

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202208005F02

TEST Report

Applicant: Shenzhen Green Giant Energy Technology Development

Co.,Ltd

Address of Applicant: 2nd Floor, Building B, Minle industrial Park, Minzhi

Street, Longhua District, shenzhen

Manufacturer: Shenzhen Green Giant Energy Technology Development

Co.,Ltd

Address of 2nd Floor, Building B, Minle industrial Park, Minzhi

Manufacturer: Street,Longhua District,shenzhen

Equipment Under Test (EUT)

Product Name: Bluetooth Dongle

Model No.: LCB6051B

Series model: LCB7002B, LCB8053B, LCB6053B

Trade Mark: Ilano

FCC ID: 2A77D-LCB6051B

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul.29,2022

Date of Test: Jul.29,2022~Aug.04,2022

Date of report issued: Aug.04,2022

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Aug.04,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Aug.04,2022
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Aug.04,2022
	Reviewer		
Approved By :	Kein Yang	Date:	Aug.04,2022
	Authorized Signature		

2. Contents

			Page
1.	VEF	RSION	2
2.		NTENTS	
		ST SUMMARY	
3.			
4.	GEI	NERAL INFORMATION	5
	4.1.	GENERAL DESCRIPTION OF EUT	5
	4.2.	TEST MODE	
	4.3.	DESCRIPTION OF SUPPORT UNITS	
	4.4.	DEVIATION FROM STANDARDS	
	4.5.	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.6.	TEST FACILITY	
	4.7.	TEST LOCATION	
•	4.8.	Additional Instructions	7
5.	TES	ST INSTRUMENTS LIST	8
6.	TES	ST RESULTS AND MEASUREMENT DATA	9
(6.1.	CONDUCTED EMISSIONS	9
(6.2.	CONDUCTED PEAK OUTPUT POWER	12
(6.3.	20DB EMISSION BANDWIDTH	13
(6.4.	FREQUENCIES SEPARATION	
	6.5.	HOPPING CHANNEL NUMBER	
	6.6.	DWELL TIME	
(6.7.	BAND EDGE	
	• • • •	.1. Conducted Emission Method	
		2. Radiated Emission Method	
(6.8.	SPURIOUS EMISSION	
		.1. Conducted Emission Method	
7.	TES	ST SETUP PHOTO	45
8.	EU	T CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Radiated Emission	6~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Product Name:	Bluetooth Dongle			
Model No.:	LCB6051B			
Series model:	LCB7002B, LCB8053B, LCB6053B			
Test sample(s) ID:	HTT202208005-1(Engineer sample) HTT202208005-2(Normal sample)			
Operation Frequency:	2402MHz~2480MHz			
Channel numbers:	79			
Channel separation:	1MHz			
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK			
Antenna Type:	PCB Antenna			
Antenna gain:	0 dBi			
Power Supply:	DC 5V From External Circuit			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

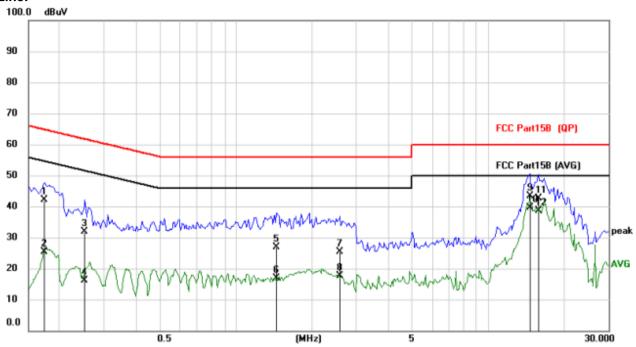
Tel: 0755-23595200 Fax: 0755-23595201

5. Test Instruments list

<u>J.</u>								
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date		
	Toot Equipment	- marraraotaror		No.	(mm-dd-yy)	(mm-dd-yy)		
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024		
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024		
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 23 2022		
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 23 2022		
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 23 2022		
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 23 2022		
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 23 2022		
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 23 2022		
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022		
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022		
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022		
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022		
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 23 2022		
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 23 2022		
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 23 2022		
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 23 2022		
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 23 2022		
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 23 2022		
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 23 2022		
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 23 2022		
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 23 2022		
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 23 2022		
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 23 2022		
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 23 2022		
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 23 2022		
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 23 2022		
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 23 2022		
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 23 2022		
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A		
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A		
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A		

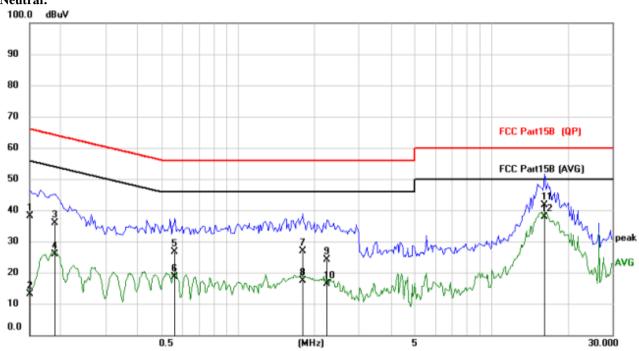
6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	,				
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Frequency range (MHz)	Limit	(dBuV)			
	. , , ,	Quasi-peak 66 to 56*	Average			
	0.15-0.5	56 to 46*				
	0.5-5	56	46			
	5-30 * Decreases with the logarithn	60	50			
Test setup:						
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Requipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and					
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details	3				
Test mode:	Refer to section 5.2 for details	3				
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 101:	2mbar		
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:


