18900	5	3	0	21.36
QFSK	1000	10900	3	6	0	20.82
				1	0	21.93
	1907.5	19175		3	0	21.34
	1907.5	13173		6	0	20.75
				1	0	21.18
				1	5	21.19
	1852.5	18625		5	0	20.87
				5	1	20.79
				1	0	21.18
				1	5	21.47
16QAM	1880	18900	5	5	0	21.13
				5	1	21.02
				1	0	21.16
	1907.5	19175		1	5	21.48
				5	0	21.12
				5	1	21.21
	1855	18650		1	0	21.84
				3	0	21.16
				6	0	20.48
	1880			1	0	21.94
QPSK		18900	10	3	0	21.34
				6	0	20.74
				1	0	22.11
	1905	19150		3	0	21.43
				6	0	20.74
				1	0	21.20
	4055	40050		1	5	21.23
	1855	18650		5	0	20.98
				5	1	20.88
				1	0	21.19
4000	4000	40000	40	1	5	21.49
16QAM	1880	18900	10	5	0	21.21
				5	1	21.06
				1	0	21.25
	1005	19150		1	5	21.53
	1905			5	0	21.18
				5	1	21.24

Page number: 16 of 109

Modulation	Carrier frequency (MHz)	UL Channel	BW	RB Size	RB Offset	Conducted Power (dBm)								
					0	21.48								
	1857.5	18675		3	0	21.41								
				6	0	21.34								
				1	0	21.71								
QPSK	1880	18900	15	3	0	21.56								
				6	0	21.40								
				1	0	21.80								
	1902.5	19125		3	0	21.65								
				6	0	21.50								
				1	0	21.39								
	1857.5	18675		1	5	21.32								
	1007.5	10075		5	0	22.05								
				5	1	21.91								
				1	0	21.52								
16QAM	1880	18900	15	1	5	21.54								
IOQAW	1000	10900	15	5	0	21.97								
				5	1	21.53								
		19125		1	0	21.68								
	1002 F			1	5	21.64								
	1902.5			5	0	22.17								
				5	1	22.16								
				1	0	22.03								
	1860	18700	18700	18700	18700	18700	18700	18700	18700	18700		3	0	21.62
				6	0	21.21								
				1	0	21.59								
QPSK	1880	18900	18900	20	3	0	21.53							
				6	0	21.47								
				1	0	21.77								
	1900	19100		3	0	21.80								
				6	0	21.82								
				1	0	21.11								
	4000	40700		1	5	21.79								
	1860	18700		5	0	21.93								
				5	1	21.88								
				1	0	21.55								
160 114	1000	10000	20	1	5	21.59								
16QAM	1880	18900	20	5	0	22.06								
				5	1	21.93								
				1	0	22.11								
	1000	40400		1	5	21.52								
	1900	19100		5	0	22.17								
				5	1	22.15								

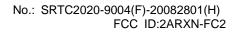
Page number: 17 of 109



LTE CAT-M Band 4

Madulation	Carrier frequency	UL	DVA	RB	RB	Conducted Power
Modulation	(MHz)	Channel	BW	Size	Offset	(dBm)
				1	0	21.82
	1710.5	19957		3	0	20.75
				6	0	19.67
				1	0	21.61
QPSK	1732.5	20175	1.4	3	0	20.54
				6	0	19.47
				1	0	21.35
	1754.3	20393		3	0	20.30
				6	0	19.25
				1	0	20.23
	4740 E	400E7		1	5	20.31
	1710.5	19957		5	0	20.01
				5	1	19.96
				1	0	20.07
	4700 E	20475	4.4	1	5	20.14
16QAM	1732.5	20175	1.4	5	0	19.86
				5	1	19.78
	1754.3	20393		1	0	19.86
			-	1	5	19.98
				5	0	19.67
				5	1	19.59
	1711.5	19965		1	0	21.79
				3	0	20.64
				6	0	19.48
		20175		1	0	21.57
QPSK	1732.5		3	3	0	20.47
				6	0	19.36
				1	0	21.31
	1753.5	20385		3	0	20.26
				6	0	19.21
				1	0	20.18
	1711.5	19965		1	5	20.23
	G.11 11	19900		5	0	20.09
				5	1	20.03
				1	0	20.14
16QAM	1732.5	20175	3	1	5	20.26
IOQAIVI	1732.3	20175	ر ا	5	0	20.11
				5	1	20.08
		20385		1	0	19.79
	1753.5			1	5	19.88
	1700.0			5	0	19.73
				5	1	19.64

Page number: 18 of 109

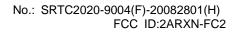

V3.0.0

Modulation	Carrier frequency (MHz)	UL Channel	BW	RB	RB Officert	Conducted
	. , ,			Size	Offset 0	Power (dBm) 21.80
	1712.5	19975		3	0	21.69
	17 12.5	19973		6	0	21.57
				1	0	21.68
QPSK	1732.5	20175	5	3	0	21.63
QI OIX	1732.3	20173		6	0	21.58
				1	0	21.39
	1752.5	20375		3	0	21.32
	17 32.3	20070		6	0	21.25
				1	0	21.46
				1	5	21.63
	1712.5	19975		5	0	21.70
				5	1	22.03
				1	0	21.84
400414	4-00-	00477	_	1	5	22.33
16QAM	1732.5	20175	5	5	0	22.08
				5	1	22.11
		20375		1	0	21.14
	1752.5			1	5	21.12
				5	0	21.54
				5	1	21.15
	1715			1	0	21.77
		20000		3	0	21.64
				6	0	21.51
	1732.5	20175		1	0	21.75
QPSK			10	3	0	21.70
				6	0	21.64
				1	0	21.42
	1750	20350		3	0	21.30
				6	0	21.17
				1	0	21.40
	1715	20000		1	5	21.64
	1715	20000		5	0	21.67
				5	1	22.07
				1	0	21.92
16QAM	1732.5	20175	10	1	5	22.30
IOQAW	1702.0	20173	'0	5	0	22.02
				5	1	22.12
		20350		1	0	21.11
	1750			1	5	21.06
	1700			5	0	21.57
				5	1	21.09

