TEST REPORT

For

Intel PRO/Wireless 2100 LAN 3B MiniPCI Adapter Model Number: WM3B2100 (Installed in a Hewlett Packard Laptop Series PP2080)

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING EMISSIONS STANDARD

47 CFR Part 15, Subpart C (Section 15.247)

Test Method:

ANSI C63.4: 1992 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

To view a copy of the Scope of Accreditation visit www.A2LA2.net

PREPARED FOR:

PREPARED BY:

Hewlett Packard Company 20555 SH 249 Houston, TX 77070

Contact(s): David Wissel

	REPORT	APPENDICES	TOTAL
	BODY	I	
PAGES	19	47	66

Aegis Labs, Inc. 22431 Antonio Parkway B160-417 Rancho S. Margarita, CA 92688

Agent(s): Mr. Steve Kuiper Mr. Rick Candelas

Test Report #: INTEL-030329FTest Date: March 29-April 2, 2003

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc.

AEGIS LABS, INC 22431 Antonio Parkway B160-417, Rancho Santa Margarita, CA 92688 949-459-7886 TEL 949-459-7869 FAX www.aegislabsinc.com

Page 1 of 19 Report Number: INTEL-030329F FCC ID: CNTPP2080

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
1.0	CERTIFICATION OF TEST DATA	03
2.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	04
3.0	DESCRIPTION OF EUT CONFIGURATION	05
3.1	EUT Description	05
3.1.1	Channel Number and Frequencies	06
3.2	EUT Configuration	07
3.3	EUT and Sub-Assemblies List	08
3.4	Accessory / Host Equipment List	08
3.5	Cabling Diagram and Description	09
4.0	TEST EQUIPMENT SETTINGS AND TEST SETUPS	10
4.1	Conducted Emissions At AC Mains Port	10
4.1.1	Conducted Emissions At AC Mains Port – Test Setup	11
4.2	Spurious Radiated Emissions	12
4.2.1	Spurious Radiated Emissions – Test Setup	13
4.3	Maximum Peak Output Power Measurement	14
4.3.1	Maximum Peak Output Power Measurement– Test Setup	14
4.4	Occupied Bandwidth Measurement	15
4.4.1	Occupied Bandwidth Measurement– Test Setup	15
4.5	Spectral Power Density Measurement	16
4.5.1	Spectral Power Density Measurement– Test Setup	16
4.6	Spurious Emissions Measurement At The Antenna Terminal	17
4.6.1	Spurious Emissions Measurement At The Antenna Terminal– Test Setup	17
4.7	Band Edge Measurement At The Antenna Terminal	18
4.7.1	Band Edge Measurement At The Antenna Terminal- Test Setup	18
5.0	MODIFICATIONS AND RECOMMENDATIONS	19
APPENDI	CES	
Ι	Data Sheets	<u> </u>

Page 2 of 19 Report Number: INTEL-030329F FCC ID: CNTPP2080

1.0 CERTIFICATION OF TEST DATA

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual.

Testing and engineering functions provided by Aegis Labs are furnished through the use of part-time, full-time or consulting engineers with the appropriate qualifications to carry out their duties. The intended purpose of this test report is to describe the measurement procedure and to determine whether the equipment under test "EUT" complies with both the conducted and radiated limits. Limits for emissions testing are described under 47 CFR Part 15, Subpart C (Section 15.247).

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the Equipment Under Test (EUT) under the requirements specified in the emissions standard as described below. The test results contained in this report are only representative of the test sample tested as described in Section 2.0 of this report.

The test results provided within this report, indicate that the information technology equipment has been found to be in <u>COMPLIANCE</u> with the test specifications based upon the following RF compliance standards:

Pass/Fail determination is based upon the nominal values of the test data.

EMISSIONS STANDARDS	DESCRIPTION	TEST
		RESULTS
FCC 47 CFR, Part 15.207	Conducted Emissions At AC Mains Port	PASSED
CISPR22 Class B Limits	Radiated Emissions (30-1000 MHz)	PASSED
FCC 47 CFR, Part 15.247(c), 15.209	Radiated Emissions (1-26.5 GHz)	PASSED
FCC 47 CFR, Part 15.247(a)(2)	Occupied Bandwidth Measurement	PASSED
FCC 47 CFR, Part 15.247(b)	Maximum Peak Output Power Measurement	PASSED
FCC 47 CFR, Part 15.247(d)	Spectral Power Density Measurement	PASSED
FCC 47 CFR, Part 15.247(c)	Spurious Emissions Measurement At The	PASSED
	Antenna Terminal	
FCC 47 CFR, Part 15.247(c)	Band Edge Measurement At The Antenna	PASSED
	Terminal	

Prepared By:

04/17/03

04/17/03

Rick Candelas

Date:

Steve J. Kuiper Q/A Manager Date:

Staff Engineer Aegis Labs, Inc.

Aegis Labs, Inc.

Report Approved By:

2.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED: Trade Name: Intel PRO/Wireless 2100 LAN 3B MiniPCI

Adapter

Model Number: WM3B2100

Serial Number: 47B12B013ADA97767012

FCC ID: CNTPP2080

TEST DATE(S): March 29-April 2, 2003

DATE EUT RECEIVED: March 28, 2003

ORIGIN OF TEST

SAMPLE(S): Production

RESPONSIBLE PARTY: Hewlett Packard Company

20555 SH 249

Houston, TX 77070

CLIENT CONTACT: Mr. David Wissel

MANUFACTURER: Hewlett Packard Company

TEST LOCATION: Aegis Labs, Inc.

