

RF Test Report

For

Safemo Pte. Ltd.

Test Standards:	FCC Part 15 Subpart C	
Product Name:	Smart Battery Cam	
Tested Model:	<u>SS131</u>	
Additional Model No.:	<u>N/A</u>	
Brand Name:	<u>N/A</u>	
FCC ID:	2BC5I-SS131	
Classification	(DTS) Digital Transmission System	
Report No.:	EC2409031RF02	
Tested Date:	2024-12-18 to 2025-01-08	
Issued Date:	<u>2025-01-11</u>	
	Laxy Ruan	
Prepared By:	Laxy Ruan / Engineer	
	Tim Yang	
Approved By:	Tiny Yang / RF Manager	
Hunan Ecloud Testing Technology Co., Ltd.		
Building A1, Changsha E Center, N	No. 18 Xiangtai Avenue, Liuyang Economic and	
Technological Dev	velopment Zone, Hunan, P.R.C	
Tel.: +86-731-8963	34887 Fax.: +86-731-89634887	
www	w.hn-ecloud.com	
Note: The test results in this report apply exclusion	sively to the tested model / sample. Without written approval of	

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of

Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2025-01-11	Valid	Original Report

TABLE OF CONTENTS

REPORT REVISE RECORD	2
TABLE OF CONTENTS	3
SUMMARY OF TEST RESULT	5
1 TEST LABORATORY	6
1.1 Test facility	6
2 GENERAL DESCRIPTION	7
2.1 Applicant	
2.2 Manufacturer	7
2.3 General Description Of EUT	7
2.4 Test Location	8
2.5 Modification of EUT	
2.6 Applicable Standards	8
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	9
3.1 Descriptions of Test Mode	9
3.2 Test Mode	9
3.3 Support Equipment	10
3.4 Test Setup	10
3.5 Measurement Results Explanation Example	14
4 TEST RESULT	15
4.1 6dB and 99% Bandwidth Measurement	15
4.2 Output Power Measurement	16
4.3 Power Spectral Density Measurement	17
4.4 Conducted Band Edges and Spurious Emission Measurement	18
4.5 Radiated Band Edges and Spurious Emission Measurement	19
4.6 AC Conducted Emission Measurement	-
4.7 Antenna Requirements	85
5 LIST OF MEASURING EQUIPMENT	86
6 UNCERTAINTY OF EVALUATION	87
7 SETUP PHOTOGRAPHS	88
APPENDIX A: DTS BANDWIDTH	90
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	96
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	102

Tel.:+86-731-89634887 Fax.: +86-731-89634887

APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	108
APPENDIX E: BAND EDGE MEASUREMENTS	114
APPENDIX F: CONDUCTED SPURIOUS EMISSION	118
APPENDIX G: DUTY CYCLE	133

Summary Of Test Result

FCC Rule	Description	Limit	Result	Remark
15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
-	99% Bandwidth	-	Pass	-
15.247(b)(3)	Output Power	≤ 30dBm	Pass	-
15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
15.247(d)	Conducted Band Edges and Spurious Emission	≤ 30dBc	Pass	-
15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 6.50 dB at 239.52 MHz
15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 25.76 dB at 7.329 MHz
15.203 & 15.247(b)	Antenna Requirement	-	Pass	-

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number: L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244, Test Firm Registration Number:

793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of

innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Code : 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

2 General Description

2.1 Applicant

Safemo Pte. Ltd.

61 BUKIT BATOK CRESCENT #05-505, HENG LOONG BUILDING, SINGAPORE

2.2 Manufacturer

Safemo Pte. Ltd.

61 BUKIT BATOK CRESCENT #05-505, HENG LOONG BUILDING, SINGAPORE

2.3 General Description Of EUT

Product	Smart Battery Cam
Model No.	SS131
Additional No.	N/A
Difference Description	N/A
FCC ID	2BC5I-SS131
Power Supply	3.6Vdc From Battery
Modulation Technology	CCK, DQPSK, DBPSK for DSSS
Modulation Technology	64QAM, 16QAM, QPSK, BPSK for OFDM
	802.11b : DSSS
Modulation Type	802.11g/n : OFDM
Operating Frequency	2412-2462MHz
Number Of Channel	11
	802.11b : 16.46 dBm (0.04426 W)
Max. Output Power	802.11g : 15.58 dBm (0.03614 W)
	802.11n HT20 : 15.46 dBm (0.03516 W)
Antenna Type	FPC Antenna with 2.97dBi gain
HW Version	SS131_C02_V4
SW Version	1.9.10
Sample no.	2409031R-1/4~4/4
Sample Received Date	2024-12-17
I/O Ports	Refer to user's manual

NOTE:

1. The above EUT information is declared by manufacturer. The laboratory is not responsible for the information provided by the manufacturer.

- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Test Location

All tests were performed at:

Building A1, Changsha E Centre, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C.

Telephone: +86 (0) 731 8963 4887 Fax:+86 (0) 731 8963 4887

No tests were sub-contracted.

2.5 Modification of EUT

No modifications are made to the EUT during all test items.

2.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C
- ANSI C63.10-2020
- KDB 558074 D01 15.247 Meas Guidance v05r02

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

11 channels are provided for 802.11b, 802.11g and 802.11n(HT20):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

The transmitter has a maximum conducted output power as follows:

Frequency Range(MHz)	Mode	Rate	Output Power(dBm)
2412~2462	802.11b	1M	16.46
2412~2462	802.11g	6M	15.58
2412~2462	802.11n HT20	MCS0	15.46

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

Summary table of Test Cases					
Toot Itom	Modulation				
restitem	Test Item 802.11 b 802.11 g 802.11 n HT20				
Conducted	Mode 1: CH01	Mode 1: CH01	Mode 1: CH01		
	Mode 2: CH06	Mode 2: CH06	Mode 2: CH06		
Test Cases	Mode 3: CH011	Mode 3: CH011	Mode 3: CH011		

3.2.2 Radiated Emission Test (Below 1GHz)

Radiated	802.11 b
Test Cases	Mode 1: CH01

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible

combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna

diversity architecture) and packet type. Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

2. Following channel(s) was (were) selected for the final test as listed above.

3.2.3 Radiated Emission Test (Above 1GHz)

Toot Itom		Modulation	
Test Item	802.11 b	802.11 g	802.11n HT20
Dedicted	Mode 1: CH01	Mode 1: CH01	Mode 1: CH01
Radiated	Mode 2: CH06	Mode 2: CH06	Mode 2: CH06
Test Cases	Mode 3: CH11	Mode 3: CH11	Mode 3: CH11

Note : 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3. For frequency above 18GHz, the measured value is much lower than the limit, therefore, it is not reflected in the report.

3.2.4 Power Line Conducted Emission Test

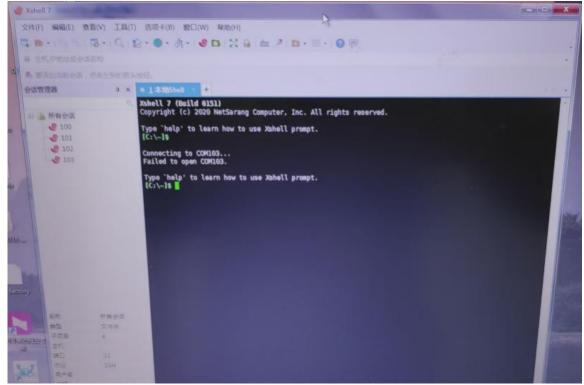
AC Conducted	Made 1 - Adepter - Netsbeek	
Emission	Mode 1 :Adapter + Notebook	

3.3 Support Equipment

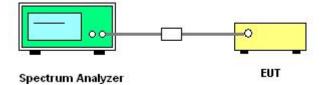
Item	Equipment	Trade Name	Model Name	Serial Number	Note
1.	Notebook	Lenovo	E580	PF-12XLH6	SDoC
2.	Adapter	Xiaomi	MDY-12-EF	TA62212E209292G	SDoC

3.4 Test Setup

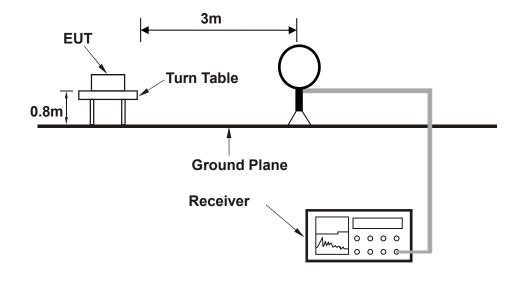
For WLAN test items, an engineering test program was provided and enabled to make EUT continuous transmitting and receiving signals.


The following picture is a screenshot of the test software.

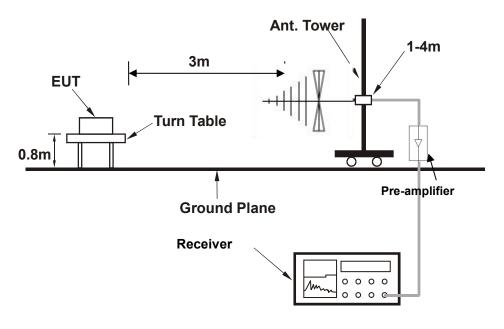
Xshell 7

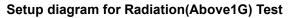

7.0.0039

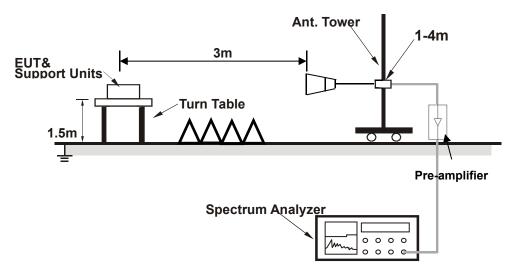
Report No.: EC2409031RF02

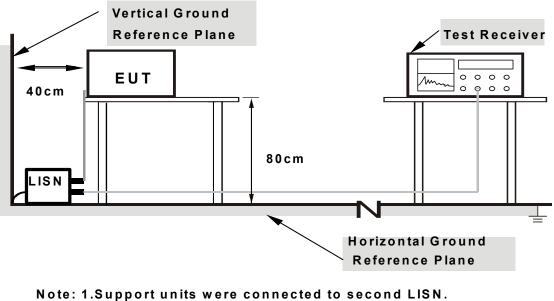


Setup diagram for Conducted Test






Setup diagram for Radiation(9KHz~30MHz) Test


Setup diagram for Radiation(Below 1G) Test

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Over Limit $(dB\mu V/m)$ = Level $(dB\mu V/m)$ - Limit Level $(dB\mu V/m)$

4 Test Result

4.1 6dB and 99% Bandwidth Measurement

4.1.1 Limit of 6dB and 99% Bandwidth

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set to the maximum power setting and enable Transmitting the EUT transmit continuously
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. Set the Video bandwidth (VBW) ≥ [3 × RBW]. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be at least three times the RBW.

4.1.3 Test Result of 6dB Bandwidth

Please refer to Appendix A of this report.

4.1.4 Test Result of 99% Bandwidth

Please refer to Appendix B of this report.

4.2 Output Power Measurement

4.2.1 Limit of Output Power

FCC §15.247 (b)(3)

For systems using digital modulation in the 2400-2483.5 MHz bands: 30dBm.

4.2.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to spectrum analyzer.
- 3. Set to the maximum power setting and enable Transmitting the EUT transmit continuously
- 4. Measure the duty cycle, x, of the transmitter output signal as described in below:
 - a. Set the center frequency of the instrument to the center frequency of the transmission.
 - b. Set RBW to the largest available Transmitting value.
 - c. Set detector = peak
- Set span to more than 1.5*OBW.Set RBW=510KHz,VBW=2MHz, Number of points in sweep ≥ [2 × span / RBW]. Sweep time = auto. Detector = RMS.
- 6. Allow the sweep to "free run". Trace average 100 traces in RMS mode
- 7. Compute power by integrating the spectrum across the OBW of the signal using the instrument's Channel power measurement function with band limits set equal to the OBW band edges.
- 8. Add 10 log (1/x), where x is the duty cycle.

4.2.3 Test Result of Duty Cycle

Please refer to Appendix G of this report.

4.2.4 Test Result of Output Power

Please refer to Appendix C of this report.

4.3 Power Spectral Density Measurement

4.3.1 Limits of Power Spectral Density

FCC§15.247(e)

The power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

4.3.2 Test Procedure

- 1. Turn on the EUT and connect it to measurement instrument.
- 2. Measure the duty cycle, x, of the transmitter output signal as described in below:
 - a. Set the center frequency of the instrument to the center frequency of the transmission.
 - b. Set RBW to the largest available Transmitting value.
 - c. Set detector = peak.
- Set span to more than 1.5*OBW.Set RBW= 30 KHz,VBW=100 KHz, Number of points in sweep ≥ [2 × span / RBW]. Sweep time = auto.
- Detector = power averaging (rms), Sweep time = auto couple, Trace mode = averaging (rms) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level.
- 5. Add 10 log (1/x), where x is the duty cycle.
- Measure and record the results in the test report. The final Result[dBm/3kHz]= Result[dBm/30kHz]-10*log10(30/3).