V3.0.0

	Carrier			55		
Modulation	frequency (MHz)	UL Channel	BW	RB Size	RB Offset	Conducted Power (dBm)
	(******			1	0	21.74
	1717.5	20025		3	0	21.61
				6	0	21.48
				1	0	21.69
QPSK	1732.5	20175	15	3	0	21.64
				6	0	21.58
				1	0	21.37
	1747.5	20325		3	0	21.28
				6	0	21.19
				1	0	21.52
	4747 5	00005		1	5	21.71
	1717.5	20025		5	0	21.73
				5	1	21.09
				1	0	21.97
400 414	4700 5	00475	4.5	1	5	22.25
16QAM	1732.5	20175	15	5	0	22.07
				5	1	22.17
				1	0	21.16
	4747.5	00005		1	5	21.13
	1747.5	20325		5	0	21.46
				5	1	21.11
				1	0	21.86
	1720	20050		3	0	21.73
				6	0	21.59
				1	0	21.77
QPSK	1732.5	20175	20	3	0	21.72
				6	0	21.66
				1	0	21.43
	1745	20300		3	0	21.35
				6	0	21.26
				1	0	21.47
	1720	20050		1	5	21.71
	1720	20050		5	0	21.76
				5	1	22.10
				1	0	21.93
16QAM	1732.5	20175	20	1	5	22.37
IOQAW	1732.3	20173	20	5	0	22.09
				5	1	22.13
				1	0	21.17
	1745	20300		1	5	21.14
	1740	20300		5	0	21.59
				5	1	21.16

The State Radio_monitoring_center Testing Center (SRTC)
Tel: 86-10-57996183
Fax: 86-10-57996388


Page number: 20 of 109

LTE CAT-M Band 12

Modulation	Carrier frequency	UL	BW	RB	RB	Conducted Power				
	(MHz)	Channel		Size	Offset	(dBm)				
	222 =	23017		1	0	23.39				
	699.7			3	0	22.33				
			-	6	0	21.27				
				1	0	22.97				
QPSK	707.5	23095	1.4	3	0	22.16				
				6	0	21.34				
				1	0	23.26				
	715.3	23173		3	0	22.27				
				6	0	21.27				
				1	0	21.78				
	699.7	23017		1	5	21.89				
	099.7	23017		5	0	21.46				
				5	1	21.62				
				1	0	21.83				
	707.5	22005	1.4	1	5	21.91				
16QAM	707.5	23095	1.4	5	0	21.53				
				5	1	21.64				
	715.3			1	0	21.78				
		23173		1	5	21.88				
				5	0	21.48				
				5	1	21.60				
		700.5 23025		1	0	23.36				
	700.5			3	0	22.30				
									6	0
			-	1	0	22.96				
QPSK	707.5	23095	3	3	0	22.11				
				6	0	21.25				
				1	0	23.21				
	714.5	714.5 23165		3	0	22.23				
				6	0	21.24				
				1	0	21.77				
				1	5	21.85				
	700.5	23025		5	0	21.44				
				5	1	21.57				
			1	1	0	21.76				
				1	5	21.85				
16QAM	707.5	23095	3	5	0	21.50				
				5	1	21.59				
			1	1	0	21.72				
				1	5	21.86				
	714.5	23165		5	0	21.41				
				5						
				5	1	21.59				

V3.0.0

Modulation	Carrier frequency (MHz)	UL Channel	BW	RB	RB	Conducted
				Size	Offset	Power (dBm)
	701.5	23035		3	0	23.12
	701.5					22.69
				6 1	0	22.25
QPSK	707.5	23095	5	3	0	23.20 22.72
QPSK	707.5		5	6	0	22.72
				1	0	23.19
	713.5	23155			0	22.74
	7 13.3	23133		3 6	0	22.28
				1	0	22.85
				1	5	23.12
	701.5	23035		5	0	22.61
				5	1	22.85
				1	0	22.98
				1	5	23.16
16QAM	707.5	23095	5	5	0	22.62
				5	1	22.22
	713.5 704			1	0	22.91
		23155		1	5	23.03
				5	0	22.78
				5	1	22.14
				1	0	23.21
				3	0	22.76
				6	0	22.30
				1	0	23.22
QPSK	707.5	23095	10	3	0	22.75
QI OIX	707.0	20000	'0	6	0	22.28
				1	0	23.27
	711	23130		3	0	22.82
		20100		6	0	22.37
				1	0	22.90
				1	5	23.15
	704	23060		5	0	22.70
				5	1	22.88
				1	0	22.99
460		0000-		1	5	23.17
16QAM	707.5	23095	10	5	0	22.64
				5	1	22.27
				1	0	22.98
	744	00400		1	5	23.11
	711	23130		5	0	22.79
				5	1	22.20

Page number: 22 of 109

BLE

	Average Power Output (dBm)				
Modulation type	2402MHz	2440MHz	2480MHz		
	(Ch0)	(Ch19)	(Ch39)		
GFSK (LE 1Mbps)	-0.99	-1.23	-1.54		
GFSK (LE 2Mbps)	-1.01	-1.24	-1.55		

WIFI2.4GHz

Modulation type	Average power output (dBm)				
Modulation type	2412MHz	2437MHz	2462MHz		
11b	15.66	15.35	15.08		
11g	15.12	14.86	14.62		
11n HT20	15.01	14.72	14.46		

6.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g/10-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and ≤ 50 mm

Mothod1:

According to the KDB447498 4.3.1 (1)

For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f} (GHz)] \le 3.0$ for 1-g SAR, where

- ·f(GHz) is the RF channel transmit frequency in GHz
- ·Power and distance are rounded to the nearest mW and mm before calculation
- •The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

This is equivalent to [(max. power of channel, including tune-up tolerance, mW)/(60/ \sqrt{f} (GHz) mW)] ·[20 mm/(min.test separation distance, mm)] ≤ 1.0 for 1-g SAR; also see Appendix A for approximate exclusion threshold values at selected frequencies and distances.

Mothod2:

According to the KDB447498 appendix A

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test

Separation Distances are illustrated in the following Table.

		N. The state of th	10		0	
MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	2 22
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

Note: 10-g Extremity SAR Test Exclusion Power Thresholds are 2.5 times higher than the 1-g SAR Test Exclusion Thresholds indicated above. These thresholds do not apply, by extrapolation or other means, to occupational exposure limits.