Line:

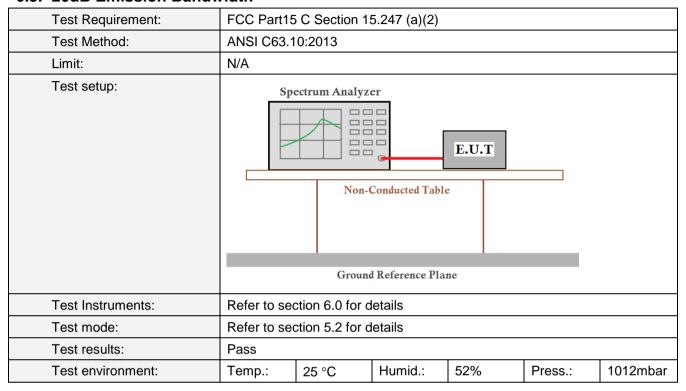
		Reading	Correct	Measure-			
No. I	Mk. Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1734	31.81	10.38	42.19	64.80	-22.61	QP
2	0.1734	15.11	10.38	25.49	54.80	-29.31	AVG
3	0.2514	21.50	10.40	31.90	61.71	-29.81	QP
4	0.2514	5.84	10.40	16.24	51.71	-35.47	AVG
5	1.4448	3 16.07	10.87	26.94	56.00	-29.06	QP
6	1.4448	5.92	10.87	16.79	46.00	-29.21	AVG
7	2.5836	14.59	10.84	25.43	56.00	-30.57	QP
8	2.5836	6.70	10.84	17.54	46.00	-28.46	AVG
9	14.6571	31.34	12.06	43.40	60.00	-16.60	QP
10 '	* 14.6571	27.58	12.06	39.64	50.00	-10.36	AVG
11	15.8544	30.55	12.15	42.70	60.00	-17.30	QP
12	15.8544	26.42	12.15	38.57	50.00	-11.43	AVG

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	27.78	10.27	38.05	66.00	-27.95	QP
2	0.1500	2.92	10.27	13.19	56.00	-42.81	AVG
3	0.1890	25.55	10.21	35.76	64.08	-28.32	QP
4	0.1890	15.77	10.21	25.98	54.08	-28.10	AVG
5	0.5633	16.08	10.44	26.52	56.00	-29.48	QP
6	0.5633	8.22	10.44	18.66	46.00	-27.34	AVG
7	1.8036	16.17	10.82	26.99	56.00	-29.01	QP
8	1.8036	6.66	10.82	17.48	46.00	-28.52	AVG
9	2.2482	13.24	10.83	24.07	56.00	-31.93	QP
10	2.2482	5.58	10.83	16.41	46.00	-29.59	AVG
11	16.1664	29.35	12.27	41.62	60.00	-18.38	QP
12 *	16.1664	25.56	12.27	37.83	50.00	-12.17	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

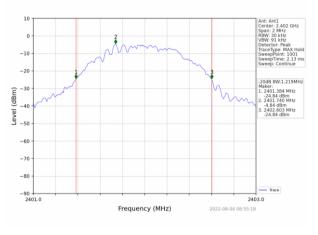
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.1	10:2013					
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	₹)			
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table						
		Ground Reference Pla	ane				
Test Instruments:	Refer to se	ction 6.0 for c	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

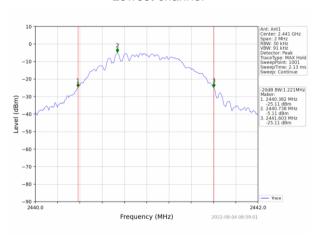
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	0.55		
GFSK	Middle	0.27	30.00	Pass
	Highest	-0.52		
	Lowest	0.65		
π/4-DQPSK	Middle	0.32	20.97	Pass
	Highest	-0.49		
	Lowest	0.71		
8-DPSK	Middle	0.36	20.97	Pass
	Highest	-0.44		

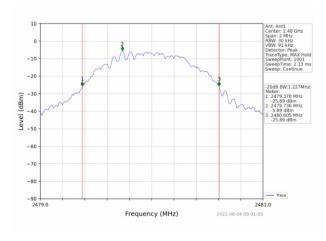
6.3. 20dB Emission Bandwidth


Measurement Data

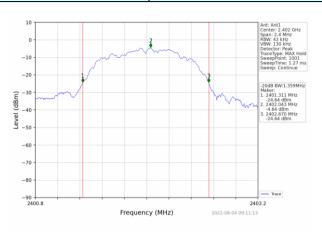
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	1.219	
GFSK	Middle	1.221	Pass
	Highest	1.227	
	Lowest	1.359	
π/4-DQPSK	Middle	1.355	Pass
	Highest	1.346	
	Lowest	1.339	
8-DPSK	Middle	1.338	Pass
	Highest	1.334	