4.3.3 Test Result of Power Spectral Density

Please refer to Appendix D of this report.

4.4 Conducted Band Edges and Spurious Emission Measurement

4.4.1 Limit of Conducted Band Edges and Spurious Emission

FCC §15.247 (d)

Maximum conducted (average) output power was used to determine compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).

4.4.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 1. Turn on the EUT and connect it to measurement instrument.
- 2. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 3. Measure and record the results in the test report.
- 4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

4.4.3 Test Result of Conducted Band Edges

Please refer to Appendix E of this report.

4.4.4 Test Result of Conducted Spurious Emission

Please refer to Appendix F of this report.

4.5 Radiated Band Edges and Spurious Emission Measurement

4.5.1 Limit of Radiated Band Edges and Spurious Emission

FCC §15.247 (d)

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

4.5.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW≥3×RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

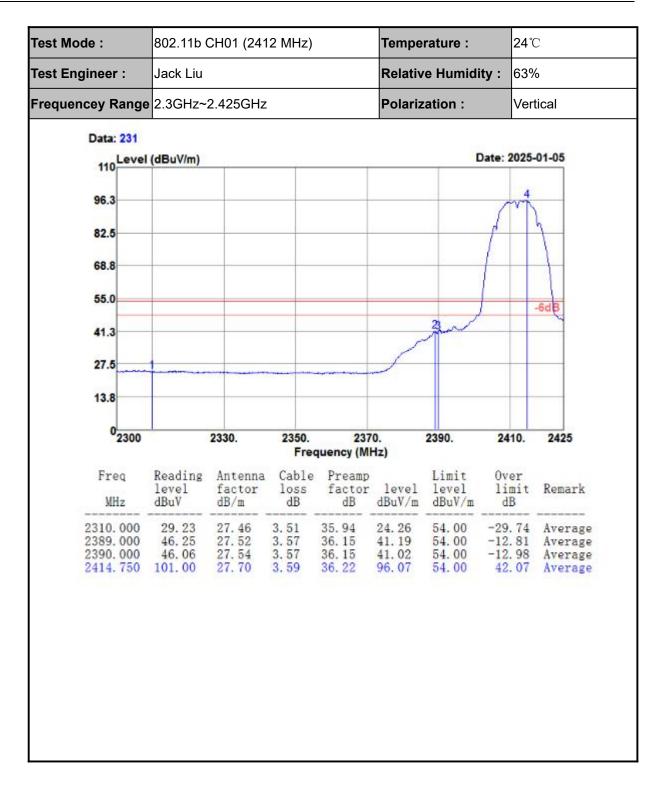
6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

4.5.4 Test Result of Radiated Spurious at Band Edges

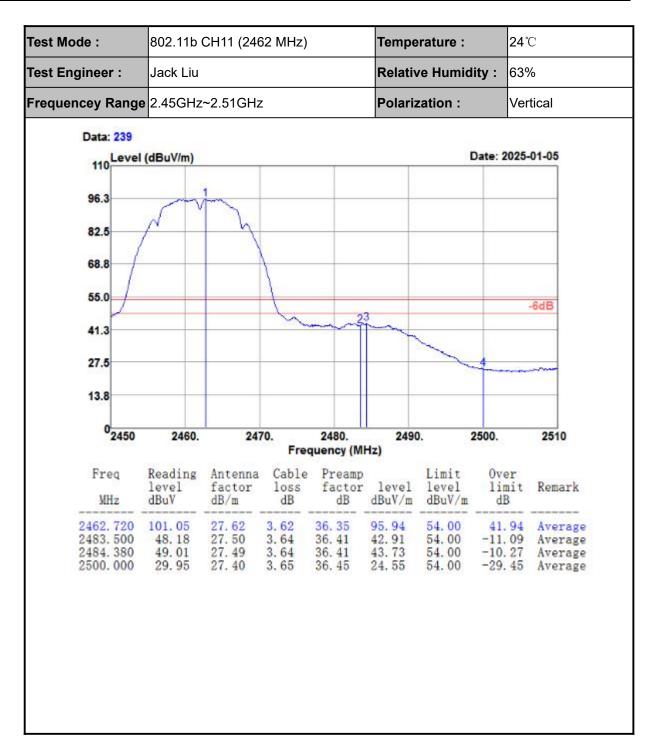
Node :	802.11	o CH01 (24		Z)	Temp	perature :	2	4 ℃
Engineer :	Jack Li	u			Relat	ive Humi	dity: 6	3%
iencey Ran	ge 2.3GHz	2~2.425G⊦	łz		Pola	rization :	н	lorizontal
Data: 227 Level	(dBuV/m)					c	Date: 2025	-01-05
110								
96.3							4	N.
82.5			-			-		
68.8							1	-6dB
55.0						M		L
12 12 12 12 12 12 12 12 12 12 12 12 12 1								
41.3	1				1 martinette	23.0 4		_
	nterrorance	under ange an our	and the state of the	nade stability of the support	and the second	and and a		
41.3	-		en la composición de		and a start of the			
41.3 27.5	and the second second	2330.	2350.	237 quency (Mł		2390.	2410.	2425
41.3 27.5 13.8	Reading level dBuV		2350. Free	237 quency (Mł Preamp		2390. Limit level	0ver	2425 Remark



	802.11b	CH01 (24	12 MHz)	Temp	erature :	2	4℃
Engineer :	Jack Liu				Relati	ve Humic	dity: 6	3%
uencey Range	2.3GHz	~2.425GH	z		Polari	zation :	F	lorizontal
Data: 228 110	(dBuV/m)						Date: 202	5-01-05
96.3								3
82.5	-						f	A -
68.8								
55.0								-6dB
41.3						3~		5
27.5	-				/			
13.8								
02300		2330.	2350. Erec	237 quency (M		2390.	2410.	2425
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp	level	Limit level dBuV/m	Over limit dB	. Remark
2310.000	41.12	27.46 27.54 27.70	3.57	36.15	36.08	54.00 54.00 54.00	-29.79 -17.92 36.51) Average 2 Average 1 Average

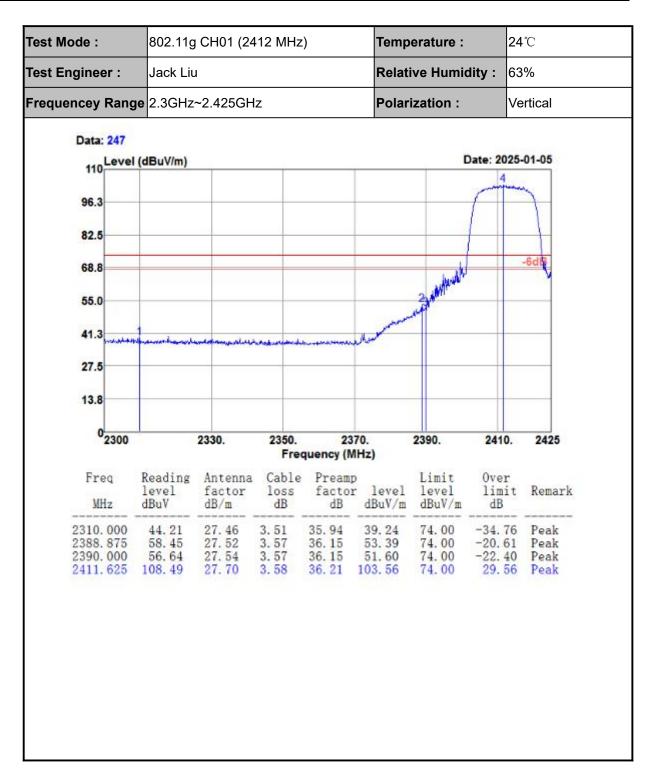
est Mode :	802.11b	CH01 (24	12 MHz))	Temp	erature :	2	24 ℃
est Engineer :	Jack Liu				Relati	ve Humid	lity:	63%
equencey Range	• 2.3GHz~	2.425GH	Z		Polari	zation :	١	Vertical
Data: 230 110 Level 96.3 82.5 68.8 55.0 41.3 27.5	(dBuV/m)			al Je co fra de la france		2.049.07	Date: 202	25-01-05 -6dB
13.8 0 ₂₃₀₀		2330.	2350. Free	237 quency (Mi		2390.	2410	. 2425
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp	level	Limit level dBuV/m	Over limi dB	t Remark
2310.000 2390.000 2412.000	41.59 58.26 105.08	27.54	3.57	36.15	53.22	74.00 74.00 74.00	-20.7	8 Peak 8 Peak 5 Peak

	802.11b C	H11 (2462	2 MHz)		Temper	ature :	24°	Ċ
est Engineer :	Jack Liu				Relative	e Humidi	ty : 639	%
equencey Range	2.45GHz~	2.51GHz			Polariza	ation :	Ho	rizontal
Data: 235				And Of Management			Date: 202	5-01-05 -6dB
0 ₂₄₅₀	2460.	247		2480. Juency (Mi	2490 1z)).	2500.	2510
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp			Over limit dB	Remark
2461, 940 2483, 500 2484, 140	100. 55 52. 66 54. 72 42. 41	27.63 27.50 27.50 27.40	3.62 3.64 3.64 3.65	36. 35 36. 41 36. 41 36. 45	95. 45 47. 39 49. 45 37. 01	74.00 74.00 74.00 74.00	-24.55	Peak



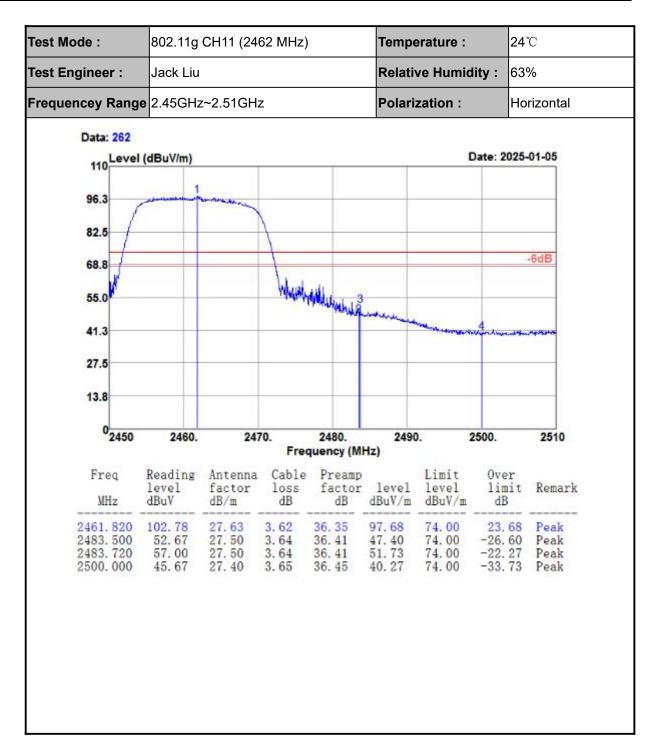
st Mode :	802.1	1b CH11 (2462 MI	Hz)	Ten	nperature):	24 ℃
st Engineer :	Jack L	.iu			Rel	ative Hur	nidity :	63%
equencey Rar	1 ge 2.45G	Hz~2.510	GHz		Pol	arization	:	Horizonta
Data: 236 110 Level 96.3 82.5 68.8 55.0 41.3 27.5	(dBuV/m)	m					Date: 2025	-6dB
13.8								
02450	2460.	24	70. Fre	2480. quency (MI	2490 Hz)). 1	2500.	2510
Freq MHz	Reading level dBuV	Antenna factor dB/m			level	Limit level dBuV/m	Over limit dB	Remark
2461, 220 2483, 500 2484, 080 2500, 000	96. 04 42. 08 43. 18 29. 50	27.50	3.64	36.41	36.81	54.00	-17.19	Average Average Average Average

