
 

ESP32-WATG-32D
User Manual

Preliminary version 0.1

Espressif Systems

Copyright © 2019

https://manuals.plus/m/9b5692c86f7f01bc593b17c6ba9f06a66edf515d5ecec3a85f4ec2c98a6e7a23

About This Guide
This document is intended to help users set up the basic software development

environment for developing applications using hardware based on the ESP32-

WATG-32D module.

Release Notes

Date Version Release notes

2019.12 V0.1 Preliminary release.

Table of Contents
About This Guide	 2

Release Notes	2

Table of Contents	 3

1. Introduction to ESP32-WATG-32D	 1

1.1. ESP32-WATG-32D	 1

1.2. Pin Description	2

2. Hardware Preparation	 5

2.1. Hardware Preparation	 5

2.2. Hardware Connection	 5

3. Getting Started with ESP32-WATG-32D	 7

3.1. ESP-IDF	7

3.2. Set up the Tools	 7

3.2.1. Standard Setup of Toolchain for Windows	 7

3.2.2. Standard Setup of Toolchain for Linux	 7

3.2.3. Standard Setup of Toolchain for Mac OS	 9

3.3. Get ESP-IDF	 9

3.4. Add IDF_PATH to User Profile	 10

3.4.1. Windows	 10

3.4.2. Linux and MacOS	 10

4. Establish Serial Connection with ESP32-WATG-32D	 11

4.1. Connect ESP32-WATG-32D to PC	 11

4.2. Check Port on Windows	 11

4.3. Check Port on Linux and MacOS	 12

4.4. Adding User to dialout on Linux	 12

4.5. Verify Serial Connection	 13

5. Configure	 15

6. Build and Flash	 16

7. Flash onto the Device	 17

8. IDF Monitor	 18

9. Examples	 19  

1. Introduction to ESP32-

WATG-32D
1.1. ESP32-WATG-32D

ESP32-WATG-32D is a custom WiFi-BT-BLE MCU module for giving the “Connectivity

Function” to customer’s different products, including Water Heater and Comfort

Heating Systems.

Table 1 provides the specifications of ESP32-WATG-32D.

Table 1: ESP32-WATG-32D Specifications

Categories Items Specifications

Wi-Fi
Protocols

802.11 b/g/n (802.11n up to 150 Mbps)

A-MPDU and A-MSDU aggregation and 0.4 µs guard

in-

terval support

Frequency range 2400 MHz ~ 2483.5 MHz

Bluetooth

Protocols Bluetooth v4.2 BR/EDR and BLE specification

Radio

NZIF receiver with –97 dBm sensitivity

Class-1, class-2 and class-3 transmitter

AFH

Audio CVSD and SBC

Hardware

Module interfaces UART, I
2

C, EBUS2, JTAG, GPIO

On-chip sensor Hall sensor

Integrated crystal 40 MHz crystal

Integrated SPI flash 8 MB

Integrated DCDC Converter 3.3 V, 1.2 A

Operating voltage/Power

supply

12 V / 24 V

Maximum current delivered

by

power supply

300 mA

Recommended operating

tem-

perature range

–40 °C ~+ 85 °C

Module Dimensions
(18.00±0.15) mm × (31.00±0.15) mm × (3.10±0.15)

mm

1.2. Pin Description

Figure 1: Pin Layout

Table 2: Pin Definitions

Name No. Typ

e

Function

RESET 1 I Module enable signal(Internal pull-up by default). Active high.

I36 2 I GPIO36, ADC1_CH0, RTC_GPIO0

I37 3 I GPIO37, ADC1_CH1, RTC_GPIO1

I38 4 I GPI38, ADC1_CH2, RTC_GPIO2

ESP32-WATG-32D has 35 pins which are described in Table2.

I39 5 I GPIO39, ADC1_CH3, RTC_GPIO3

I34 6 I GPIO34, ADC1_CH6, RTC_GPIO4

I35 7 I GPIO35, ADC1_CH7, RTC_GPIO5

IO32 8 I/O
GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input),

ADC1_CH4, TOUCH9, RTC_GPIO9

IO33 9 I/O GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output),

ADC1_CH5, TOUCH8, RTC_GPIO8

IO25 10 I/O GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6

I2C_SDA 11 I/O GPIO26, I2C_SDA

I2C_SCL 12 I GPIO27, I2C_SCL

TMS 13 I/O GPIO14, MTMS

TDI 14 I/O GPIO12, MTDI

+5V 15 PI 5 V power supply input

GND 16,

17

PI Ground

VIN 18 I/O 12 V / 24 V power supply input

TCK 19 I/O GPIO13, MTCK

TDO 20 I/O GPIO15, MTDO

EBUS2 21,

35

I/O GPIO19/GPIO22, EBUS2

IO2 22 I/O
 GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP,

HS2_DATA0

IO0_FLASH 23 I/O
Download Boot: 0;

SPI Boot: 1(Default).