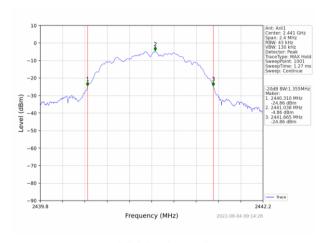


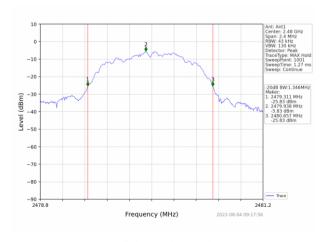
Test plot as follows:


Test mode: GFSK mode

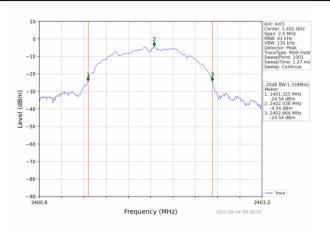
Lowest channel

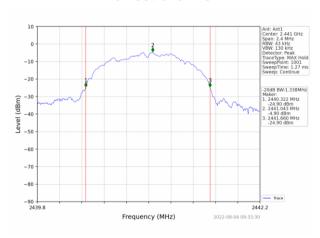

Middle channel

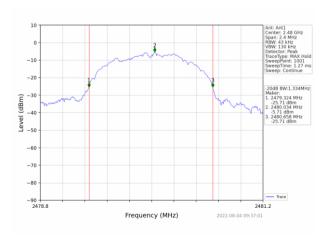

Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

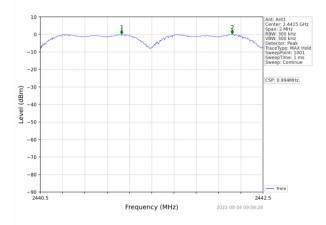
Middle channel

Highest channel

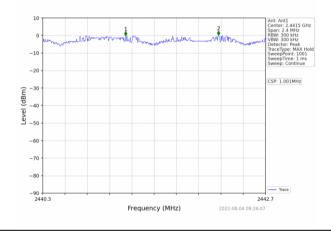
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013							
Receiver setup:	RBW=100K	RBW=100KHz, VBW=300KHz, detector=Peak						
Limit:		GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)						
Test setup:	Spe							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

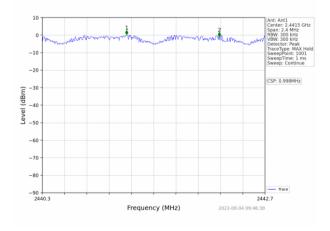
Measurement Data


Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	0.994	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	0.998	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:


Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

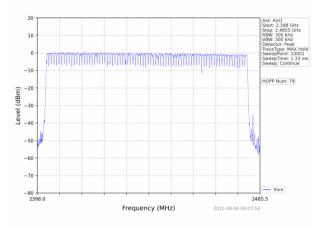
Modulation mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

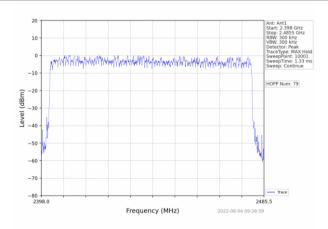
Tel: 0755-23595200 Fax: 0755-23595201

6.5. Hopping Channel Number

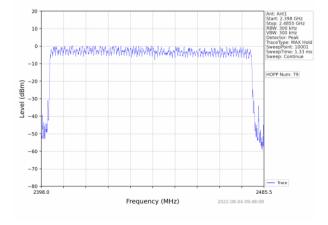
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak						
Limit:	15 channel	S						
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

6.6. Dwell Time

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:	RBW=1MH	z, VBW=1MH	Iz, Span=0Hz	z, Detector=P	Peak			
Limit:	0.4 Second							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to see	ction 6.0 for d	etails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.438	140.160	400	Pass
Hopping	DH3	1.638	262.080	400	Pass
Hopping	DH5	2.840	302.943	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DOPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.496	158.720	400	Pass
Hopping	2DH3	1.696	271.360	400	Pass
Hopping	2DH5	2.898	309.130	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3, 3-DH3

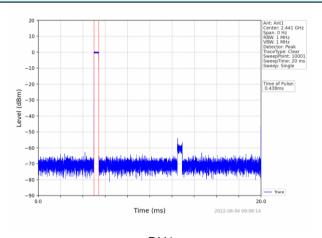
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

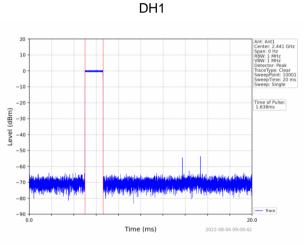
8-DPSK mode:

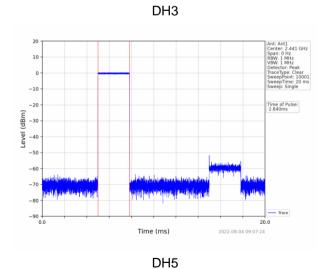
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.424	135.680	400	Pass
Hopping	3DH3	1.662	265.920	400	Pass
Hopping	3DH5	2.766	295.049	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