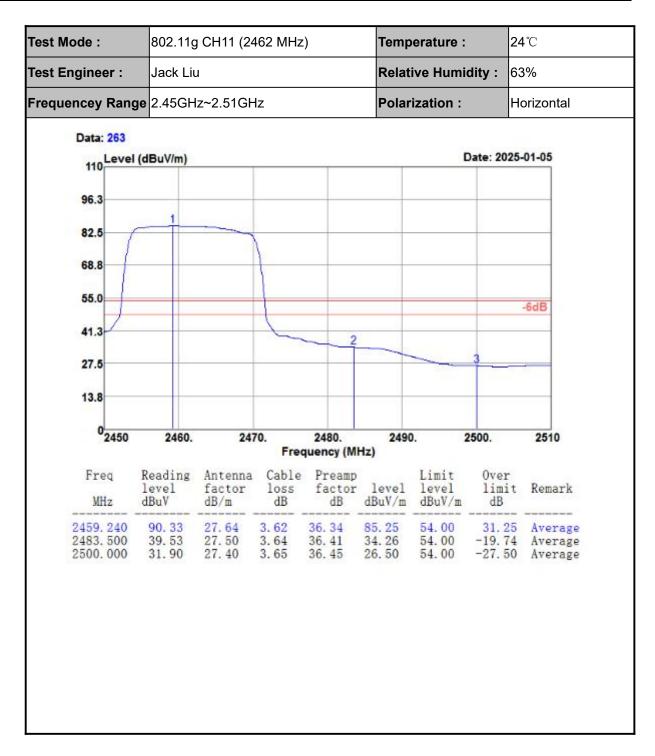
est Mode :	802.11b C	CH11 (246	2 MHz)		Tempe	rature :	24	°C
st Engineer :	Jack Liu				Relativ	e Humid	ity: 63	%
requencey Range	2.45GHz~	2.51GHz			Polariz	ation :	Ve	rtical
Data: 238 110 Level 96.3 82.5 68.8 55.0 41.3	(dBuV/m)			antra Venanci	and the second se		Date: 202	-6dB
27.5 13.8								
02450	2460.	247		2480. quency (M	2490 Hz)).	2500.	2510
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m		Over limit dB	Remark
2483.900	105.82 59.34 60.92 42.12	27.63 27.50 27.50 27.40	3. 62 3. 64 3. 64 3. 65	36, 35 36, 41 36, 41 36, 45	100. 72 54. 07 55. 65 36. 72	74.00 74.00 74.00 74.00	-18.35	Peak Peak Peak Peak



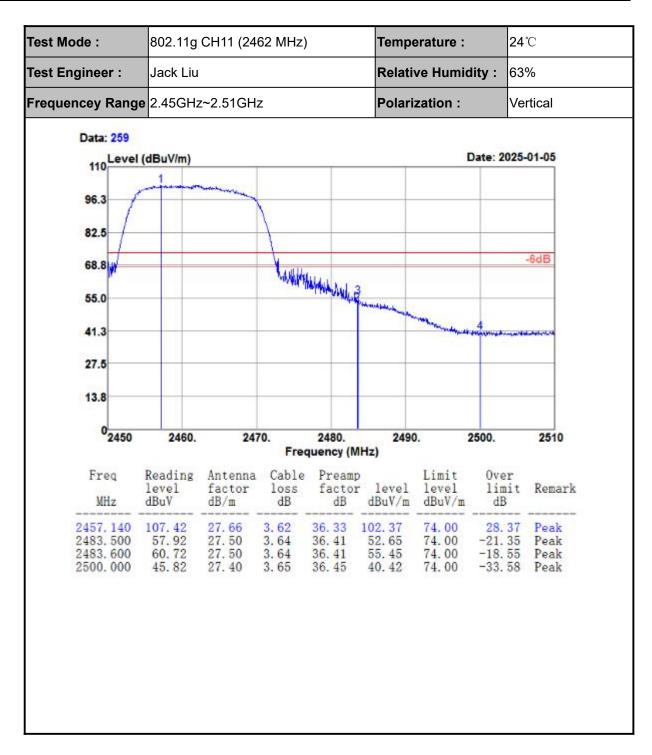
Mode :	802.11g C	CH01 (2412	MHz)	I	Temp	perature :		24 ℃
Engineer :	Jack Liu				Relat	tive Humi	dity :	63%
uencey Range	e 2.3GHz~2	2.425GHz			Pola	rization :		Horizontal
Data: 250 110 Level (0 96.3 82.5 68.8 55.0 41.3 27.5				wherewear			4	25-01-05
13.8 0 2300	23	30. 2	350. Frequ	237 Jency (MH		2390.	2410	. 2425
		actor 1		Preamp		Limit level dBuV/m	Over limi dB	
2310.000 2388.000 2390.000 2412.250	52.07 2 50.94 2	7.51 3.	57 57	36.15 36.15	47.00	74.00	-27.0	8 Peak 0 Peak 0 Peak 9 Peak

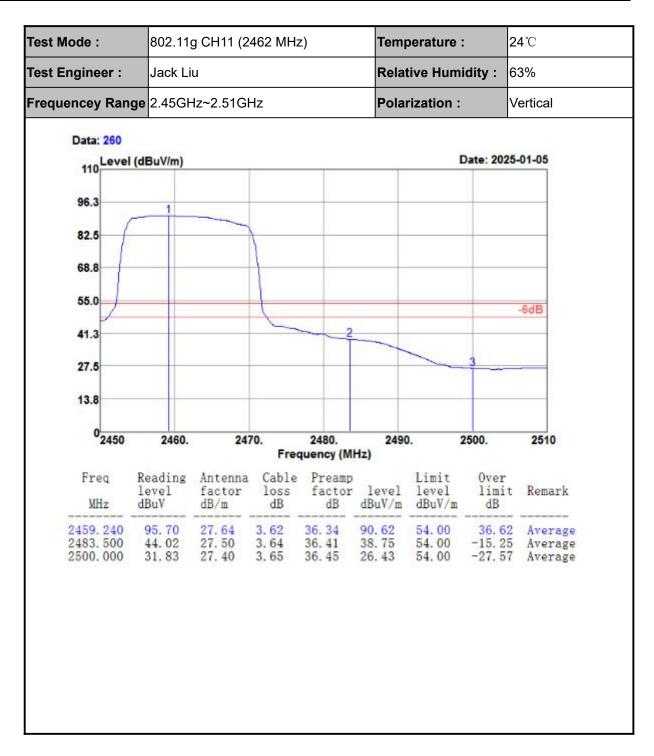
	802.11g	CH01 (24	12 MHz)	Temp	erature :	2	4 ℃
Engineer :	Jack Liu				Relati	ve Humid	lity: 6	3%
uencey Rang	e 2.3GHz~	~2.425GH	Z		Polari	ization :	F	lorizontal
Data: 251 110 Level	(dBuV/m))ate: 202	5-01-05
96.3								
82.5	1				-		1	-
68.8						_		
55.0								-6dB
41.3						200		6
27.5			-			1		
13.8								
02300		2330.	2350. Fred	237 quency (Mi		2390.	2410.	2425
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp	level	Limit level dBuV/m	Over limit dB	Remark
2310.000 2390.000 2414.250	37.89	27.46 27.54 27.70	3.57	36.15	32.85	54.00 54.00 54.00		

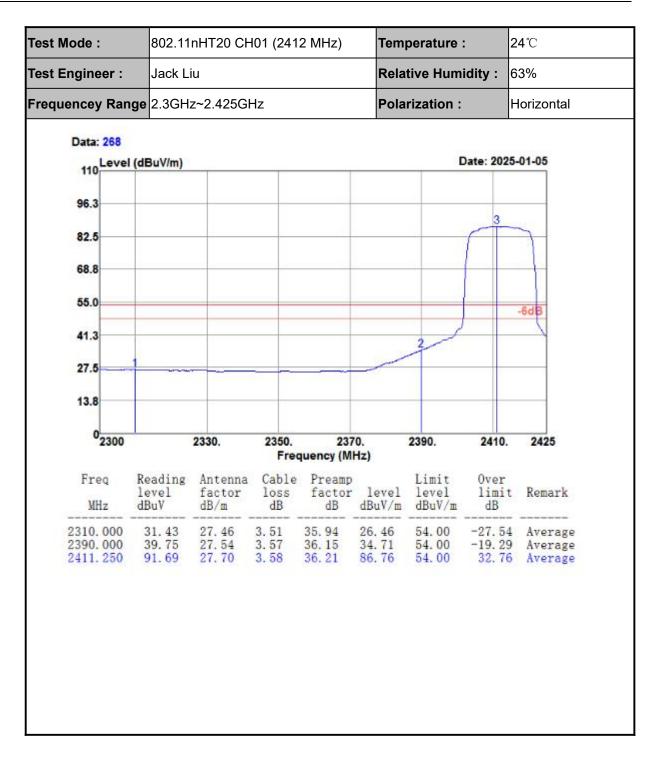


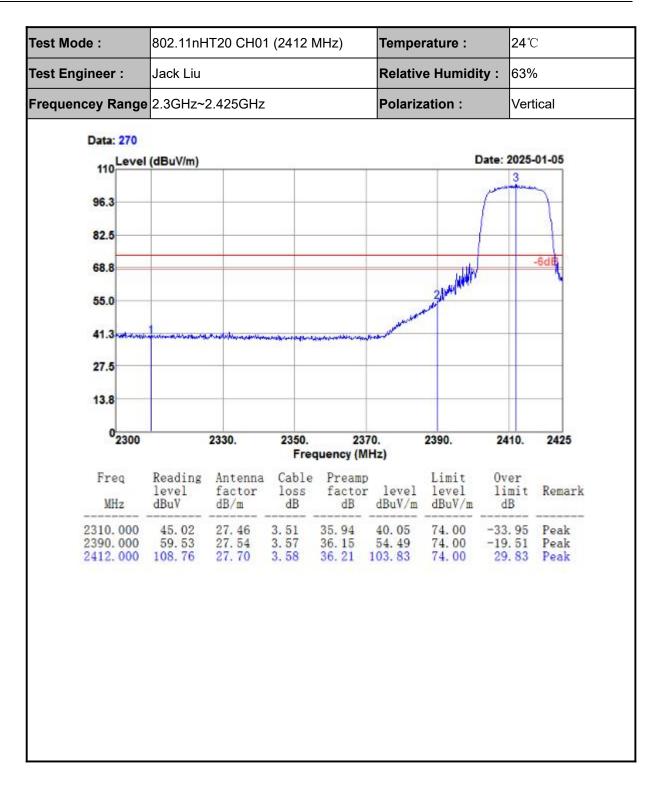


est Mode :	802.11g (CH01 (241	2 MHz)		Tempe	rature :	24°0	C
est Engineer :	Jack Liu				Relativ	e Humidi	ty : 63%	6
equencey Rang	e 2.3GHz~2	2.425GHz			Polariz	ation :	Ver	tical
Data: 248								
	l (dBuV/m)						Date: 2025	-01-05
12240								
96.3							3	~
82.5								
68.8								
55.0								
41.3						-		-6dB
adapter 1					/	-		
27.5			-		-			
13.8								
02300		2330.	2350. Fre	237 quency (Mi		2390.	2410.	2425
		Antonna	Cable	Preamp		Limit	0ver	
Freq	Reading		loss	factor	level	level	limit	Remark
Freq MHz	Reading level dBuV	factor dB/m	dB	dB	dBuV/m		dB	
	level dBuV 31.39	factor dB/m 27.46 27.54	dB 3.51	dB 35.94 36.15		dBuV/m 54.00 54.00	-27.58 -16.40	Average Average Average