Summary of Transmitters

Band/Mode	Max conducted power adjusted for tune-up tolerance(mW)	Exposure condition	SAR test exclusion threshold (mW)	Standalone SAR Required
2.4GHz BT/BLE	0.89	Limbs	25	No
2.4GHz Wi-Fi	39.81	Limbs	25	Yes

The State Radio_monitoring_center Testing Center (SRTC) Page number: 24 of 109 Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

6.4 RF exposure conditions

6.4.1 Antenna information

Band	Peak Gain
Cat- M1 B2	0.60dBi
Cat-M1 B4	-0.70dBi
Cat-M1 B12	-2.30dBi
GPS	2.08dBi
BLE/WiFi	2.35dBi

Tel: 86-10-57996183 Fax: 86-10-57996388

V3.0.0

6.4.2 Limb Exposure conditions

For WWAN/LPWAN

Test Configurations	SAR Required	Note
Back	yes	/
Front	yes	/
Тор	yes	/
Bottom	yes	/
Left	yes	/
Right	yes	/

For WLAN

Test Configurations	SAR Required	Note
Back	yes	/
Front	yes	/
Тор	yes	/
Bottom	yes	/
Left	yes	/
Right	yes	/

For BT/BLE

Test Configurations	Estimated SAR	Note
Back	Yes	
Front	Yes	
Тор	yes	Excluded from
Bottom	yes	SAR test
Left	yes	
Right	yes	

The State Radio_monitoring_center Testing Center (SRTC)
Tel: 86-10-57996183 Page number: 26 of 109

6.5 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser.

For the measurement of the following parameters the SPEAG DAKS-3.5 dielectric parameter

probe is used, representing the open-ended coaxial probe measurement procedure.

production and an experimental and a production of the production						
Date Tested	Freq. (MHz)	Liquid parameters	measured	Target	Delta (%)	Tolerance (%)
2020.08.28	750	εr	41.352	41.9	-1.31	±10
2020.06.26	750	σ[S/m]	0.923	0.89	3.71	±10
2020.08.31	1800	εr	40.688	40.0	1.72	±10
2020.06.31	1600	σ[S/m]	1.418	1.40	1.29	±10
2020.09.02	2000	εr	39.844	40.0	-0.39	±10
2020.09.02	2000	σ[S/m]	1.427	1.40	1.93	±10
2020.09.04	2450	εr	38.343	39.2	-2.19	±10
2020.09.04	2430	σ[S/m]	1.866	1.80	3.67	±10

Note: For DASY system, the conservative tolerance 5% could expand to 10% when the frequency under 3GHz

A system check measurement was made following once the determination of the dielectric parameters of the simulant, using the dipole validation kit. The system checking results

(dielectric parameters and SAR values) are given in the table below.

Date Tested	System dipole	SAR measured (normalized to 1W)		Target (Ref. Value)	Delta (%)	Tolerance (%)
2020.08.28	D750V3	10g	5.8	5.39	7.61	±10
2020.08.31	D1800V2	10g	19.88	20.4	-2.55	±10
2020.09.02	D2000V2	10g	19.84	20.5	-3.22	±10
2020.09.04	D2450V2	10g	24.56	24.4	0.66	±10

Page number: 27 of 109 Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

Page number: 28 of 109

6.6 SAR TEST RESULT

In order to determine the largest value of the peak spatial-average SAR of a handset, all device positions, configurations, and operational modes should be tested for each frequency band according to Steps 1 to 3 below.

Step 1: The tests should be performed at the channel that is closest to the center of the transmit frequency band.

- a) All device positions (cheek and tilt, for both left and right sides of the SAM phantom),
- b) All configurations for each device position in a), e.g., antenna extended and retracted, and
- c) All operational modes for each device position in item a) and configuration in item b) in each frequency band, e.g., analog and digital, If more than three frequencies need to be tested (i.e., Nc > 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing the highest peak spatial-average SAR determined in Step 1 for each frequency, perform all tests at all other test frequency channels, e.g., lowest and highest frequencies. In addition, for all other conditions (device position, configuration, and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies should be tested as well.

Step 3: Examine all data to determine the largest value of the peak. Note:

1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Duty Factor = 1 / Duty Cycle(%)

For cellular network:

Reported SAR (W/kg) = Measured SAR (W/kg) * Scaling Factor

For WLAN

Reported SAR (W/kg) = Measured SAR (W/kg) * Scaling Factor*Duty factor .

2. The distance between the EUT and the phantom bottom is 0mm.

Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

Page number: 29 of 109

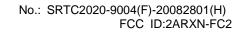
The measured and reported limb SAR values for the test device are tabulated below: Mode: Cat.M Band 2

L:1860MHz M:1880 MHz H:1900MHz

SAR Values Limit of SAR (W/kg): 4.0W/kg (10g Average)

	Test case				0 "	Meas S	AR(w/kg)	Report S	SAR(w/kg)
Mode	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	First	Second	First	Second
		L	22.03	22.50	1.11				
	Back	М	21.59	22.50	1.23	0.252		0.310	
		Н	21.77	22.50	1.18				
		L	22.03	22.50	1.11				
	Front	М	21.59	22.50	1.23	0.481		0.592	
		Н	21.77	22.50	1.18				
		L	22.03	22.50	1.11				
	Тор	М	21.59	22.50	1.23	0.166		0.204	
		Н	21.77	22.50	1.18				
QPSK 1RB		L	22.03	22.50	1.11	0.918		1.019	
	Bottom	М	21.59	22.50	1.23	0.826		1.016	
		Н	21.77	22.50	1.18	0.823		0.971	
		L	22.03	22.50	1.11				
	Left	М	21.59	22.50	1.23	0.025		0.031	
		Н	21.77	22.50	1.18				
		L	22.03	22.50	1.11				
	Right	М	21.59	22.50	1.23	0.075		0.092	
		Н	21.77	22.50	1.18				
		L	21.62	22.00	1.09				
	Back	М	21.53	22.00	1.11	0.226		0.251	
		Н	21.80	22.00	1.05				
		L	21.62	22.00	1.09				
	Front	М	21.53	22.00	1.11	0.456		0.506	
		Н	21.80	22.00	1.05				
		L	21.62	22.00	1.09				
	Тор	M	21.53	22.00	1.11	0.134		0.149	
	. 56	Н	21.80	22.00	1.05				
QPSK 50%RB		L	21.62	22.00	1.09				
	Bottom	M	21.53	22.00	1.11	0.852		0.946	
	Dollom	H	21.80	22.00	1.05			0.946	
	1 - 44	L	21.62	22.00	1.09	0.040		0.042	
	Left	M	21.53	22.00	1.11	0.012		0.013	
		H .	21.80	22.00	1.05				
		L	21.62	22.00	1.09				
	Right	М	21.53	22.00	1.11	0.049		0.055	
		Н	21.80	22.00	1.05				

Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0


Mode: Cat.M Band 4

L:1720MHz M:1732.5 MHz H:1745MHz

SAR Values Limit of SAR (W/kg): 4.0W/kg (10g Average)

	Test case	,		/V/kg (10g <i>F</i>		Meas S	AR(w/kg)	Report S	SAR(w/kg)
Mode	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	First	Second	First	Second
		L	21.86	22.00	1.03				
	Back	М	21.77	22.00	1.05	0.288		0.302	
		Н	21.43	22.00	1.14				
		L	21.86	22.00	1.03				
	Front	М	21.77	22.00	1.05	0.446		0.468	
		Н	21.43	22.00	1.14				
		L	21.86	22.00	1.03				
	Тор	М	21.77	22.00	1.05	0.112		0.118	
0001/400		Н	21.43	22.00	1.14				
QPSK 1RB		L	21.86	22.00	1.03				
	Bottom	М	21.77	22.00	1.05	0.178		0.187	
		Н	21.43	22.00	1.14				
		L	21.86	22.00	1.03				
	Left	М	21.77	22.00	1.05	0.058		0.061	
		Η	21.43	22.00	1.14				
		L	21.86	22.00	1.03				
	Right	М	21.77	22.00	1.05	0.257		0.270	
		Н	21.43	22.00	1.14				
		L	21.73	22.00	1.06				
	Back	М	21.72	22.00	1.07	0.272		0.291	
		Н	21.35	22.00	1.16				
		L	21.73	22.00	1.06				
	Front	М	21.72	22.00	1.07	0.429		0.459	
		Н	21.35	22.00	1.16				
		L	21.73	22.00	1.06				
	Тор	М	21.72	22.00	1.07	0.091		0.097	
	·	Н	21.35	22.00	1.16				
QPSK 50%RB		L	21.73	22.00	1.06				
	Bottom	М	21.72	22.00	1.07	0.163		0.174	
		Н	21.35	22.00	1.16				
		L	21.73	22.00	1.06				
	Left	M	21.72	22.00	1.07	0.052		0.056	
	2510	Н	21.35	22.00	1.16				
		L	21.73	22.00	1.06				
	Right	M	21.73	22.00	1.07	0.233		0.249	
	Right	H	21.72	22.00	1.16	0.233			
		L							
160 AM 4DD	Pools		21.71	22.50	1.20	0.202		0.211	
16QAM 1RB	Back	M	22.37	22.50	1.03	0.302		0.311	
		Н	21.17	22.50	1.36				

Tel: 86-10-57996183 Fax: 86-10-57996388 Page number: 30 of 109

Page number: 31 of 109

		L	21.71	22.50	1.20		 	
	Front	М	22.37	22.50	1.03	0.488	 0.503	
		Н	21.17	22.50	1.36		 	
		L	21.71	22.50	1.20		 	
	Тор	М	22.37	22.50	1.03	0.152	 0.157	
		Н	21.17	22.50	1.36		 	
		L	21.71	22.50	1.20		 	
	Bottom	М	22.37	22.50	1.03	0.203	 0.209	
		Н	21.17	22.50	1.36		 	
		L	21.71	22.50	1.20		 	
	Left	М	22.37	22.50	1.03	0.082	 0.084	
		Н	21.17	22.50	1.36		 	
	Right	L	21.71	22.50	1.20		 	
		М	22.37	22.50	1.03	0.287	 0.296	
		Н	21.17	22.50	1.36		 	

Note: power (16QAM) minus power(QPSK) is higher than 0.5db, so 16QAM need to be considered.

Page number: 32 of 109

Mode: Cat.M Band 12

L:704MHz M:707.5 MHz H:711MHz

SAR Values Limit of SAR (W/kg): 4.0W/kg (10g Average)