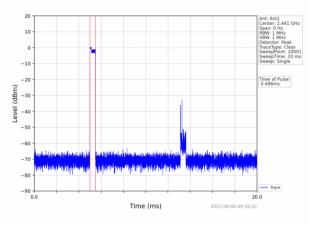

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

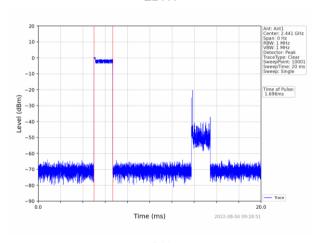

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

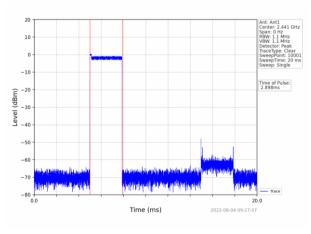


Test plot as follows:

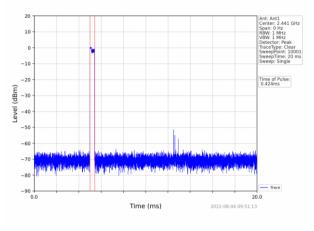
GFSK mode



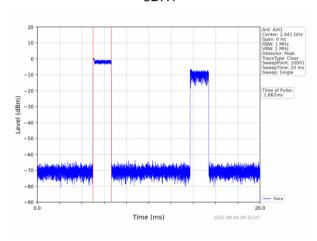


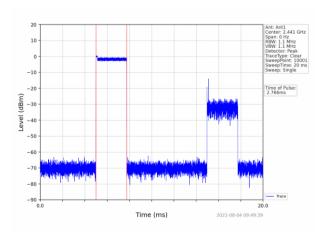

π/4-DQPSK mode

2DH1



2DH3

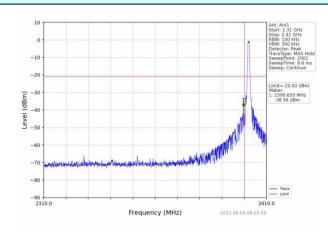


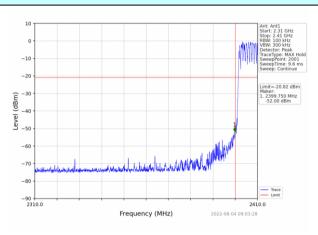

8-DPSK mode

3DH1

3DH3

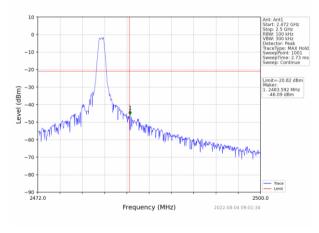
6.7. Band Edge

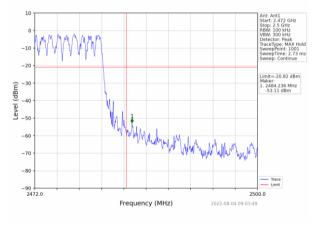

6.7.1. Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013								
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Test plot as follows: GFSK Mode:

Test channel Lowest channel

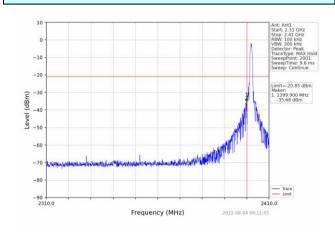


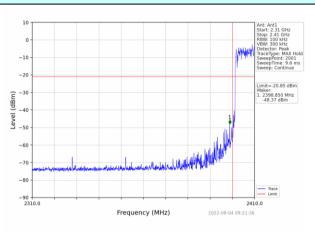

No-hopping mode

Hopping mode

Test channel:

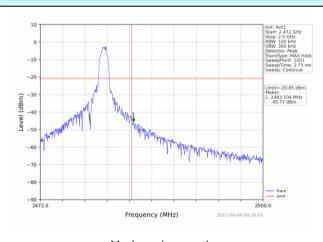
Highest channel

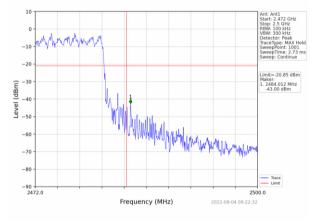

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel

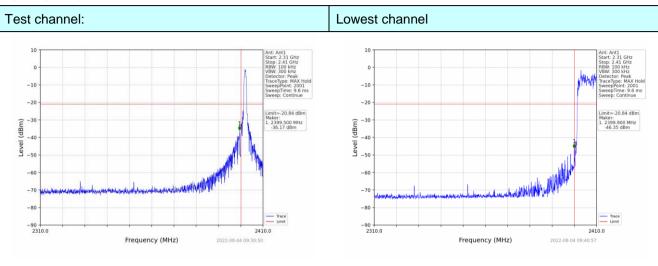



No-hopping mode

Hopping mode

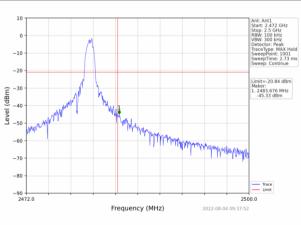
Test channel:

Highest channel

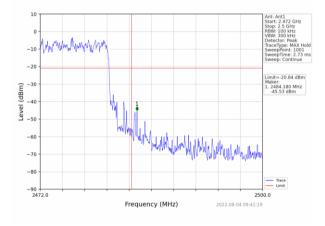


No-hopping mode

Hopping mode


8-DPSK Mode:

No-hopping mode


Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

6.7.2. Radiated Emission Method

	iiiissioii wiet	1104									
Test Requirement:	FCC Part15	C Section 15	.209 ar	nd 15.205							
Test Method:	ANSI C63.10	ANSI C63.10:2013									
Test Frequency Range:	All of the res 2500MHz) da			ested, only	the wors	st band's (2	2310MHz to				
Test site:	Measuremen	t Distance: 3	3m								
Receiver setup:	Frequency	Detect	tor	RBW	VBW	Re	emark				
·	Above 1GH	Peal		1MHz	3MHz		k Value				
		Pear		1MHz	10Hz		ge Value				
Limit:	Fred	quency	Li	imit (dBuV/			emark				
	Abov	e 1GHz		54.0 74.0			ge Value k Value				
Test setup:	Tum Table+-, <150cm>.	EUT-	< 3m >	Test Antenna	eamplifier						
Test Procedure:	determine 2. The EUT vantenna, vantenna, vantenna, vantenna, vantenna, vantenna, vantenna ground to horizontal measurem 4. For each sand then tand the romaximum 5. The test-real Bandwidth 6. If the emissimit specific EUT would margin wo	a 3 meter ca the position was set 3 me which was me and height is a determine the and vertical nent. suspected en he antenna was reading. eceiver system with Maxim	of the leters avounted varied for maxipolarization was turned the ELeting cod. Othe sted on the ELeting cod.	The table way from the on the top from one man value ations of the top from 0 decorated Mode. JT in peak and be stop rwise the electory one use the electory one use the electory one use the electory in the electory one use the electory in the electory one use the electory one use the electory in the electory one use the electory one use the electory in the electory in the electory of the electo	vas rotate liation. he interfer of a varia heter to for e of the fire e antenn was arrar hts from grees to 3 k Detect mode wa pped and emissions sing peak	rence-receivable-height our meters a eld strength a are set to a meter to 4 a meter	ving antenna above the . Both make the worst case a meters a to find the and Specified er than the alues of the t have 10dB ak or				
Test Instruments:	Refer to sect	ion 6.0 for de	etails								
Test mode:	Refer to sect	ion 5.2 for de	etails								
Test results:	Pass										
Test environment:	Temp.:	25 °C	Humid	l.: 52%	ò	Press.:	1012mbar				

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

1 10112011	iai (VVOIOLO	u00)						
	Mater Deading	Antenna		Preamp	Emississ Lauri	Limpito	Marain	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
(1411 12)	(СВДТ)	(dD/111)	(dD)	(dD)	(аБру/пі)	(аБру/пі)	(GB)	
2390	59.68	26.20	5.72	33.30	58.30	74.00	-15.70	peak
2000	00.00	20.20	0.72		00.00	7 1.00	10.70	pourt
2390	45.60	26.20	5.72	33.30	44.22	54.00	-9.78	AVG
2000	.5.66	20.20	0.72	00.00	122	300	0.70	/

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	58.62	26.20	5.72	33.30	57.24	74.00	-16.76	peak
2390	45.32	26.20	5.72	33.30	43.94	54.00	-10.06	AVG

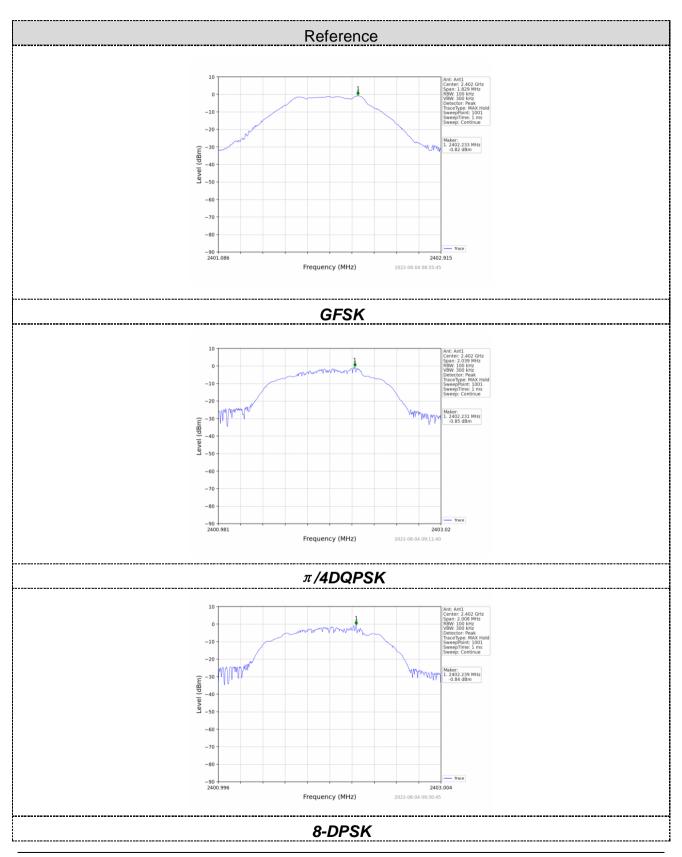
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.36	28.60	6.97	32.70	58.23	74.00	-15.77	peak
2483.5	41.90	28.60	6.97	32.70	44.77	54.00	-9.23	AVG