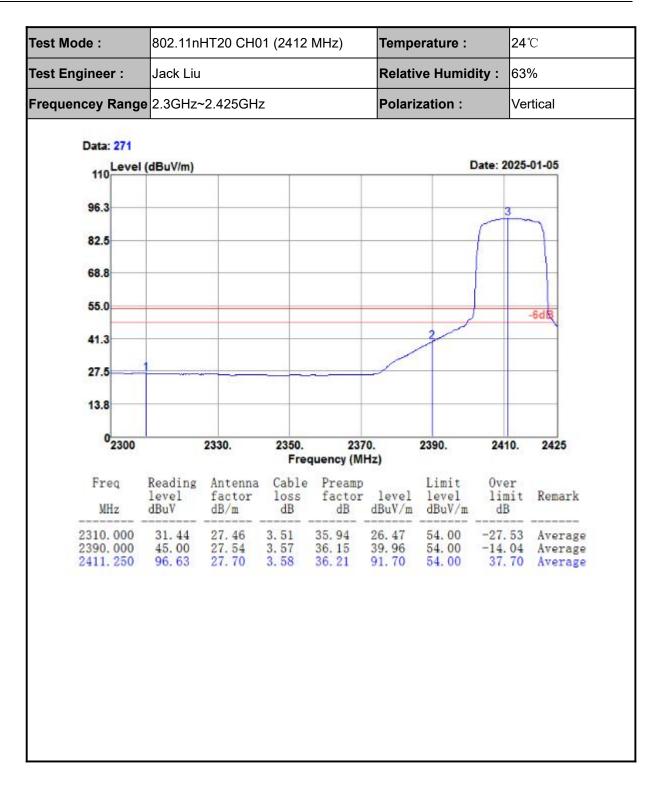


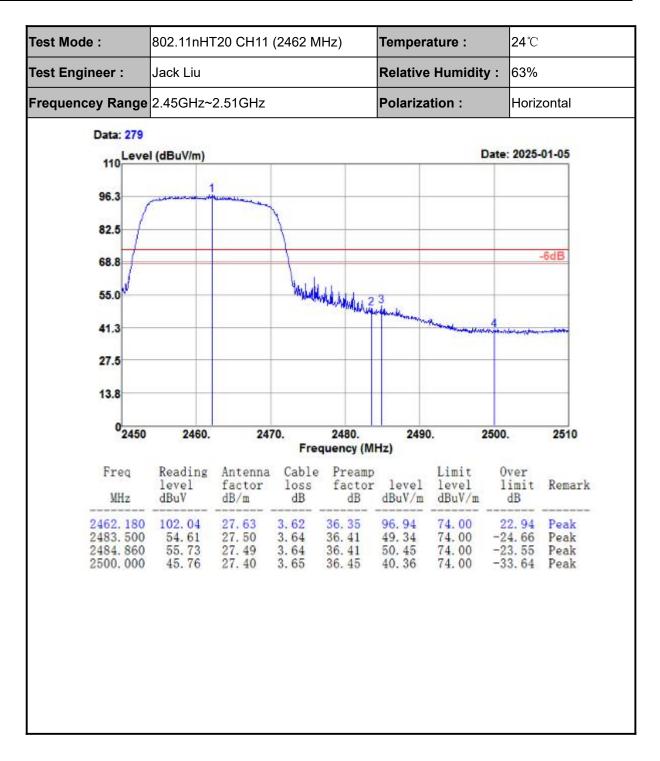


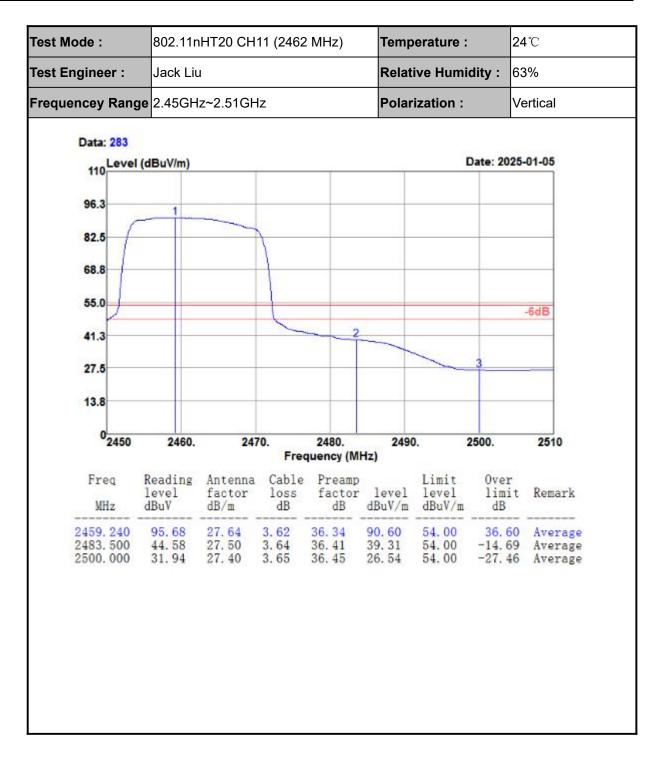




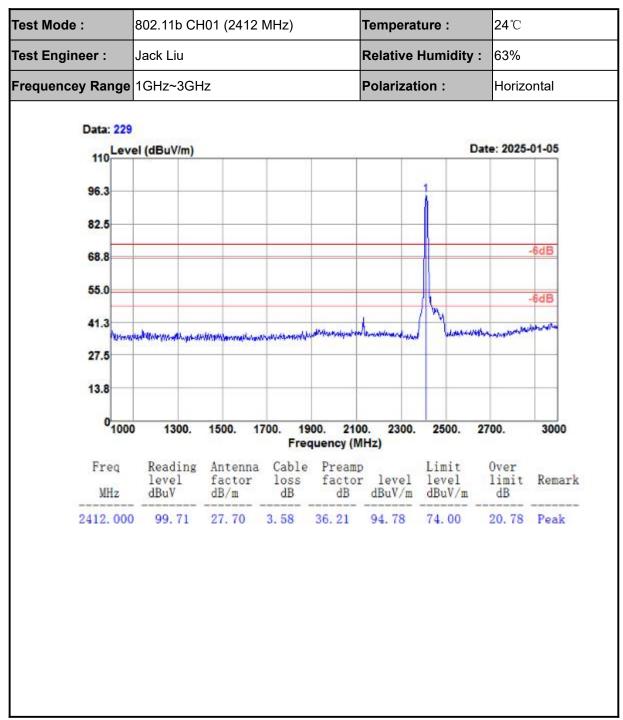
	802.11r	nHT20 CH	01 (241)	2 MHz)	Tem	perature :		24 ℃
t Engineer :	Jack Li	J			Rela	tive Humi	dity :	63%
quencey Rang	e 2.3GHz	~2.425G⊦	łz		Pola	rization :		Horizontal
Data: 267 110 Level (96.3 82.5 68.8 55.0 41.3 27.5 13.8							Date: 202	5-01-05 -6dB
02300		2330.	2350. Free	237 quency (Mi		2390.	2410.	2425
	D 11	Antenna		Preamp	1920	Limit level	Over limit	t Remark
Freq	level	factor dB/m	dB	dB		dBuV/m		

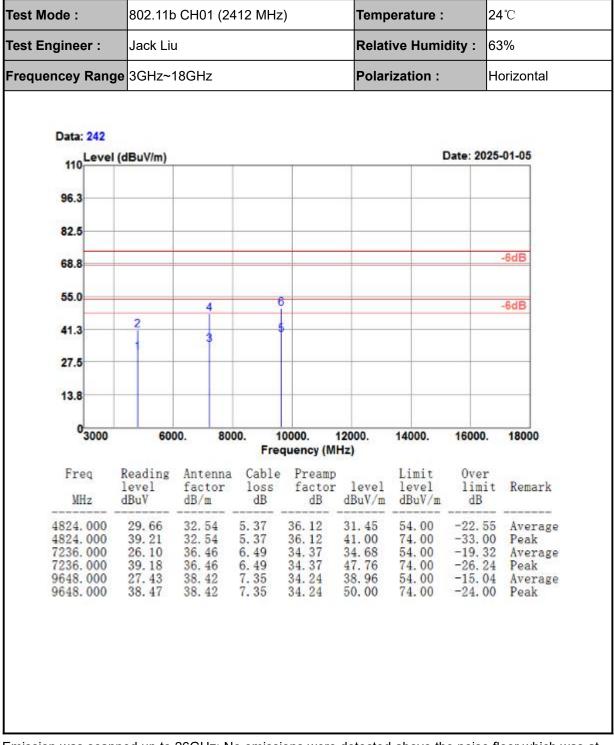


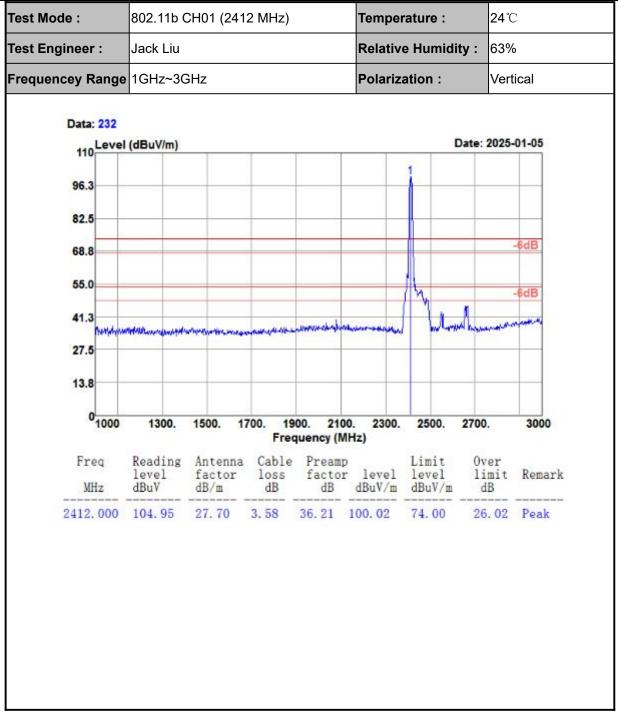


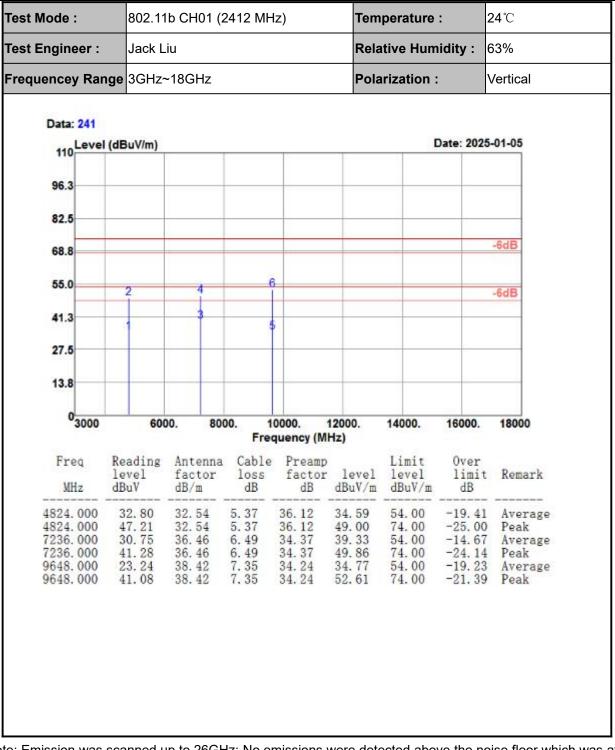


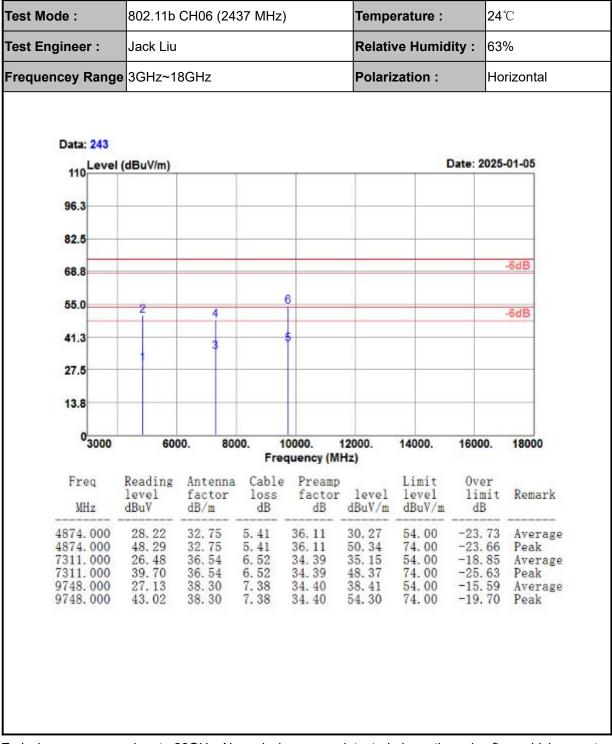
	802.11nH	IT20 CH1	1 (2462	MHz)	Tempe	erature :		24 ℃	
t Engineer :	Jack Liu				Relativ	ve Humid	lity:	63%	
quencey Range	2.45GHz	~2.51GHz	<u>Z</u>		Polari	zation :	ł	Horizontal	
Data: 280 110 Level (dBuV/m)					ſ	Date: 20	25-01-05	
96.3 82.5 68.8									
55.0 41.3			L	2				-6dB	
27.5 13.8							3	_	
02450	2460.	247		2480. quency (Mi	2490 Hz)). 2	2500.	2510	
1045800.524	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limi dB	t Remark	
	89. 93 39. 62	27.64	3.62 3.64 3.65	36. 34 36. 41 36. 45	84.85 34.35 26.45	54.00 54.00 54.00	30.8 -19.6 -27.5	35 Average 55 Average 55 Average	