Back M 23.21 23.50 1.07 0.422 0.452		Test case	`		/v/kg (10g /		Meas S	AR(w/kg)	Report SAR(w/kg)	
Application M 23.22 23.50 1.07 0.422 0.452 H 23.27 23.50 1.05	Mode	Position	Channel		Tune-up(dBm)		First	Second	First	Second
APPRIATE H 23.27 23.50 1.05 <t< td=""><td></td><td></td><td>L</td><td>23.21</td><td>23.50</td><td>1.07</td><td></td><td></td><td></td><td></td></t<>			L	23.21	23.50	1.07				
Peront L 23.21 23.50 1.07		Back	M	23.22	23.50	1.07	0.422		0.452	
APPRIATE M 23.22 23.50 1.07 0.107 0.114 APSK 1RB L 23.27 23.50 1.05			Н	23.27	23.50	1.05				
APSK 1RB H			L	23.21		1.07				
APPRIATE L 23.21 23.50 1.07 <t< td=""><td></td><td>Front</td><td></td><td></td><td></td><td></td><td>0.107</td><td></td><td></td><td></td></t<>		Front					0.107			
QPSK1RB Top M 23.22 23.50 1.07 0.203 0.217 H 23.27 23.50 1.05 Bottom M 23.22 23.50 1.07 H 23.27 23.50 1.05 L 23.21 23.50 1.07 Left M 23.22 23.50 1.07 H 23.27 23.50 1.07 Right M 23.22 23.50 1.07 Right M 23.27 23.00 1.06										
APSK 1RB H 23.27 23.50 1.05 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
QPSK 1RB Bottom L 23.21 23.50 1.07		Тор				1.07	0.203		0.217	
Bottom M 23.22 23.50 1.07 0.212 0.227 H 23.27 23.50 1.05 Left M 23.22 23.50 1.07 Left M 23.22 23.50 1.07 H 23.27 23.50 1.07	0001/400									
H 23.27 23.50 1.05	QPSK 1RB		L	23.21	23.50	1.07				
Left L 23.21 23.50 1.07		Bottom	M	23.22	23.50	1.07	0.212		0.227	
Left M 23.22 23.50 1.07 0.021 0.022 H 23.27 23.50 1.05 Right M 23.21 23.50 1.07 0.199 0.213 H 23.27 23.50 1.05 Back M 22.76 23.00 1.06 H 22.82 23.00 1.06 0.401 H 22.82 23.00 1.06 0.401			Н	23.27	23.50	1.05				
H 23.27 23.50 1.05			L	23.21	23.50	1.07				
Right L 23.21 23.50 1.07		Left	M	23.22	23.50	1.07	0.021		0.022	
Right M 23.22 23.50 1.07 0.199 0.213 H 23.27 23.50 1.05 H 23.27 23.50 1.06 Back M 22.75 23.00 1.06 0.401 0.425 H 22.82 23.00 1.04 Front M 22.75 23.00 1.06 H 22.82 23.00 1.06			Н	23.27	23.50	1.05				
APSK 50%RB H 23.27 23.50 1.05			L	23.21	23.50	1.07				
Back M 22.76 23.00 1.06		Right	M	23.22	23.50	1.07	0.199		0.213	
Back M 22.75 23.00 1.06 0.401 0.425 H 22.82 23.00 1.04 Front M 22.75 23.00 1.06 H 22.82 23.00 1.04 Top M 22.75 23.00 1.06 Top M 22.75 23.00 1.06 H 22.82 23.00 1.06 0.177 Bottom M 22.75 23.00 1.06 H 22.82 23.00 1.06 0.192 0.204 Left M 22.75 23.00 1.06 0.016			Н	23.27	23.50	1.05				
Pront M 22.82 23.00 1.04			L	22.76	23.00	1.06				
Pront M 22.75 23.00 1.06		Back	M	22.75	23.00	1.06	0.401		0.425	
Front M 22.75 23.00 1.06 0.085 0.090 H 22.82 23.00 1.04 <			Н	22.82	23.00	1.04				
H 22.82 23.00 1.04			L	22.76	23.00	1.06				
QPSK 50%RB L 22.76 23.00 1.06 <td></td> <td>Front</td> <td>M</td> <td>22.75</td> <td>23.00</td> <td>1.06</td> <td>0.085</td> <td></td> <td>0.090</td> <td></td>		Front	M	22.75	23.00	1.06	0.085		0.090	
Top M 22.75 23.00 1.06 0.177			Н	22.82	23.00	1.04				
QPSK 50%RB H 22.82 23.00 1.04			L	22.76	23.00	1.06				
L		Тор	M	22.75	23.00	1.06	0.177			
Bottom M 22.75 23.00 1.06			Н	22.82	23.00	1.04				
Bottom M 22.75 23.00 1.06 0.192 0.204 H 22.82 23.00 1.04	QPSK 50%RB		L	22.76	23.00	1.06				
H 22.82 23.00 1.04 L 22.76 23.00 1.06		Bottom					0.192		0.204	
Left M 22.75 23.00 1.06 H 22.82 23.00 1.04 L 22.76 23.00 1.06 Right M 22.75 23.00 1.06 0.162 0.172										
Left M 22.75 23.00 1.06 0.016 0.017 H 22.82 23.00 1.04 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
H 22.82 23.00 1.04 Right M 22.75 23.00 1.06 0.162 0.172		Left								
Right M 22.75 23.00 1.06		2511								
Right M 22.75 23.00 1.06 0.162 0.172										
		Riaht								
H 22.82 23.00 1.04			Н	22.82	23.00					

Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

No.: SRTC2020-9004(F)-20082801(H) FCC ID:2ARXN-FC2

Mode: BT

SAR Values Limit of SAR (W/kg): 4.0W/kg (10g Average)

MAX power(dBm)	Limbs SAR(w/kg)
-0.5	0.015

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f_{(GHz)}/x}]$ W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Mode: Wi-Fi 2.4GHz

fL (MHz)=2412MHz fM (MHz)=2437MHz fH (MHz)= 2462MHz

SAR Values Limit of SAR (W/kg): 4.0W/kg (10g Average)

		11111 01 07	l (W/itg)	. 4.000/kg (i	0971101	ugo)		ND(//)	D 16	MD(//)
	Test case						Meas SA	AR(w/kg)	Report S	SAR(w/kg)
Mode	Position	Channel	Meas power(dBm)	Tune-up (dBm)	Scaling factor	Duty factor	First	Second	First	Second
		L	15.66	16.00	1.08	1.03				
	Back	M	15.35	16.00	1.16	1.03	0.168		0.200	
		Н	15.08	16.00	1.24	1.03				
		L	15.66	16.00	1.08	1.03				
	Front	М	15.35	16.00	1.16	1.03	0.231		0.275	
		Н	15.08	16.00	1.24	1.03				
		L	15.66	16.00	1.08	1.03				
	Тор	М	15.35	16.00	1.16	1.03	0.212		0.253	
000 445		Н	15.08	16.00	1.24	1.03				
802.11b		L	15.66	16.00	1.08	1.03				
	Bottom	М	15.35	16.00	1.16	1.03	0.140		0.167	
		Н	15.08	16.00	1.24	1.03				
		L	15.66	16.00	1.08	1.03				
	Left	М	15.35	16.00	1.16	1.03	0.026		0.031	
		Н	15.08	16.00	1.24	1.03				
	Right	L	15.66	16.00	1.08	1.03				
		М	15.35	16.00	1.16	1.03	0.120		0.143	
		Н	15.08	16.00	1.24	1.03				

Note: The duty cycle of 802.11b is 97.33%, so the duty factor is approximate 1.03.

The State Radio_monitoring_center Testing Center (SRTC)Page number: 33 of 109
Tel: 86-10-57996183

V3.0.0

6.7 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The Highest Reported/Estimated SAR configuration in Each Frequency Band

Frequency band	Air interface	Limbs(w/kg)
750 MHz	Cat M BAND12	<4.0
1800/1900 MHz	Cat M BAND2 Cat M BAND4	<4.0
2450MHz	WIFI2.4GHz BLE	<4.0

6.8 Simultaneous Transmission SAR Analysis

Antenna numbers of Simultaneous Transmission	Antennas of Simultaneous Transmission	Simultaneous Transmission Modes
2	MAIN ANT+ WLAN/BT ANT	LTE CAT M+ WIFI 2.4GHz LTE CAT M +BT

Limbs exposure

Position of worst case	Licensed band	Unlicensed band	Simultaneous SAR(w/kg)
Bottom	LTE CAT-M1 Band2	WIFI 2.4GHz	1.19

According to the above tables, all the exposure condition of SAR values < 4.0 W/kg.