Vertical:

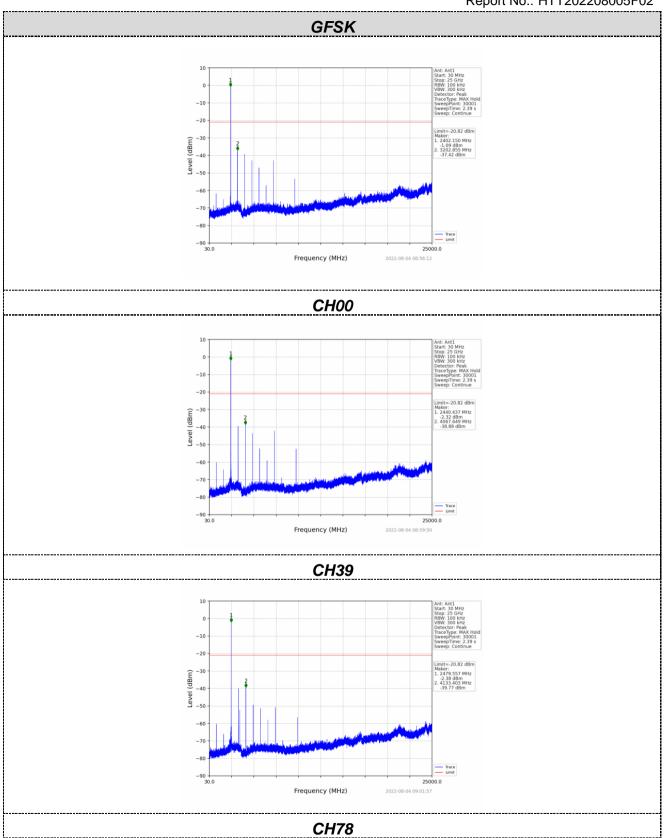
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	55.69	28.60	6.97	32.70	58.56	74.00	-15.44	peak
2483.5	42.96	28.60	6.97	32.70	45.83	54.00	-8.17	AVG