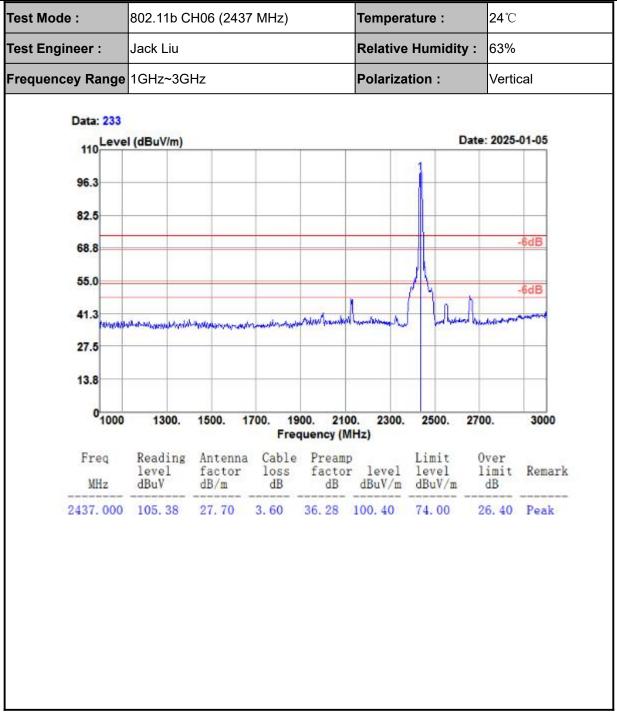

Mode :	802.11n	HT20 CH2	11 (2462	MHz)	Temp	erature :		24 ℃	
Engineer :	Jack Liu				Relati	ve Humio	dity :	63%	
juencey Rang	je 2.45GH	z~2.51GH	z		Polari	zation :	1	Vertical	
Data: 282 110 Leve 96.3 82.5 68.8 55.0 41.3 27.5	(dBuV/m)		White		Hanghan and and and and and and and and and a		Date: 20	25-01-05 -6dB	
13.8									
02450	2460.	24		2480.	2490). :	2500.	2510	
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp factor dB	level	Limit level dBuV/m	Over limi dB		
2461, 940 2483, 500 2483, 600 2500, 000	107.81 59.65 61.00 45.30	27.50	3. 62 3. 64 3. 64 3. 65	36. 35 36. 41 36. 41 36. 45	102. 71 54. 38 55. 73 39. 90	74.00 74.00 74.00 74.00	28.7 -19.6 -18.2 -34.1	7 Peak	



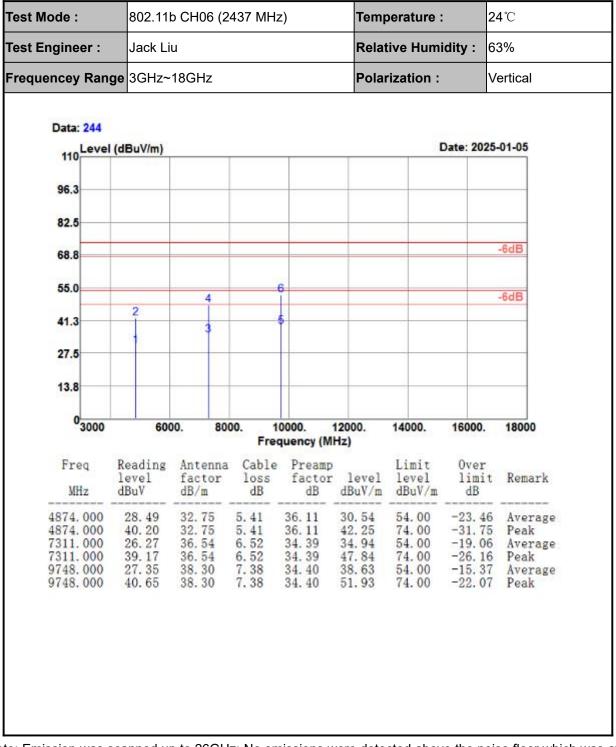

4.5.5 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

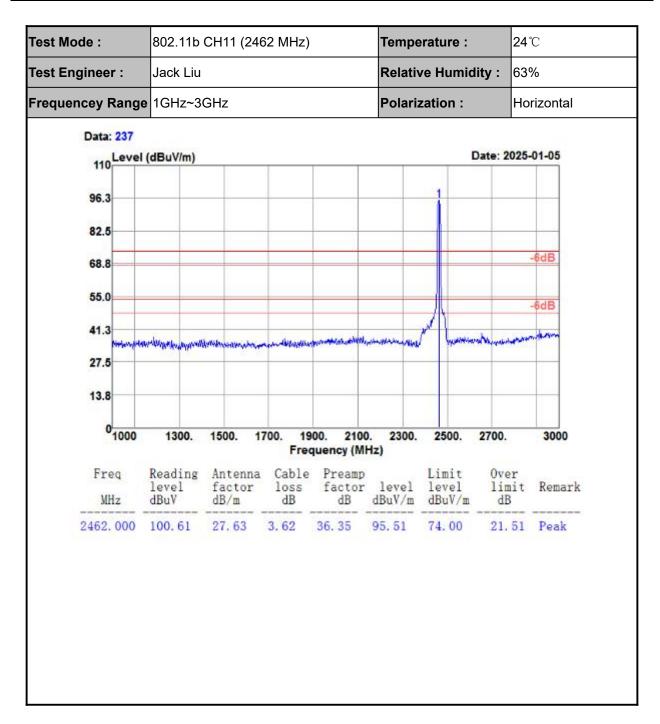


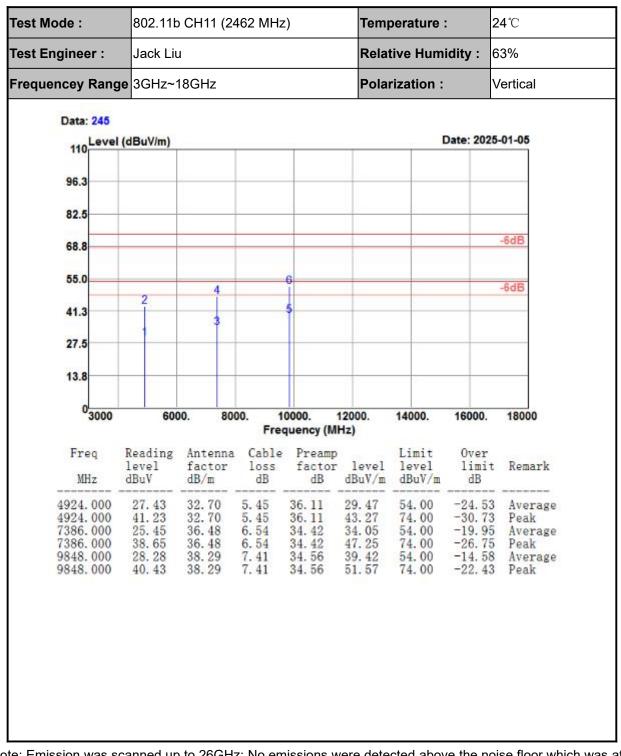




est Mode :	802.11b CI	1 06 (2437	′ MHz)	Tempera	ture :	24 ℃	24 ℃		
est Engineer :	Jack Liu				Relative	Humidity	/ : 63%		
requencey Range	1GHz~3Gł	Ηz			Polarizat	ion :	Horiz	ontal	
Data: 234									
	el (dBuV/m)					ſ	Date: 2025-	-01-05	
110						53			
96.3						1			
82.5				e - 63				<u>.</u>	
			-					-6dB	
68.8									
55.0				11		\mathbb{A}		-6dB	
41.3	1. marine and the second s	and the second second		الغني المغويين		M Yuhum	Marmin	-	
27.5	and the second states and the second s	sta antique antique ange	a Anna an Anna Anna Anna Anna Anna Anna						
13.8									
01000	1300.	1500. 1		00. 2100 uency (Mi		2500.	2700.	3000	
	Reading	Antenna	Cable	Preamp		Limit	0ver		
Freq			loss	factor	level		limit	Remark	
Freq MHz	level	factor dB/m	dB	dB	dBuV/m	dBuV/m	dB		
MHz	level	dB/m	dB	dB					

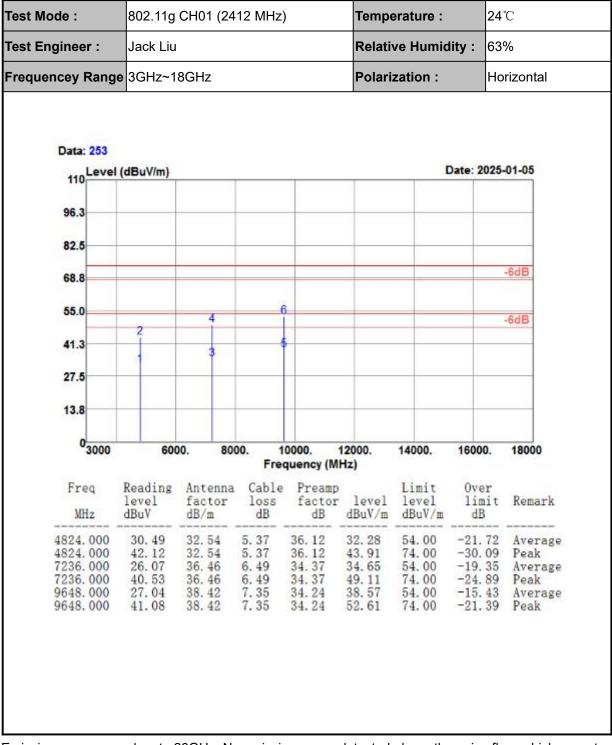




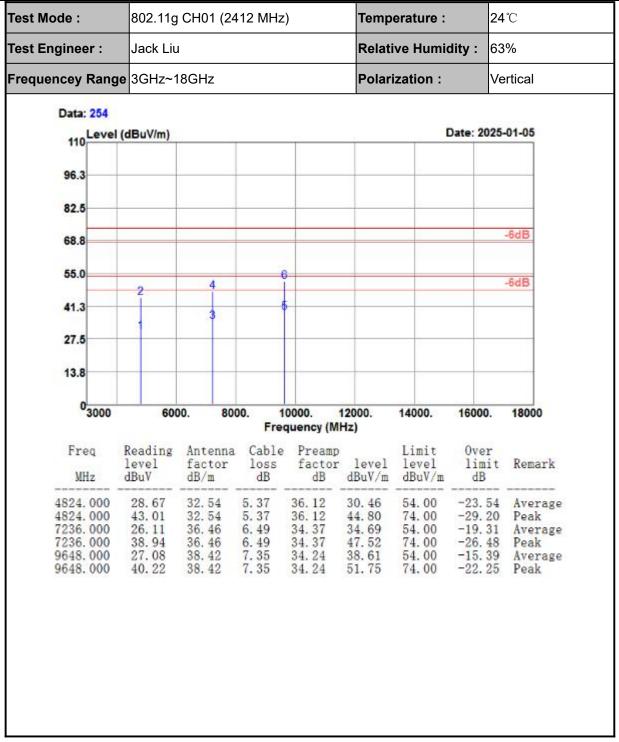


st Mode :	802.11b	CH11 (246	62 MHz)		Tempe	erature :	:	24℃ 63%	
st Engineer :	Jack Liu				Relativ	ve Humid	ity :		
equencey Range	3GHz~18	BGHz			Polariz	zation :		Horizontal	
Data: 246 110 Level 96.3 82.5 68.8 55.0 41.3 27.5	(dBuV/m)	4		6			Date: 20	025-01-05 -6dB	
13.8									
03000	600	0. 80		0000. quency (Mi	2000. Hz)	14000.	16000	. 18000	
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m		Ove: lim dB	it Remark	
4924.000 4924.000 7386.000 7386.000 9848.000 9848.000	$\begin{array}{c} 27.\ 17\\ 40.\ 32\\ 26.\ 85\\ 37.\ 82\\ 28.\ 15\\ 40.\ 33 \end{array}$	32.70 32.70 36.48 36.48 38.29 38.29 38.29	5.45	36. 11 36. 11 34. 42 34. 42 34. 56 34. 56	29. 21 42. 36 35. 45 46. 42 39. 29 51. 47	74.00 54.00	-31.	79 Average 64 Peak 55 Average 58 Peak 71 Average 53 Peak	

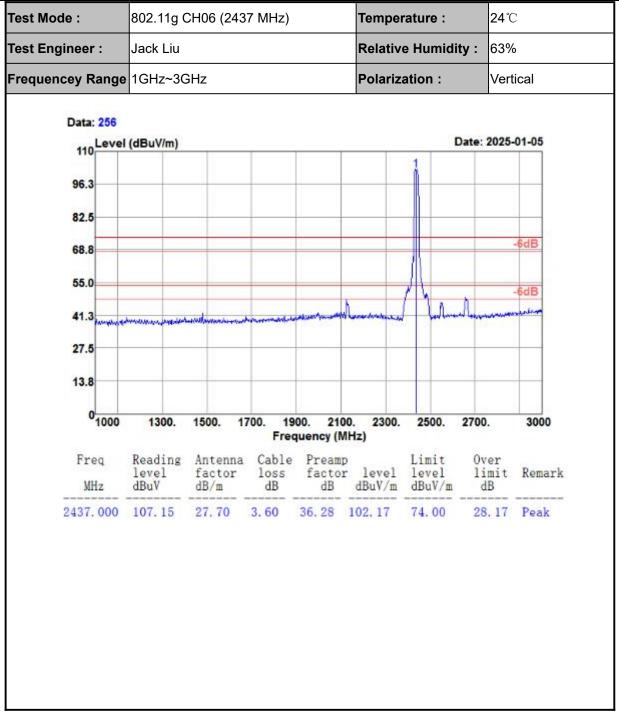
	elative Humidity : olarization : Date: 202	63% Vertical
Data: 240 110 96.3 82.5		
110 96.3 82.5	Date: 202	5-01-05
82.5	1	
68.8		
		-6dB
55.0		-6dB
41.3	we fitwow human	marine
27.5		
13.8		
0 1000 1300. 1500. 1700. 1900. 2100. 230 Frequency (MHz)	00. <mark>2500. 2700</mark> .	3000
Freq Reading Antenna Cable Preamp level factor loss factor leve	Limit Over el level limit /m dBuV/m dB	Remark
2462.000 105.41 27.63 3.62 36.35 100.31	1 74.00 26.31	Peak