The State Radio_monitoring_center Testing Center (SRTC) Page number: 34 of 109 Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

7 MEASUREMENT UNCERTAINTY

(0.3 - 3 GHz range)										
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)		
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}		
Measurement System										
Probe Calibration	$\pm 6.0 \%$	N	1	1	1	$\pm 6.0 \%$	±6.0 %	∞		
Axial Isotropy	$\pm 4.7 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞		
Hemispherical Isotropy	$\pm 9.6 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	$\pm 3.9 \%$	∞		
Boundary Effects	±1.0 %	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞		
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7 \%$	∞		
System Detection Limits	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6 \%$	∞		
Modulation Response ^{m}	$\pm 2.4 \%$	R	$\sqrt{3}$	1	1	$\pm 1.4\%$	$\pm 1.4 \%$	∞		
Readout Electronics	$\pm 0.3 \%$	N	1	1	1	$\pm 0.3\%$	$\pm 0.3 \%$	∞		
Response Time	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	$\pm 0.5\%$	$\pm 0.5 \%$	∞		
Integration Time	$\pm 2.6\%$	R	$\sqrt{3}$	1	1	$\pm 1.5\%$	$\pm 1.5 \%$	∞		
RF Ambient Noise	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞		
RF Ambient Reflections	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞		
Probe Positioner	$\pm 0.4 \%$	R	$\sqrt{3}$	1	1	$\pm 0.2 \%$	$\pm 0.2 \%$	∞		
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞		
Max. SAR Eval.	$\pm 2.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.2\%$	$\pm 1.2 \%$	∞		
Test Sample Related										
Device Positioning	$\pm 2.9\%$	N	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145		
Device Holder	$\pm 3.6\%$	N	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5		
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	∞		
Power Scaling ^p	±0 %	R	$\sqrt{3}$	1	1	$\pm 0.0 \%$	$\pm 0.0 \%$	∞		
Phantom and Setup										
Phantom Uncertainty	$\pm 6.1 \%$	R	$\sqrt{3}$	1	1	$\pm 3.5\%$	$\pm 3.5\%$	∞		
SAR correction	$\pm 1.9 \%$	R	$\sqrt{3}$	1	0.84	$\pm 1.1 \%$	$\pm 0.9 \%$	∞		
Liquid Conductivity (mea.) ^{DAK}	$\pm 2.5 \%$	R	$\sqrt{3}$	0.78	0.71	$\pm 1.1 \%$	$\pm 1.0 \%$	∞		
Liquid Permittivity (mea.) DAK	$\pm 2.5 \%$	R	$\sqrt{3}$	0.26	0.26	$\pm 0.3 \%$	$\pm 0.4 \%$	∞		
Temp. unc Conductivity ^{BB}	$\pm 3.4\%$	R	$\sqrt{3}$	0.78	0.71	$\pm 1.5 \%$	$\pm 1.4 \%$	∞		
Temp. unc Permittivity ^{BB}	$\pm 0.4 \%$	R	$\sqrt{3}$	0.23	0.26	$\pm 0.1\%$	$\pm 0.1\%$	∞		
Combined Std. Uncertainty					$\pm 11.2 \%$	±11.1%	361			
Expanded STD Uncertainty						$\pm 22.3\%$	$\pm 22.2\%$			

V3.0.0

	(3	- 6 GH	z rang	e)				
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	$\pm 6.55 \%$	N	1	1	1	$\pm 6.55 \%$	$\pm 6.55 \%$	∞
Axial Isotropy	$\pm 4.7 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞
Hemispherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	$\pm 3.9 \%$	∞
Boundary Effects	$\pm 2.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.2 \%$	$\pm 1.2 \%$	∞
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7 \%$	∞
System Detection Limits	$\pm 1.0 \%$	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	±0.6 %	∞
Modulation Response ^m	$\pm 2.4 \%$	R	$\sqrt{3}$	1	1	$\pm 1.4 \%$	$\pm 1.4 \%$	∞
Readout Electronics	$\pm 0.3 \%$	N	1	1	1	$\pm 0.3 \%$	$\pm 0.3 \%$	∞
Response Time	±0.8 %	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞
Integration Time	$\pm 2.6 \%$	R	$\sqrt{3}$	1	1	$\pm 1.5 \%$	$\pm 1.5 \%$	∞
RF Ambient Noise	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
RF Ambient Reflections	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
Probe Positioner	$\pm 0.8 \%$	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞
Probe Positioning	$\pm 6.7 \%$	R	$\sqrt{3}$	1	1	$\pm 3.9 \%$	$\pm 3.9 \%$	∞
Max. SAR Eval.	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3 \%$	∞
Test Sample Related								
Device Positioning	$\pm 2.9 \%$	N	1	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	145
Device Holder	$\pm 3.6 \%$	N	1	1	1	$\pm 3.6 \%$	$\pm 3.6 \%$	5
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	∞
Power Scaling ^p	±0 %	R	$\sqrt{3}$	1	1	±0.0 %	±0.0 %	∞
Phantom and Setup								
Phantom Uncertainty	$\pm 6.6 \%$	R	$\sqrt{3}$	1	1	$\pm 3.8 \%$	$\pm 3.8 \%$	∞
SAR correction	$\pm 1.9 \%$	R	$\sqrt{3}$	1	0.84	$\pm 1.1 \%$	$\pm 0.9 \%$	∞
Liquid Conductivity (mea.) ^{DAK}	$\pm 2.5 \%$	R	$\sqrt{3}$	0.78	0.71	$\pm 1.1 \%$	$\pm 1.0 \%$	∞
Liquid Permittivity (mea.) DAK	$\pm 2.5 \%$	R	$\sqrt{3}$	0.26	0.26	$\pm 0.3\%$	$\pm 0.4 \%$	∞
Temp. unc Conductivity BB	$\pm 3.4 \%$	R	$\sqrt{3}$	0.78	0.71	$\pm 1.5 \%$	$\pm 1.4 \%$	∞
Temp. unc Permittivity BB	±0.4 %	R	$\sqrt{3}$	0.23	0.26	$\pm 0.1 \%$	±0.1%	∞
Combined Std. Uncertainty						$\pm 12.3\%$	$\pm 12.2\%$	748
Expanded STD Uncertainty						$\pm 24.6\%$	$\pm 24.5\%$	