IO4 24 I/O GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD,

HS2_DATA1

IO16 25 I/O GPIO16, HS1_DATA4

5V_UART1_TX

D
26 O GPIO23, 5V UART Data Transmit

5V_UART1_RX

D

27 I GPIO18, 5V UART Data Receive

IO17 28 - GPIO17, HS1_DATA5

IO5 29 I/O GPIO5, VSPICS0, HS1_DATA6

U0RXD 31 I/O GPIO3, U0RXD

U0TXD 30 I/O GPIO1, U0TXD

IO21 32 I/O GPIO21, VSPIHD

GND 33 PI EPAD, Ground

+3.3V 34 PO 3.3V Power supply output

2. Hardware Preparation
2.1. Hardware Preparation

• ESP32-WATG-32D module

• Espressif RF testing board (Carrier Board)

• One USB-to-UART dongle

• PC, Windows 7 recommended

• Micro-USB cable

2.2. Hardware Connection

1. Solder ESP32-WATG-32D to the Carrier Board, as Figure 2 shows.

Figure 2: Testing Environment Setup(Needs Update)

2. Connect USB-to-UART dongle to the carrier board via TXD, RXD and GND.

3. Connect USB-to-UART dongle to the PC via the Micro-USB cable.

4. Connect the carrier board to 24 V adapter for power supply.

5. During download, short IO0 to GND via a jumper. Then, turn "ON" the board.

6. Download firmware into flash using the ESP32 DOWNLOAD TOOL.

7. After download, remove the jumper on IO0 and GND.

8. Power up the carrier board again. ESP32-WATG-32D will switch to working mode.

The chip will read programs from flash upon initialization.

📖 Notes:

• IO0 is internally logic high.

• For more information on ESP32-WATG-32D, please refer to ESP32-WATG-32D Datasheet.

3. Getting Started with ESP32-

WATG-32D
3.1. ESP-IDF

The Espressif IoT Development Framework (ESP-IDF for short) is a framework for

developing applications based on the Espressif ESP32. Users can develop

applications with ESP32 in Windows/Linux/MacOS based on ESP-IDF.

3.2. Set up the Tools

Aside from the ESP-IDF, you also need to install the tools used by ESP-IDF, such as

the compiler, debugger, Python packages, etc.

3.2.1. Standard Setup of Toolchain for Windows

The quickest way is to download the toolchain and MSYS2 zip from dl.espressif.com:

https://dl.espressif.com/dl/

esp32_win32_msys2_environment_and_toolchain-20181001.zip

Checking out

Run C:\msys32\mingw32.exe to open an MSYS2 terminal. Run:

mkdir	-p	~/esp

Input cd	~/esp to enter the new directory.

Updating the Environment

When IDF is updated, sometimes new toolchains are required or new requirements are

added to the Windows MSYS2 environment. To move any data from an old version of

the precompiled environment to a new one:

Take the old MSYS2 environment (ie C:\msys32) and move/rename it to a different

directory (ie C:\msys32_old).

Download the new precompiled environment using the steps above.

Unzip the new MSYS2 environment to C:\msys32 (or another location).

Find the old C:\msys32_old\home directory and move this into C:\msys32.

You can now delete the C:\msys32_old directory if you no longer need it.

You can have independent different MSYS2 environments on your system, as long as

they are in different directories.

3.2.2. Standard Setup of Toolchain for Linux

Install Prerequisites

CentOS 7：

sudo	yum	install	gcc	git	wget	make	ncurses-devel	flex	bison	gperf	python	pyserial	

python-pyelftools

Ubuntu 和 Debian：

sudo	apt-get	install	gcc	git	wget	make	libncurses-dev	flex	bison	gperf	python	python-

pip	python-setuptools	python-serial	python-cryptography	python-future	python-pyparsing	

python-pyelftools

Arch：

sudo	pacman	-S	--needed	gcc	git	make	ncurses	flex	bison	gperf	python2-pyserial	python2-

cryptography	python2-future	python2-pyparsing	python2-pyelftools

Set up The Toolchain

64-bit Linux： 

https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-esp32-2019r1-8.2.0.tar.gz