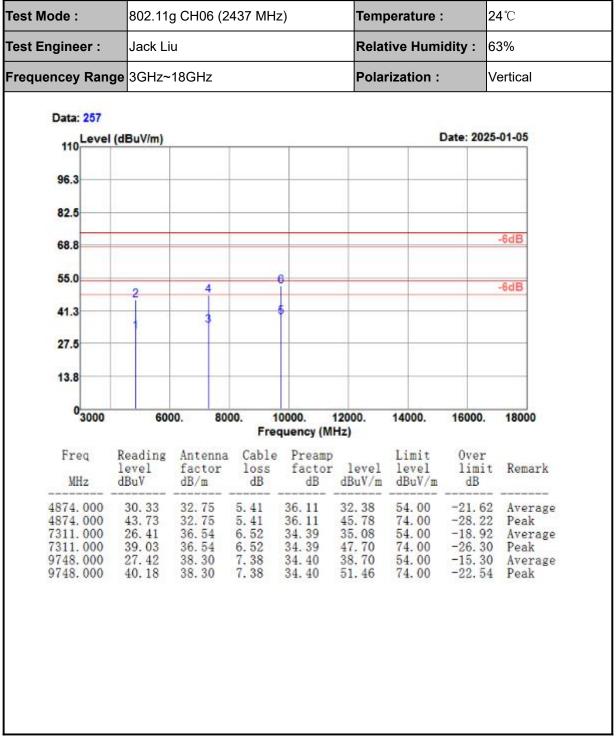
est Mode :	802.11g C	H01 (2412	2 MHz)		Tempera	ture :	24 ℃	24°C 63%	
est Engineer :	Jack Liu				Relative	Humidit	y : 63%		
requencey Range	1GHz~3G	Hz			Polariza	Hori	zontal		
Data: 252	l (dBuV/m)						Date: 2025	-01-05	
96.3						1			
82.5									
68.8			·					-6dB	
55.0								-6dB	
41.3	Maringuidhander	Ab Hereisperseters	alphaben Maket an est	mentersaturit	newswand	human	munder	monor	
27.5									
13.8			_						
0	1300.	1500. 1		00. 2100 Juency (Mi		2500.	2700.	3000	
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp	level	Limit level dBuV/m	Over limit dB	Remark	
2412.000	99.75	27.70	3.58	36, 21	94.82	74.00	20.82	Peak	

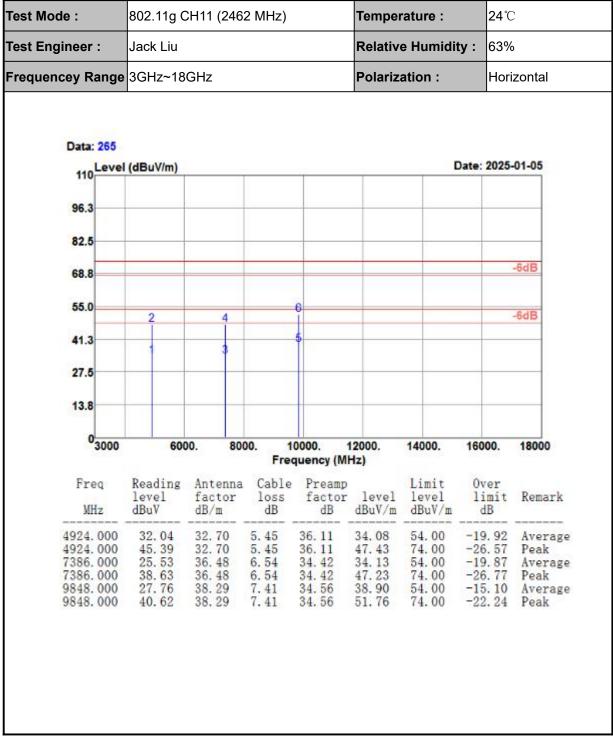


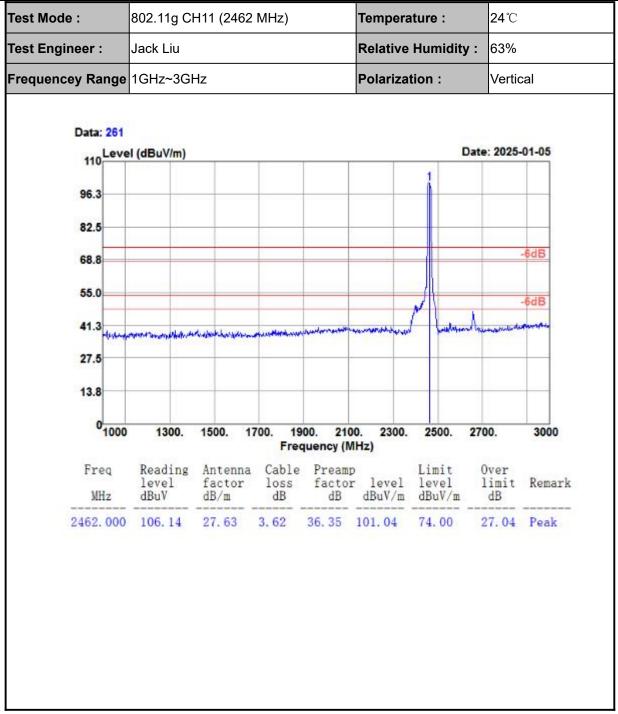




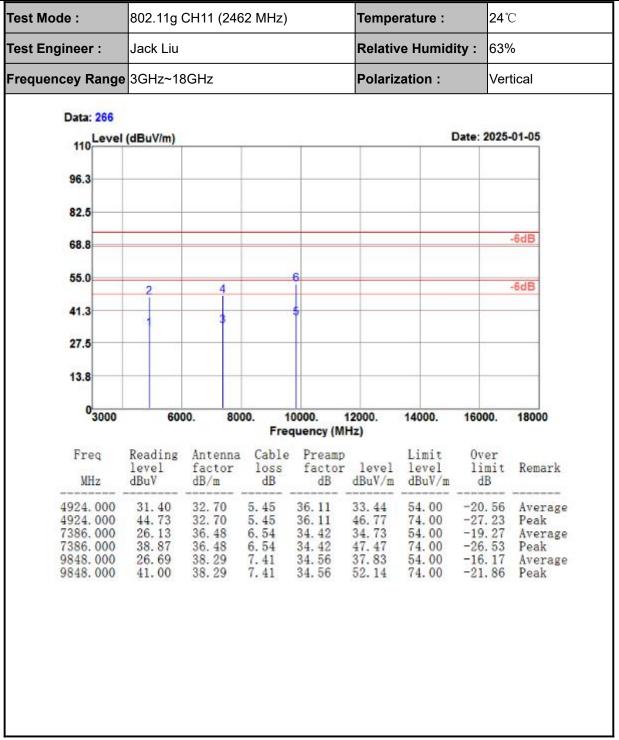
Mode :	802.11g	CH06 (24	37 MHz)		Tempe	erature :	2	24 ℃	
Engineer :	Jack Liu				Relativ	ve Humidi	ty : 6	63% Horizontal	
uencey Range	1GHz~30	GHz			Polari	zation :	F		
Data: 255 110 Level (96.3 82.5 68.8	dBuV/m)						ate: 202	25-01-05 -6dB	
55.0 41.3 27.5 13.8		and a frequencies and	have		,,	<u> </u>	A., 1	-6dB	
01000	1 <mark>30</mark> 0.	1500. 1		00. 2100 quency (Mi		2500.	2700.	3000	
	Reading level dBuV	Antenna factor dB/m		Preamp factor dB	level	Limit level dBuV/m	Over limi dB		
0407 000	101.09	27.70	3.60	36.28	96.11	74.00	22.1	1 Peak	