Page number: 36 of 109

V3.0.0

8 TEST EQUIPMENTS

The measurements were performed using an automated near-field scanning system, DASY5, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Model Serial Numb		Calibration date	Calibration Due data
DAE	DAE4	720	2019.10.02	2020.10.01
Dosimetric E-field Probe	ES3DV3	3708	2019.09.26	2020.09.25
Dipole Validation Kit	D750V3	4d023	2017.09.13	2020.09.12
Dipole Validation Kit	D1800V2	2d084	2017.09.15	2020.09.14
Dipole Validation Kit	D2000V2	1009	2018.02.01	2021.01.31
Dipole Validation Kit	D2450V2	738	2017.09.18	2020.09.17

Additional test equipment used in testing:

Test Equipment	Model S	Serial	Calibration	Calibration
		Number	date	Due data
Signal Generator	E4428C	MY45280865	2020.08.20	2021.08.19
Signal Generator	SML 03	103514	2020.08.20	2021.08.19
Power meter	E4417A	MY45101182	2020.08.20	2021.08.19
Power Sensor	E4412A	MY41502214	2020.08.20	2021.08.19
Power Sensor	E4412A	MY41502130	2020.08.20	2021.08.19
Power meter	E4417A	MY45101004	2020.08.20	2021.08.19
Power Sensor	E9300B	MY41496001	2020.08.20	2021.08.19
Power Sensor	E9300B	MY41496003	2020.08.20	2021.08.19
Communication Tester	E5515C	MY48367401	2020.08.20	2021.08.19
Communication Tester	CMW500	114666	2020.08.20	2021.08.19
Vector Network Analyzer	VNA R140	0011213	2019.09.18	2020.09.17
Dielectric Parameter Probe	DAKS-3.5	1042	2019.09.17	2020.09.16

Software	Version
DASY	52.10.2.1495
SEMCAD X	14.6.12
DAK	2.4.1.114

The State Radio_monitoring_center Testing Center (SRTC)Page number: 37 of 109
Tel: 86-10-57996183

V3.0.0

Detailed information of Isotropic E-field Probe Type ES3DV3

Construction	Symmetrical design with triangular core Interleaved sensors Built-in
	shielding against static charges PEEK enclosure material (resistant to
	organic solvents, e.g., DGBE)
Calibration	Calibration certificate in Appendix C
Frequency	10 MHz to 4 GHz;
	Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Optical Surface	
Detection	surfaces
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 3.9 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 2.0 mm
Dynamic Range	5 μW/g to > 100 W/kg; Linearity: ± 0.2 dB
Application	General dosimetry up to 4 GHz
	Dosimetry in strong gradient fields
	Compliance tests of mobile phones

Detailed information of Isotropic F-field Probe Type FX3DV4

Betailed information of footropic E field 1 foot Type Exob v+			
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g.,		
	DGBE)		
Calibration	Calibration certificate in Appendix C		
Frequency	10 MHz to > 6 GHz		
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Optical Surface	± 0.3 mm repeatability in air and clear liquids over diffuse reflecting		
Detection	surfaces		
Dimensions	Overall length: 337 mm (Tip: 20 mm)		
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole centers: 1 mm		
Dynamic Range	$10 \mu\text{W/g}$ to > 100 W/kg		
	Linearity: ± 0.2 dB (noise: typically < 1 µW/g)		
Application	High precision dosimetric measurements in any exposure scenario		
	(e.g., very strong gradient fields); the only probe that enables		
	compliance testing for frequencies up to 6 GHz with precision of better		
	30%.		

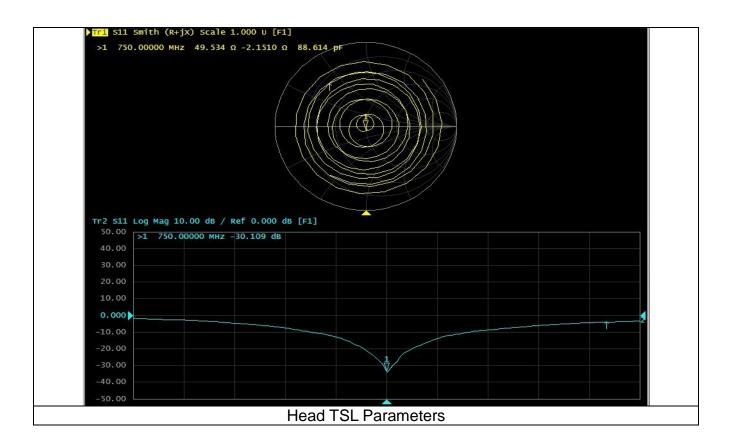
According to KDB 865664 D01 section 3.2.2, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements.

- 1) The test laboratory must ensure that the required supporting information and documentation are included in the SAR report to qualify for the three-year extended calibration interval; otherwise, the IEEE Std 1528-2013 recommended annual calibration applies.
- 2) Immediate re-calibration is required for the following conditions.
- a) After a dipole is damaged and properly repaired to meet required specifications.
- b) When the measured SAR deviates from the calibrated SAR value by more than 10% due to changes in physical, mechanical, electrical or other relevant dipole conditions; i.e., the error is not introduced by incorrect measurement procedures or other issues relating to the SAR measurement system.
- c) When the most recent return-loss result, measured at least annually, deviates by more than 20% from the previous measurement (i.e. value in dBx0.2) or not meeting the required 20 dB minimum return-loss requirement.
- d) When the most recent measurement of the real or imaginary parts of the impedance. measured at least annually, deviates by more than 5 Ω from the previous measurement.

The State Radio monitoring center Testing Center (SRTC) Page number: 38 of 109 Tel: 86-10-57996183 Fax: 86-10-57996388

Page number: 39 of 109

Dipole 750


SAR target

Refers to system check, measured SAR (1g and 10g) deviates from the Target SAR value of calibration report within 10%.