32-bit Linux： 

https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-esp32-2019r1-8.2.0.tar.gz

1. Unzip the file to ~/esp directory:

64-bit Linux：

mkdir	-p	~/esp

cd	~/esp

tar	-xzf	~/Downloads/xtensa-esp32-elf-linux64-esp32-2019r1-8.2.0.tar.gz

32-bit Linux：

mkdir	-p	~/esp

cd	~/esp

tar	-xzf	~/Downloads/xtensa-esp32-elf-linux32-esp32-2019r1-8.2.0.tar.gz

2. The toolchain will be unzipped to ~/esp/xtensa-esp32-elf/ directory.  

Add the following to ~/.profile:

export	PATH="$HOME/esp/xtensa-esp32-elf/bin:$PATH"

Optionally, add the following to ~/.profile:

alias	get_esp32='export	PATH="$HOME/esp/xtensa-esp32-elf/bin:$PATH"'

3. Re-log in to validate .profile. Run the following to check PATH:

				printenv	PATH

				$	printenv	PATH

				/home/user-name/esp/xtensa-esp32-elf/bin:/home/user-name/bin:/home/user-

name/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/

games:/usr/local/games:/snap/bin

Permission issues /dev/ttyUSB0

With some Linux distributions you may get the Failed to open port /dev/ttyUSB0 error

message when flashing the ESP32. This can be solved by adding the current user to

the dialout group.

Arch Linux Users

To run the precompiled gdb (xtensa-esp32-elf-gdb) in Arch Linux requires ncurses 5,

but Arch uses ncurses 6.

Backwards compatibility libraries are available in AUR for native and lib32

configurations:

https://aur.archlinux.org/packages/ncurses5-compat-libs/

https://aur.archlinux.org/packages/lib32-ncurses5-compat-libs/

Before installing these packages you might need to add the author’s public key to your

keyring as described in the “Comments” section at the links above.

Alternatively, use crosstool-NG to compile a gdb that links against ncurses 6.

3.2.3. Standard Setup of Toolchain for Mac OS

Install pip:

sudo	easy_install	pip

Install Toolchain:

https://github.com/espressif/esp-idf/blob/master/docs/en/get-started/macos-

setup.rst#id1

Unzip the file into ~/esp directory.

The toolchain will be unzipped into ~/esp/xtensa-esp32-elf/ path.

Add the following to ~/.profile:

export	PATH=$HOME/esp/xtensa-esp32-elf/bin:$PATH

Optionally, add the following to 〜/ .profile:

alias	get_esp32="export	PATH=$HOME/esp/xtensa-esp32-elf/bin:$PATH"

Input get_esp322 to add the toolchain to PATH.

3.3. Get ESP-IDF

Once you have the toolchain (that contains programs to compile and build the

application) installed, you also need ESP32 specific API / libraries. They are provided

by Espressif in ESP-IDF repository. To get it, open terminal, navigate to the directory

you want to put ESP-IDF, and clone it using git	clone command:

ESP-IDF will be downloaded into ~/esp/esp-idf.

3.4. Add IDF_PATH to User Profile

To preserve setting of IDF_PATH environment variable between system restarts, add it

to the user profile, following instructions below.

git	clone	--recursive	https://github.com/espressif/esp-idf.git

📖 Note:

Do not miss the --recursive option. If you have already cloned ESP-IDF without this option, run

another command to get all the submodules:

cd	~/esp/esp-idf

git	submodule	update	--init

3.4.1. Windows

Search for "Edit Environment Variables" on Windows 10.

Click New... and add a new system variable IDF_PATH. The configuration should

include an ESP-IDF directory, such as C:\Users\user-name\esp\esp-idf.

Add ;%IDF_PATH%\tools to the Path variable to run idf.py and other tools.

3.4.2. Linux and MacOS

Add the following to ~/.profile:

export	IDF_PATH=~/esp/esp-idf

export	PATH="$IDF_PATH/tools:$PATH"

Run the following to check IDF_PATH:

printenv	IDF_PATH

Run the following to check if idf.py is included in PAT:

which	idf.py

It will print a path similar to ${IDF_PATH}/tools/idf.py.

You can also enter the following if you do not want to modify IDF_PATH or PATH:

export	IDF_PATH=~/esp/esp-idf

export	PATH="$IDF_PATH/tools:$PATH" 

4. Establish Serial Connection

with ESP32-WATG-32D
This section provides guidance how to establish serial connection between ESP32-

WATG-32D and PC.