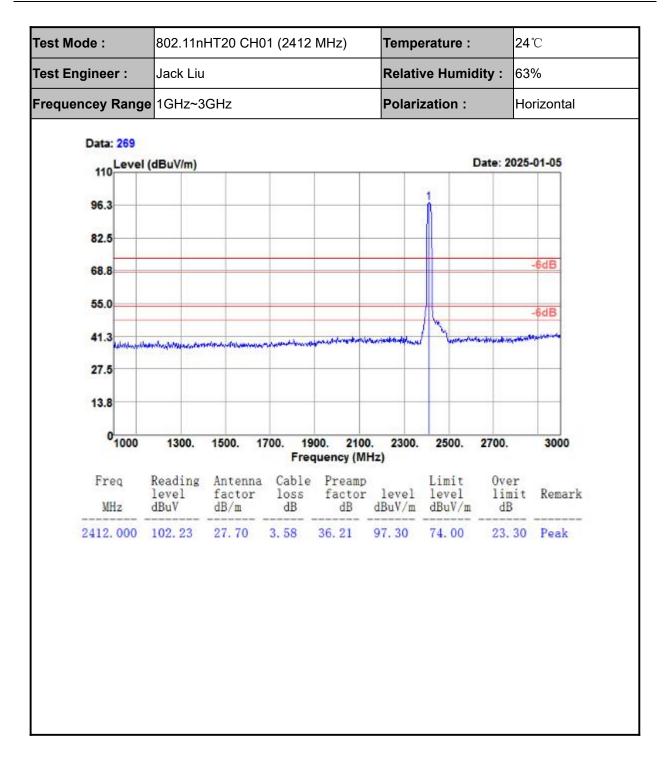


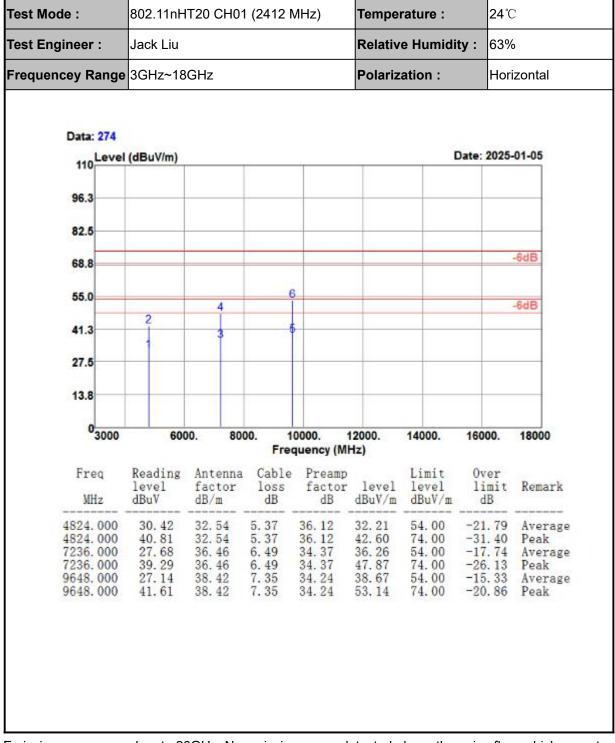


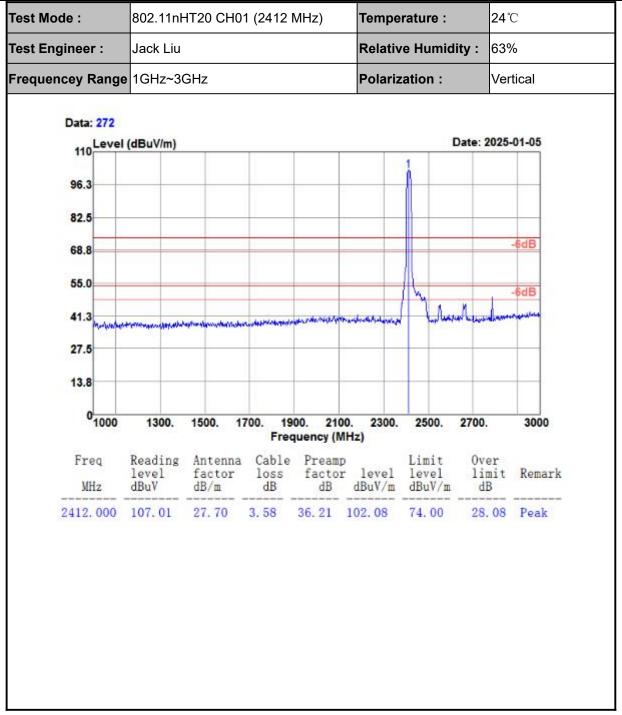


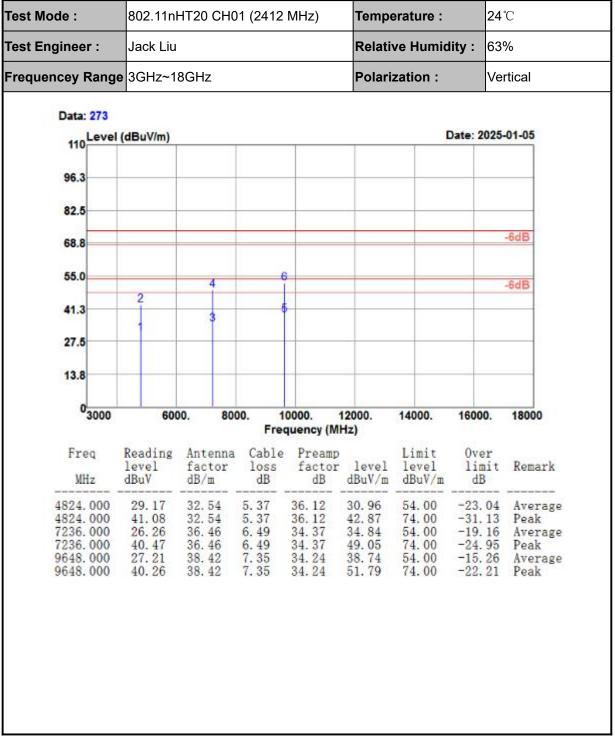
Mode :	802.11g	CH11 (246	32 MHz)		Tempe	rature :	2	24℃ 63%	
Engineer :	Jack Liu				Relativ	e Humid	ity:		
uencey Range	1GHz~30	GHz			Polariz	ation :	ł	Horizontal	
Data: 264 110 96.3	(dBuV/m)					1	Date: 20	025-01-05	
82.5									
68.8								-6dB	
55.0						A		-6dB	
COMPANIES - MARCON	more and the design	unoprovenant	wwwhot	lation and a second street	under Mary 19	hunner	absolution	an of the second second	
27.5									
13.8									
01000	1300.	1500. 17		00. 2100 quency (Mi		2500.	2700.	3000	
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level	Limit level dBuV/m	Over lim: dB		
	100 90	27.63	3 62	26.25	05 80	74 00	21.0	80 Peak	