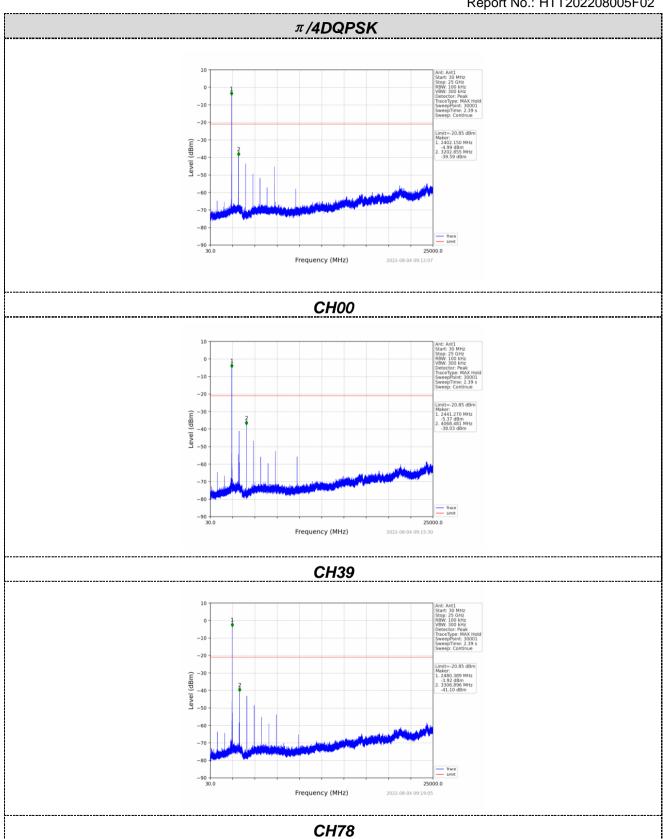


6.8. Spurious Emission

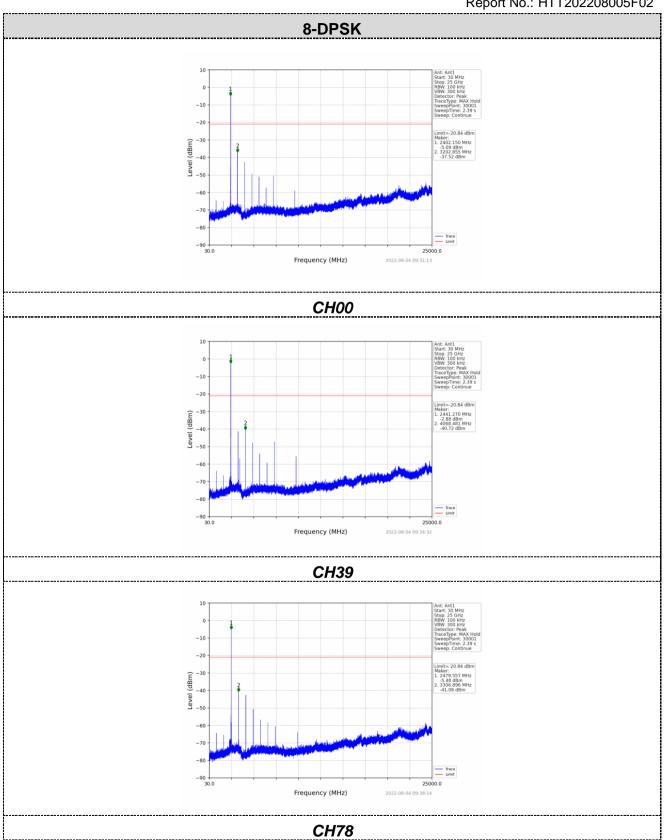
6.8.1. Conducted Emission Method

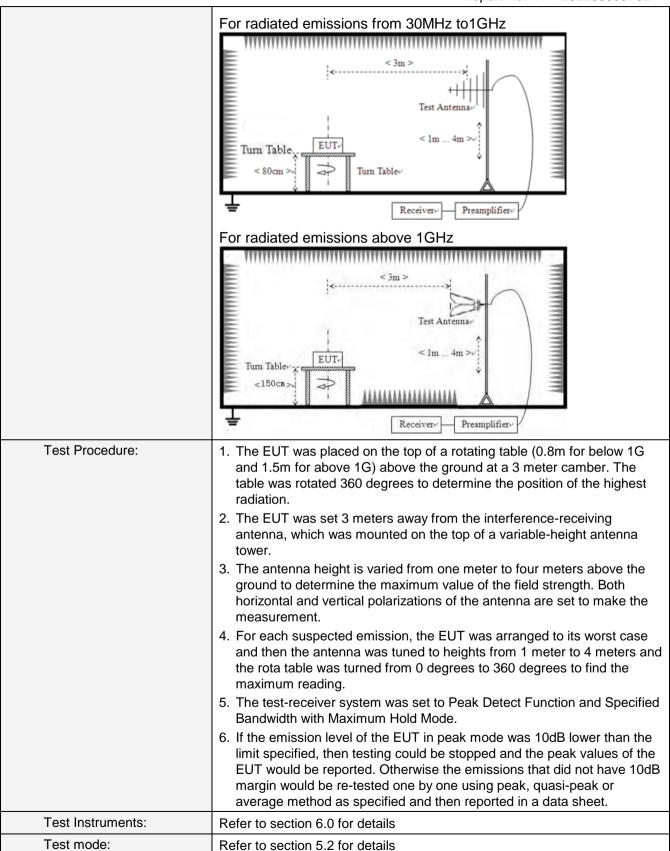
Test Requirement:	FCC Part15	C Section 1	5.247 (d)							
Test Method:	ANSI C63.1	ANSI C63.10:2013								
Limit:	spectrum in produced by 100 kHz ba	kHz bandwidt tentional radi y the intentior ndwidth withi wer, based on ent.	ator is operatinal radiator sl nal radiator sl n the band th	ting, the radionall be at leas at contains the	o frequency p st 20 dB belov ne highest lev	ower that is w that in the				
Test setup:	Sp									
Test Instruments:	Refer to see	ction 6.0 for d	letails							
Test mode:	Refer to see	ction 5.2 for d	letails							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				




Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201





6.8.2. Radiated Emission Method

0.0.2. Radiated L	500 B 445 0 0 45 45 000									
Test Requirement:	FCC Part15 C Section	on 15	5.209							
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	nce: 3	3m							
Receiver setup:	Frequency	Detector		RBW		VBW		Value		
	9KHz-150KHz	Qı	Quasi-peak		Hz	600H	Z	Quasi-peak		
	150KHz-30MHz	Qı	ıasi-peak	9KH	Ηz	30KH	Z	Quasi-peak		
	30MHz-1GHz	Qι	ıasi-peak	120K	Ήz	300KH	łz	Quasi-peak		
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u>z</u>	Peak		
	Above 1G112		Peak	1MF	Ηz	10Hz	<u>'</u>	Average		
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance		
	0.009MHz-0.490M	2400/F(k	(Hz)		QP		300m			
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m		
	1.705MHz-30MH	lz	30		QP			30m		
	30MHz-88MHz		100		QP					
	88MHz-216MHz	<u> </u>	150			QP				
	216MHz-960MH	Z	200			QP		3m		
	960MHz-1GHz	500				QP		5111		
	Above 1GHz					erage				
	7.5575 151.12		5000)	F	Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH	Z				
	For radiated emissions from 9kHz to 30MHz Tum Table Tum Table Receiver									