Impedance and Return loss measured by Network analyzer

The most recent measurement of the real or imaginary parts of the impedance, deviates within 5 Ω from the previous measurement. (Data from the last calibration report) The most recent return-loss result deviates within 20% from the previous measurement. (Data from the last calibration report)

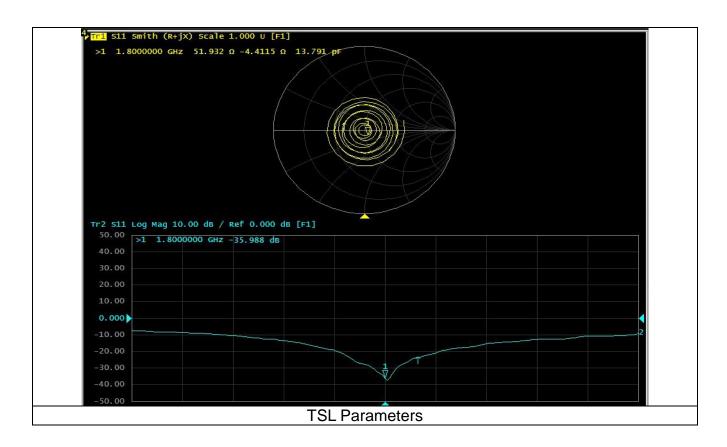
Head TSL Parameters			
Parameters	Target (Ref. Value)	Measured data	Deviation
Impedance	53.9Ω+0.24jΩ	49.5Ω-2.15jΩ	<5Ω
Return loss	-28.4dB	-29.8dB	<20%

The State Radio_monitoring_center Testing Center (SRTC)

Tel: 86-10-57996183 Fax: 86-10-57996388 V3.0.0

Page number: 40 of 109

Dipole1800


SAR target

Refers to system check, measured SAR (1g and 10g) deviates from the Target SAR value of calibration report within 10%.

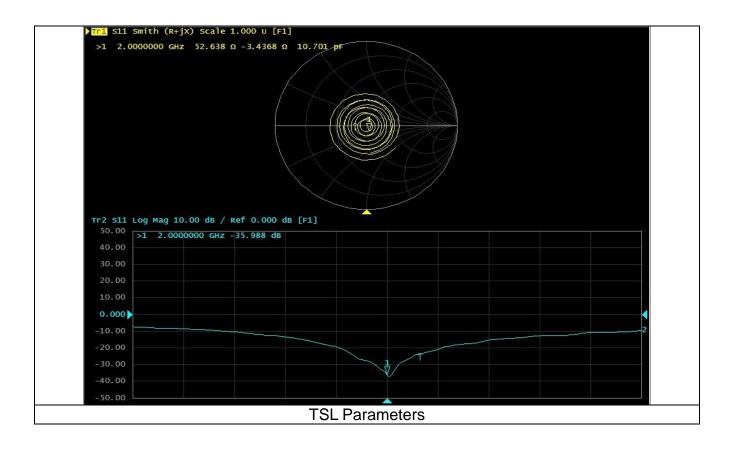
Impedance and Return loss measured by Network analyzer

The most recent measurement of the real or imaginary parts of the impedance, deviates within 5 Ω from the previous measurement. (Data from the last calibration report) The most recent return-loss result deviates within 20% from the previous measurement. (Data from the last calibration report)

		TSL Parameters	
Parameters	Target (Ref. Value)	Measured data	Deviation
Impedance	49.3Ω-1.55jΩ	51.9Ω-4.41jΩ	<5Ω
Return loss	-35.4 dB	-36.0dB	<20%

Page number: 41 of 109

Dipole2000


SAR target

Refers to system check, measured SAR (1g and 10g) deviates from the Target SAR value of calibration report within 10%.

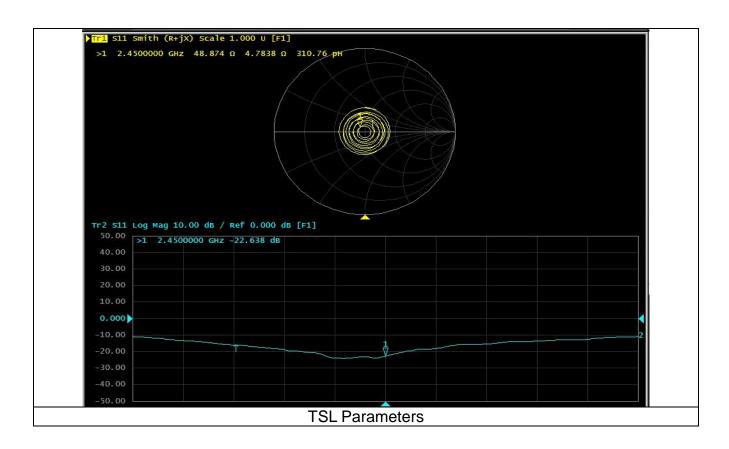
Impedance and Return loss measured by Network analyzer

The most recent measurement of the real or imaginary parts of the impedance, deviates within 5 Ω from the previous measurement. (Data from the last calibration report) The most recent return-loss result deviates within 20% from the previous measurement. (Data from the last calibration report)

		TSL Parameters	
Parameters	Target (Ref. Value)	Measured data	Deviation
Impedance	49.8Ω-2.08jΩ	52.6Ω-3.44jΩ	<5Ω
Return loss	-33.6dB	-36.0dB	<20%

Page number: 42 of 109

Dipole2450


SAR target

Refers to system check, measured SAR (1g and 10g) deviates from the Target SAR value of calibration report within 10%.

Impedance and Return loss measured by Network analyzer

The most recent measurement of the real or imaginary parts of the impedance deviates within 5 Ω from the previous measurement. (Data from the last calibration report) The most recent return-loss result deviates within 20% from the previous measurement. (Data from the last calibration report)

		TSL Parameters		
Parameters	Target (Ref. Value)	Measured data	Deviation	
Impedance	51.3Ω+5.92jΩ	48.9Ω+4.78jΩ	<5Ω	
Return loss	-24.5 dB	-22.6dB	<20%	

ANNEX A – TEST PLOTS

Please refer to the attachment.

ANNEX B - RELEVANT PAGES FROM CALIBRATION REPORTS

Please refer to the attachment.