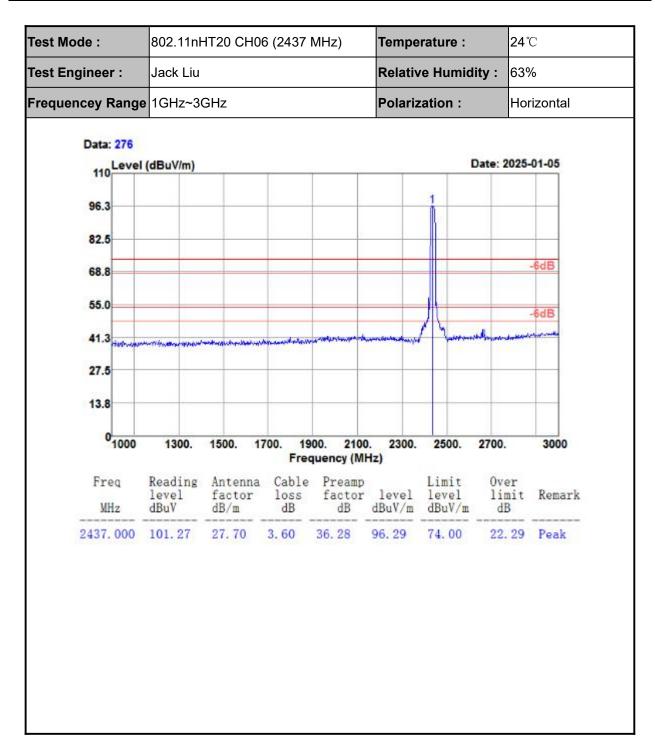


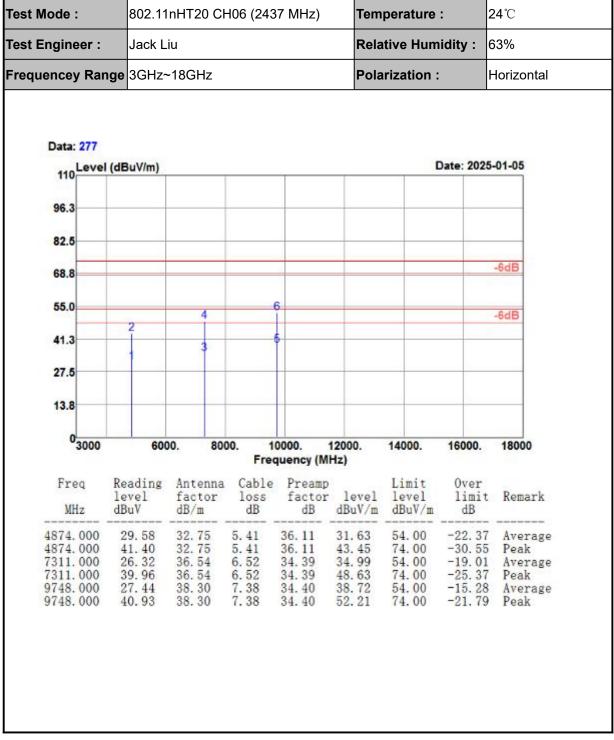


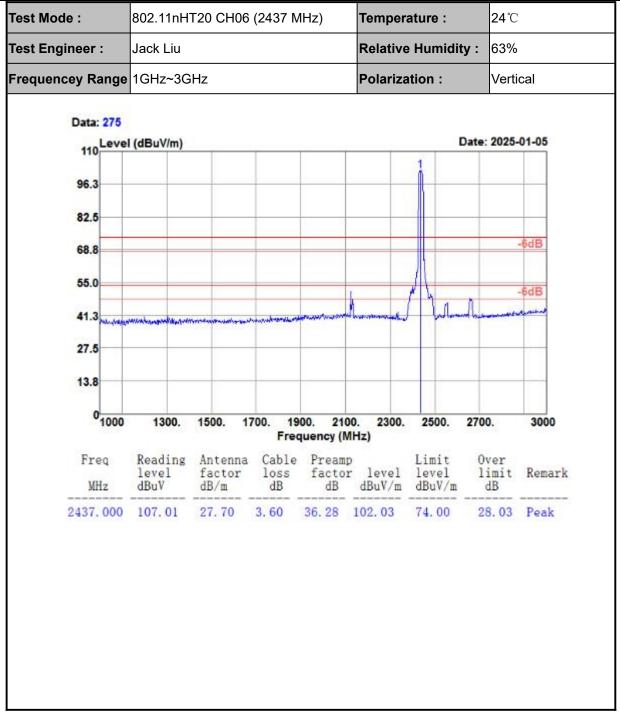


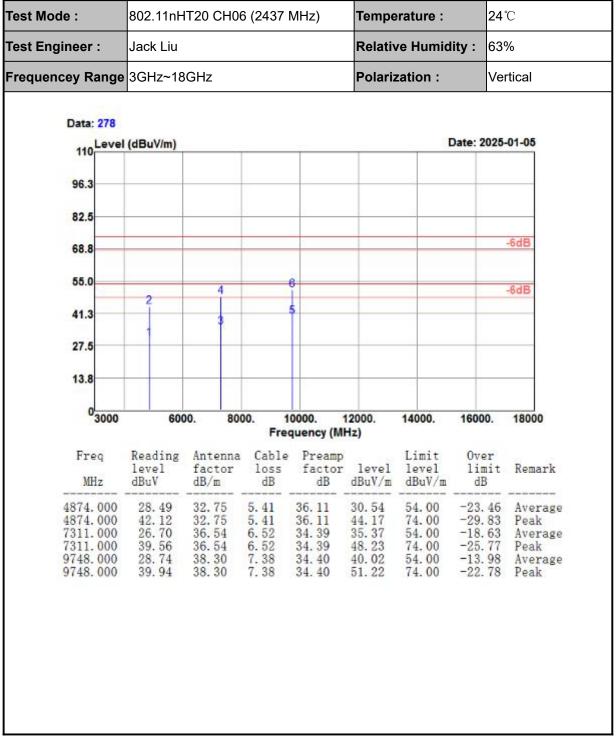


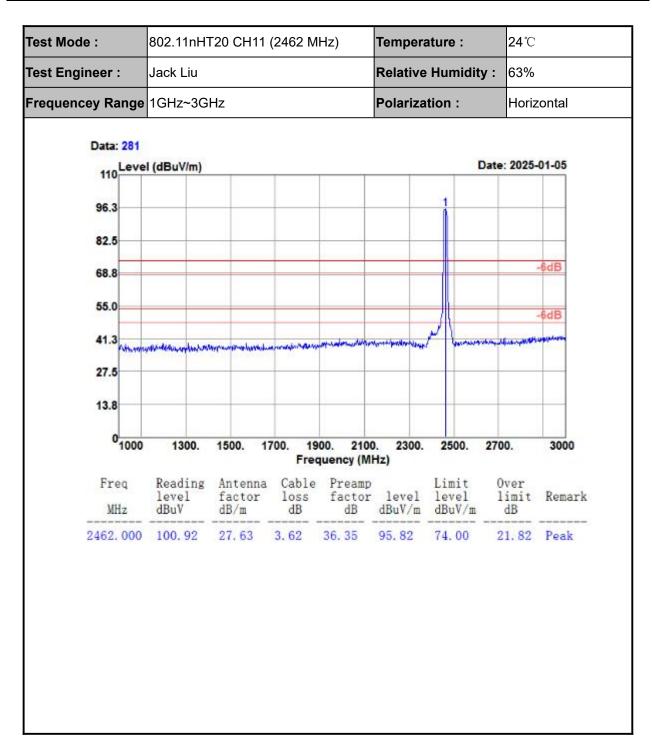


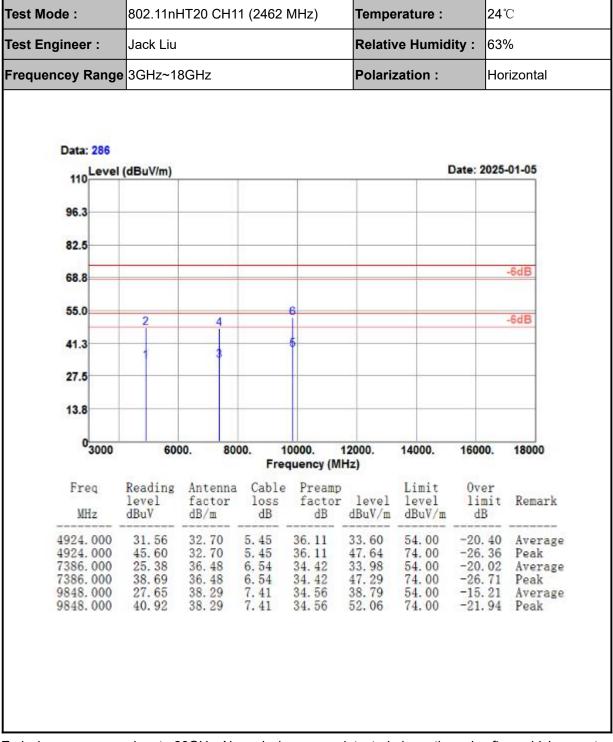


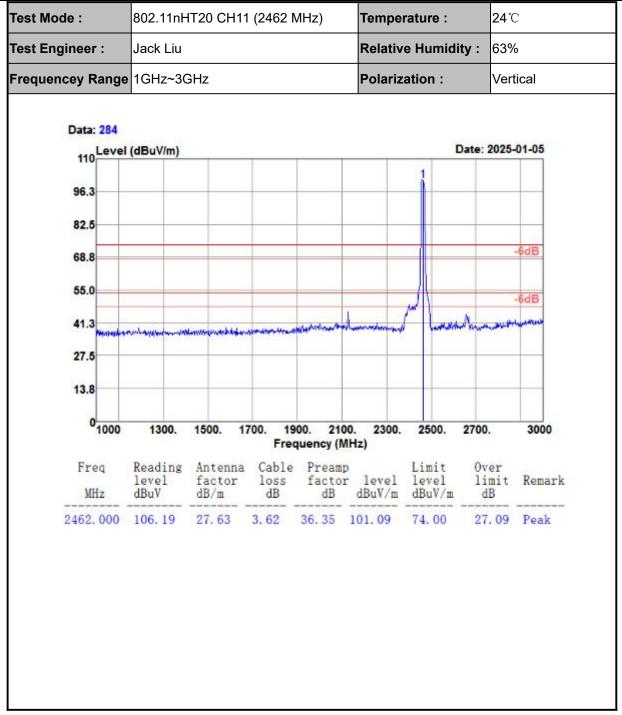


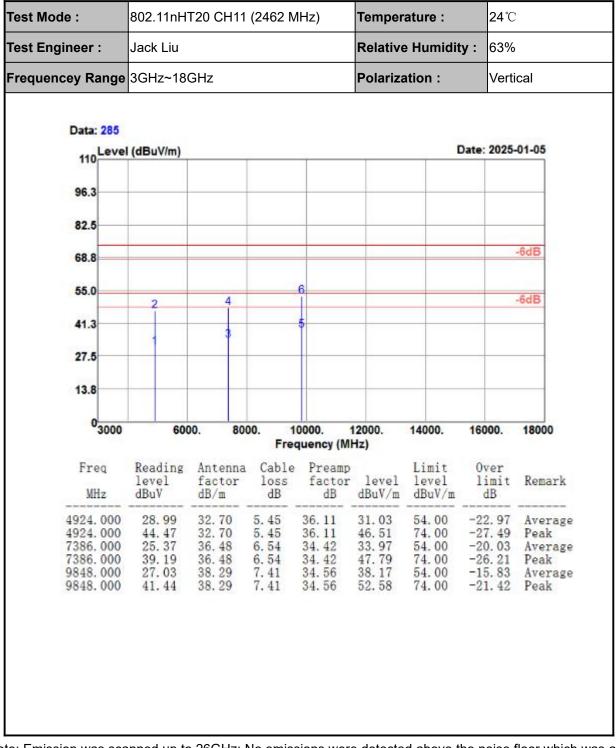


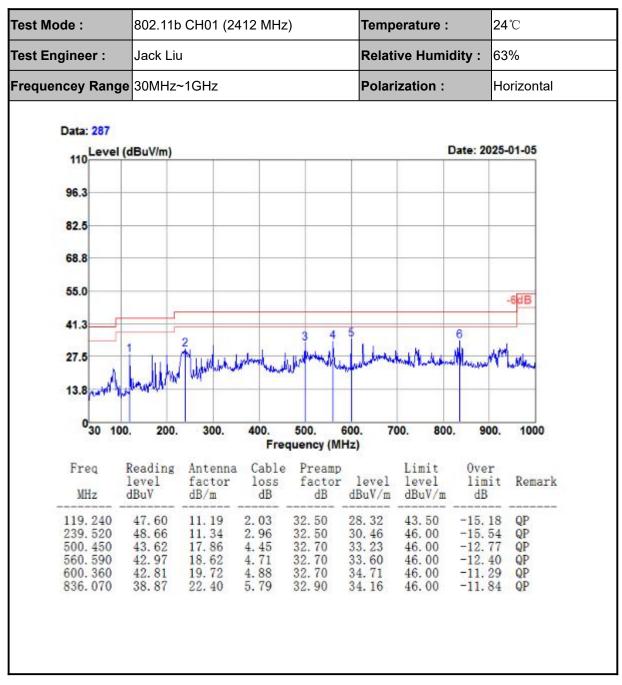












4.5.6 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

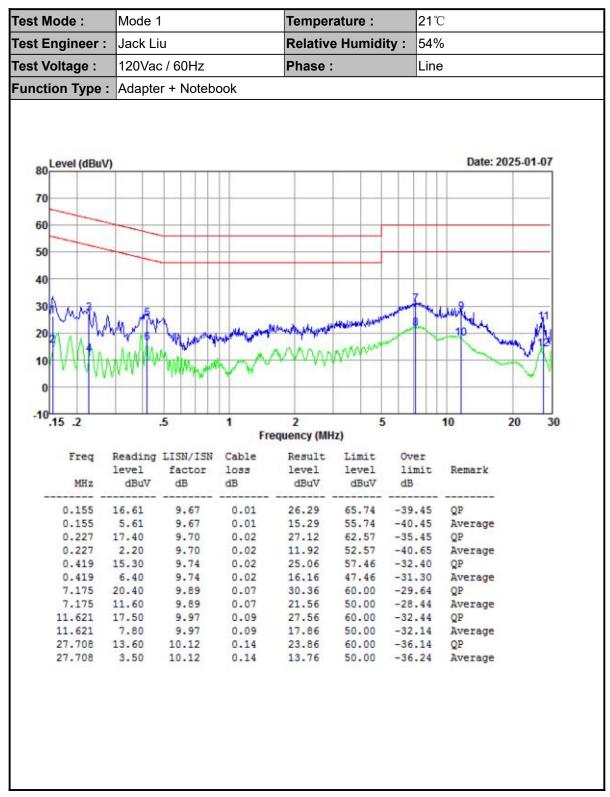
est Mode :	802.11b C	H01 (2412	2 MHz)		Temper	ature :	24°	С	
est Engineer :	Jack Liu				Relative Humidity :		y : 63%	63%	
requencey Rang	e 30MHz~1	GHz			Polariza	ation :	Ver	tical	
Data: 288	el (dBuV/m) Date: 20							5-01-05	
96.3			_						
82.5						ter fre			
68.8									
	-1								
55.0								-6dB	
55.0 41.3	2	3 m 4			5		6	-6dB	
		3	nergent	whether	5 manuludane	hadellichen	6	-6dB	
41.3		3 Manufar A	nutur	whenthe	5 manuludorene	hash Madasa	6 MruneW	-6dB	
41.3 27.5 13.8	100. 200.	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400.	500. quency (M	600. 70	6. 800		ed when	
41.3 27.5 13.8		1491	400. Fred		600. 7(Hz)	00. 800 Limit		1000	

4.6 AC Conducted Emission Measurement

4.6.1 Limit of AC Conducted Emission

FCC §15.207

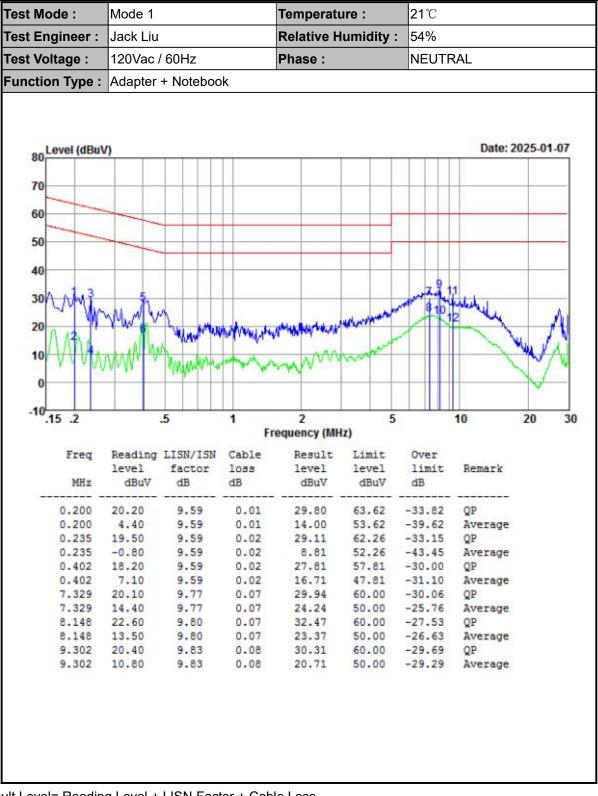
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.


Frequency of omission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

4.6.2 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



4.6.3 Test Result of AC Conducted Emission

Result Level= Reading Level + LISN Factor + Cable Loss

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2BC5I-SS131 www.hn-ecloud.com

Result Level= Reading Level + LISN Factor + Cable Loss

4.7 Antenna Requirements

4.7.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

4.7.2 Antenna Connected Construction

An FPC antenna design is used.

4.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2024/12/17	2025/12/16	Conducted
10dB Attenuator	MCLI	FAS-8-10	1693	2024/7/5	2025/7/4	Conducted
Test Software	Tonscend	JS1120-3	V3.5.39	N/A	N/A	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV30	103728	2024/12/17	2025/12/16	Radiation
EMI Test Receiver	R&S	ESR3	102144 2024/12/17		2025/12/16	Radiation
Amplifier	Sonoma	310	363917	2024/12/17	2025/12/16	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2024/12/17	2025/12/16	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2024/12/24	2025/12/23	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519 B	00051	2023/2/12	2026/2/11	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2023/9/17	2026/9/16	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	01677	2024/1/30	2027/1/29	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2024/1/31	2027/1/30	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2024/12/17	2025/12/16	Conducted
LISN	R&S	ENV432	101327	2024/12/17	2025/12/16	Conducted
EMI Test Receiver	R&S	ESR3	102143	2024/12/17	2025/12/16	Conducted
EMI Test Software	Audix	E3	N/A	N/A	N/A	Conducted

N/A: No Calibration Required

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	±3.02 dB	
	30MHz ~ 1GHz	±5.67 dB	
Radiated emissions	1GHz ~ 18GHz	±5.16 dB	
	18GHz ~ 40GHz	±5.18 dB	

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±99.44 Hz
RF output power, conducted	±0.80 dB
Power density, conducted	±2.02dB
Emissions, conducted	±2.02dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

7 Setup Photographs

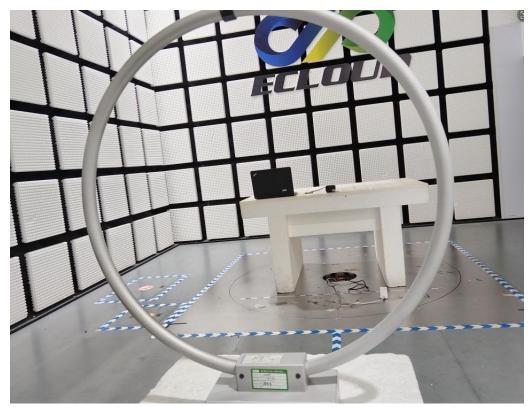


Fig. 1 Radiated emission setup photo(Below 30MHz)

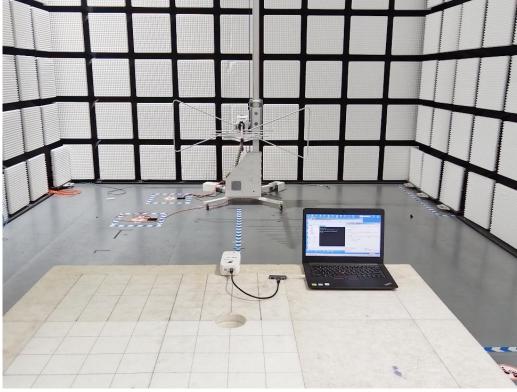


Fig. 2 Radiated emission setup photo(30MHz-1GHz)



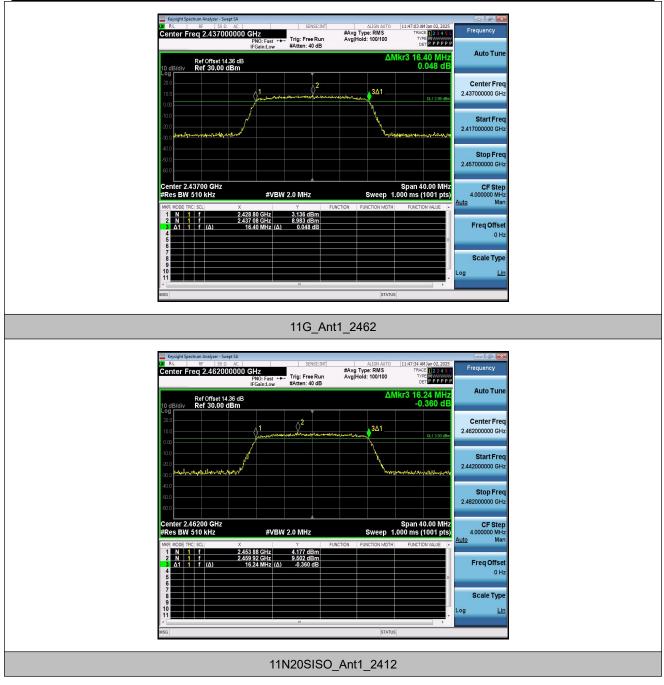
Fig. 3 Radiated emission setup photo(Above 1GHz)

Fig. 4 Power line conducted emission setup photo

Appendix A: DTS Bandwidth

Test Result

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	10.280	2406.880	2417.160	0.5	PASS
11B	Ant1	2437	10.200	2431.920	2442.120	0.5	PASS
		2462	10.240	2456.920	2467.160	0.5	PASS
		2412	16.400	2403.840	2420.240	0.5	PASS
11G	Ant1	2437	16.400	2428.800	2445.200	0.5	PASS
		2462	16.240	2453.880	2470.120	0.5	PASS
		2412	17.080	2403.360	2420.440	0.5	PASS
11N20SISO	Ant1 24	2437	17.080	2428.480	2445.560	0.5	PASS
		2462	16.960	2453.520	2470.480	0.5	PASS


Test Graphs