4.1. Connect ESP32-WATG-32D to PC

Solder ESP32-WATG-32D module to the carrier board and connect carrier board to

the PC using the USB-to-UART dongle. If device driver does not install automatically,

identify USB to serial converter chip on your external USB-to-UART dongle, search for

drivers in internet and install them.

Below are the links to drivers that can be used.

CP210x USB to UART Bridge VCP Drivers

FTDI Virtual COM Port Drivers

The drivers above are primarily for reference. Under normal circumstances, the drivers

should be bundled with and operating system and automatically installed upon

connecting USB-to-UART dongle to the PC.

4.2. Check Port on Windows

Check the list of identified COM ports in the Windows Device Manager. Disconnect

USB-to-UART dongle and connect it back, to verify which port disappears from the list

and then shows back again.

Figure 4-1. USB to UART bridge of USB-to-UART dongle in Windows Device Manager

Figure 4-2. Two USB Serial Ports of USB-to-UART dongle in Windows Device Manager

4.3. Check Port on Linux and MacOS

To check the device name for the serial port of your USB-to-UART dongle, run this

command two times, first with the dongle unplugged, then with plugged in. The port

which appears the second time is the one you need:

Linux

ls	/dev/tty*

MacOS

ls	/dev/cu.*

4.4. Adding User to dialout on Linux

The currently logged user should have read and write access the serial port over USB.

On most Linux distributions, this is done by adding the user to dialout group with the

following command:

sudo	usermod	-a	-G	dialout	$USER

on Arch Linux this is done by adding the user to uucp group with the following

command:

sudo	usermod	-a	-G	uucp	$USER

Make sure you re-login to enable read and write permissions for the serial port.

4.5. Verify Serial Connection

Now verify that the serial connection is operational. You can do this using a serial

terminal program. In this example we will use PuTTY SSH Client that is available for

both Windows and Linux. You can use other serial program and set communication

parameters like below.

Run terminal, set identified serial port, baud rate = 115200, data bits = 8, stop bits =

1, and parity = N. Below are example screen shots of setting the port and such

transmission parameters (in short described as 115200-8-1-N) on Windows and

Linux. Remember to select exactly the same serial port you have identified in steps

above.

Figure 4-3. Setting Serial Communication in PuTTY on Windows

Figure 4-4. Setting Serial Communication in PuTTY on Linux

Then open serial port in terminal and check, if you see any log printed out by ESP32.

The log contents will depend on application loaded to ESP32.

Notes:

• For some serial port wiring configurations, the serial RTS & DTR pins need to be

disabled in the terminal program before the ESP32 will boot and produce serial

output. This depends on the hardware itself, most development boards

(including all Espressif boards) do not have this issue. The issue is present if RTS

& DTR are wired directly to the EN & GPIO0 pins. See the esptool

documentation for more details.

• Close serial terminal after verification that communication is working. In the next

step we are going to use a different application to upload a new firmware to

ESP32. This application will not be able to access serial port while it is open in

terminal.

5. Configure
Enter hello_world directory and run menuconfig.

Linux and MacOS

cd	~/esp/hello_world

idf.py	-DIDF_TARGET=esp32	menuconfig

You may need to run python2 idf.py on Python 3.0.

Windows

cd	%userprofile%\esp\hello_world

idf.py	-DIDF_TARGET=esp32	menuconfig

The Python 2.7 installer will attempt to configure Windows to associate a .py file with

Python 2. If other programs (such as Visual Studio Python tools) have been associated

with other versions of Python, idf.py may not work properly (the file will open in Visual

Studio). In this case, you can choose to run C:\Python27\python idf.py every time, or

change the Windows .py associated file settings.

6. Build and Flash
Now you can build and flash the application. Run:

This will compile the application and all the ESP-IDF components, generate

bootloader, partition table, and application binaries, and flash these binaries to your

ESP32 board.

$	idf.py	build

Running	cmake	in	directory	/path/to/hello_world/build

Executing	"cmake	-G	Ninja	--warn-uninitialized	/path/to/hello_world"...

Warn	about	uninitialized	values.

--	Found	Git:	/usr/bin/git	(found	version	"2.17.0")

--	Building	empty	aws_iot	component	due	to	configuration

--	Component	names:	...

--	Component	paths:	...