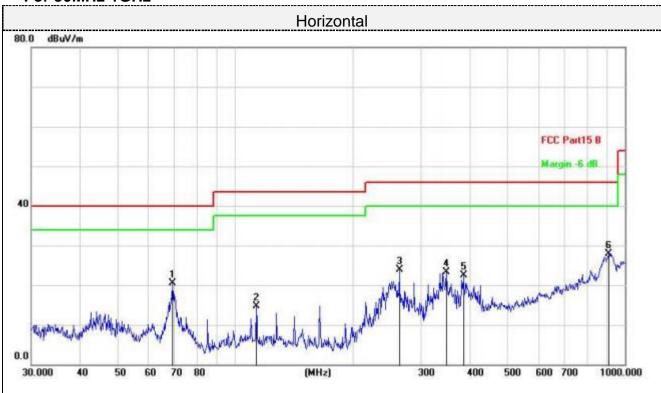
Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

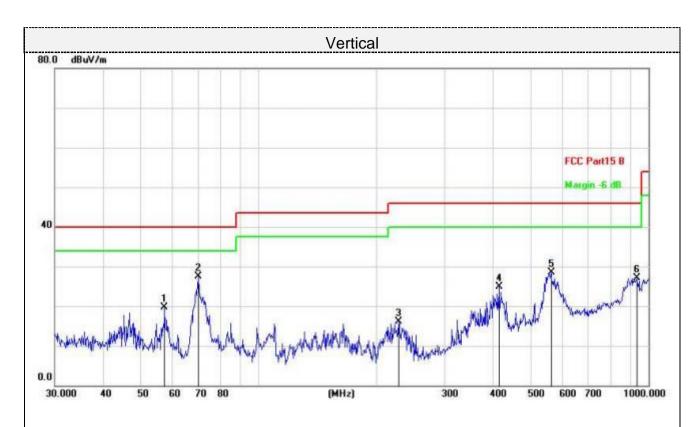
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		69.1141	40.24	-19.80	20.44	40.00	-19.56	QP
2		113.3163	34.87	-20.18	14.69	43.50	-28.81	QP
3		263.8190	42.19	-18.37	23.82	46.00	-22.18	QP
4		348.0274	40.03	-16.65	23.38	46.00	-22.62	QP
5		385.2805	38.96	-16.53	22.43	46.00	-23.57	QP
6	*	906.4824	32.62	-4.66	27.96	46.00	-18.04	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		57.3923	37.64	-17.89	19.75	40.00	-20.25	QP
2	*	70.0903	47.43	-19.99	27.44	40.00	-12.56	QP
3		228.4904	35.47	-19.42	16.05	46.00	-29.95	QP
4		413.2706	38.98	-14.10	24.88	46.00	-21.12	QP
5		562.6624	38.73	-10.23	28.50	46.00	-17.50	QP
6		935.5463	32.13	-4.96	27.17	46.00	-18.83	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and

High

channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	51.29	31.40	8.18	31.50	59.37	74.00	-14.63	peak
4804	37.14	31.40	8.18	31.50	45.22	54.00	-8.78	AVG
7206	45.88	35.80	10.83	31.40	61.11	74.00	-12.89	peak
7206	27.98	35.80	10.83	31.40	43.21	54.00	-10.79	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.26	31.40	8.18	31.50	59.34	74.00	-14.66	peak
4804	37.55	31.40	8.18	31.50	45.63	54.00	-8.37	AVG
7206	44.96	35.80	10.83	31.40	60.19	74.00	-13.81	peak
7206	29.37	35.80	10.83	31.40	44.60	54.00	-9.40	AVG

CH Middle (2441MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	52.08	31.40	9.17	32.10	60.55	74.00	-13.45	peak
4882	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG
7323	44.30	35.80	10.83	31.40	59.53	74.00	-14.47	peak
7323	28.95	35.80	10.83	31.40	44.18	54.00	-9.82	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				1
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4882	51.56	31.40	9.17	32.10	60.03	74.00	-13.97	peak
4882	37.08	31.40	9.17	32.10	45.55	54.00	-8.45	AVG
7323	42.99	35.80	10.83	31.40	58.22	74.00	-15.78	peak
7323	28.95	35.80	10.83	31.40	44.18	54.00	-9.82	AVG
1323	20.93	33.00	10.63	31.40	44.10	34.00	-9.02	AVG
	_							
Remark: Facto	or = Antenna Fac	tor + Cable Los	<u>s – Pre-amplifie</u>	·				

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	52.39	31.40	9.17	32.10	60.86	74.00	-13.14	peak
4960	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG
7440	44.39	35.80	10.83	31.40	59.62	74.00	-14.38	peak
7440	27.95	35.80	10.83	31.40	43.18	54.00	-10.82	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	52.03	31.40	9.17	32.10	60.50	74.00	-13.50	peak
4960	37.44	31.40	9.17	32.10	45.91	54.00	-8.09	AVG
7440	43.26	35.80	10.83	31.40	58.49	74.00	-15.51	peak
7440	29.85	35.80	10.83	31.40	45.08	54.00	-8.92	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