...	(more	lines	of	build	system	output)

[527/527]	Generating	hello-world.bin

esptool.py	v2.3.1

Project	build	complete.	To	flash,	run	this	command:

../../../components/esptool_py/esptool/esptool.py	-p	(PORT)	-b	921600	write_flash	--

flash_mode	dio	--flash_size	detect	--flash_freq	40m	0x10000	build/hello-world.bin		

build	0x1000	build/bootloader/bootloader.bin	0x8000	build/partition_table/partition-

table.bin

or	run	'idf.py	-p	PORT	flash'

If there are no issues, at the end of build process, you should see generated .bin files.

idf.py	build

7. Flash onto the Device
Flash the binaries that you just built onto your ESP32 board by running:

idf.py	-p	PORT	[-b	BAUD]	flash

Replace PORT with your ESP32 board's serial port name. You can also change the

flasher baud rate by replacing BAUD with the baud rate you need. The default baud

rate is 460800.

Running	esptool.py	in	directory	[...]/esp/hello_world

Executing	"python	[...]/esp-idf/components/esptool_py/esptool/esptool.py	-b	460800	
write_flash	@flash_project_args"...

esptool.py	-b	460800	write_flash	--flash_mode	dio	--flash_size	detect	--flash_freq	40m	
0x1000	bootloader/bootloader.bin	0x8000	partition_table/partition-table.bin	0x10000	
hello-world.bin

esptool.py	v2.3.1

Connecting....

Detecting	chip	type...	ESP32

Chip	is	ESP32D0WDQ6	(revision	1)

Features:	WiFi,	BT,	Dual	Core

Uploading	stub...

Running	stub...

Stub	running...

Changing	baud	rate	to	460800

Changed.

Configuring	flash	size...

Auto-detected	Flash	size:	4MB

Flash	params	set	to	0x0220

Compressed	22992	bytes	to	13019...

Wrote	22992	bytes	(13019	compressed)	at	0x00001000	in	0.3	seconds	(effective	558.9	
kbit/s)...

Hash	of	data	verified.

Compressed	3072	bytes	to	82...

Wrote	3072	bytes	(82	compressed)	at	0x00008000	in	0.0	seconds	(effective	5789.3	kbit/
s)...

Hash	of	data	verified.

Compressed	136672	bytes	to	67544...

Wrote	136672	bytes	(67544	compressed)	at	0x00010000	in	1.9	seconds	(effective	567.5	
kbit/s)...

Hash	of	data	verified.

Leaving...

Hard	resetting	via	RTS	pin...

If there are no issues by the end of the flash process, the module will be reset and the

“hello_world” application will be running.

8. IDF Monitor
To check if "hello_world" is indeed running, type idf.py	-p	PORT monitor (Do not

forget to replace PORT with your serial port name).

This command launches the monitor application:

$	idf.py	-p	/dev/ttyUSB0	monitor

Running	idf_monitor	in	directory	[...]/esp/hello_world/build

Executing	"python	[...]/esp-idf/tools/idf_monitor.py	-b	115200	[...]/esp/hello_world/

build/hello-world.elf"...

---	idf_monitor	on	/dev/ttyUSB0	115200	---

---	Quit:	Ctrl+]	|	Menu:	Ctrl+T	|	Help:	Ctrl+T	followed	by	Ctrl+H	---

ets	Jun		8	2016	00:22:57

rst:0x1	(POWERON_RESET),boot:0x13	(SPI_FAST_FLASH_BOOT)

ets	Jun		8	2016	00:22:57

...

After startup and diagnostic logs scroll up, you should see "Hello world!" printed out by

the application.

...

Hello	world!

Restarting	in	10	seconds...

I	(211)	cpu_start:	Starting	scheduler	on	APP	CPU.

Restarting	in	9	seconds...

Restarting	in	8	seconds...

Restarting	in	7	seconds...

To exit IDF monitor use the shortcut Ctrl+].

If IDF monitor fails shortly after the upload, or, if instead of the messages above, you

see random garbage similar to what is given below, your board is likely using a 26MHz

crystal. Most development board designs use 40MHz, so ESP-IDF uses this frequency

as a default value.

9. Examples
For ESP-IDF examples, please go to ESP-IDF GitHub.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to

change without notice.

THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE,

OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights,

relating to use of information in this document is disclaimed. No licenses

express or implied, by estoppel or otherwise, to any intellectual property

rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The

Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in

this document are property of their respective owners, and are hereby

acknowledged.

Copyright © 2019 Espressif Inc. All rights reserved.

Espressif IoT Team

www.espressif.com