32231 Trabuco Creek Road Trabuco Canyon, CA 92678

Conducted Site #2 Radiated Site #2

A2LA CERTIFICATE: 1111.01, Valid until February 28, 2004

PURPOSE OF TEST: To demonstrate compliance with the relevant standards described

in Section 1.0 of this report.

TEST(S) PERFORMED: Refer to Table in Section 1 of this report.

All calibration vendors were responsible for certifying Aegis Labs, Inc. test equipment as per the manufacturer's specifications and that the equipment is calibrated using instruments and standards where the accuracy is traceable to the National Institute of Standards and Technology (NIST). Calibration of all test equipment conforms to ANSI/NCSL Z540-1 and ISO 10012-1 and/or ISO/IEC Guide 17025 compliance (Additionally, other pertinent test equipment will carry MIL-STD-45662A). All calibration documents are on file with Aegis Labs, Inc., with copies provided upon request.

3.0 DESCRIPTION OF EUT

3.1 EUT Description

Equipment Under Test (EUT)				
Trade Name:	Intel PRO/Wireless 2100 LAN 3B MiniPCI Adapter			
Model Number:	WM3B2100			
Frequency Range:	2.412 – 2.462 GHz			
Type of Transmission:	Direct Sequence Spread Spectrum			
Transfer Rate: 1/2/5.5/11 Mbps				
Number of Channels:	11			
Modulation Type:	DBPSK, DQPSK, CCK			
Antenna Type:	Wistron NeWeb Corp. PIFA Antenna Type			
Antenna Gain (See Note 2):	Main PCB IFA = 2.75dBi (Antenna + Cable) Aux PIFA = 2.81dBi (Antenna + Cable)			
Transmit Output Power: 16 dBm (Typical) Please see Appendix I (Data Sheets) factual output power.				
Power Supply:	3.3VDC from computer MPCI slot.			
Number of External Test Ports Exercised:	2 Antenna Ports (1 Main & 1 Auxiliary)			

The Intel PRO/Wireless 2100 LAN 3B MiniPCI Adapter is an embedded 2.4 GHz Wireless Local Area Network Mini-PCI adapter. The Mini-PCI Type 3B form factor is designed for notebook computer systems where overall thickness must be kept to an absolute minimum. It is capable of a data rate of up to 11 Mbps at 2.4 GHz. Please refer to Section 3.2 of this report for a further description of the configuration tested.

NOTE 1: For a more detailed description, please refer to the manufacture's specifications or User's Manual.

NOTE 2: Refer to the antenna specifications for a further description of the antennas.

3.1.1 Channel Number and Frequencies

Eleven channels are provided for the EUT.

Channel	Frequency (MHz)
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

3.2 EUT Configuration

The EUT was set-up according to the ANSI C63.4: 1992 guidelines for emissions testing. For emissions testing the EUT (Intel PRO/Wireless 2100 LAN 3B MiniPCI Adapter, Model Number: WM3B2100) had a loaded antenna connected to both its main and auxiliary ports. All the appropriate test ports were exercised during both the pre-qualification and final evaluation scans.

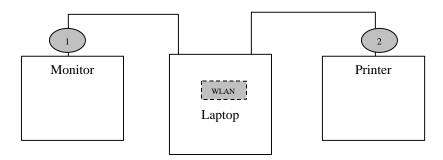
The EUT was tested connected to a set of Winstron NeWeb Corporation PIFA type antennas via its main and auxiliary Hirose U.FL-R-SMT antenna ports installed in the Mini-PCI slot of the Hewlett Packard Company host laptop computer Series PP2080. Data can be found in Appendix I.

The Hewlett Packard Company host laptop computer was connected to a Canon printer and NEC monitor via its parallel and video ports respectively.

The low (channel 1), middle (channel 6), and high (channel 11) were tested. The EUT was transmitting and receiving on a continuous basis.

The final data was taken in this mode of operation. The external cables were bundled and routed as shown in the photographs in Appendix I (Data Sheets).

3.3 EUT and Sub-Assemblies List


EUT and Sub-Assemblies List						
Manufacturer	Equipment Name	Model Number	Serial Number			
Intel Corporation	Intel PRO/Wireless 2100 LAN 3B	WM3B2100	47B12B013AD			
	MiniPCI Adapter		A97767012			
Sub-Assemblies						
Wistron NeWeb	Main Antenna (PCB IFA)	PN:	None			
Corporation		81.EB215.002				
Wistron NeWeb	Auxiliary Antenna (Metal PIFA)	PN:	None			
Corporation		81.EB215.002				

3.4 Accessory / Host Equipment List

Accessory / Host Equipment List							
Manufacturer Equipment Name Model Number Serial Number							
Hewlett Packard	Host Laptop	BCL31001008	CAT000109160				
Company	Computer	DCL31001000	CA1000107100				
Compaq Computer	AC Adapter	239427-001	3108136504				
Corporation	AC Adapter	237427-001	3100130304				
Monitor	NEC	JC-1575VMA	2Y785821				
Printer	Canon	BJC-4200	MT1-18				

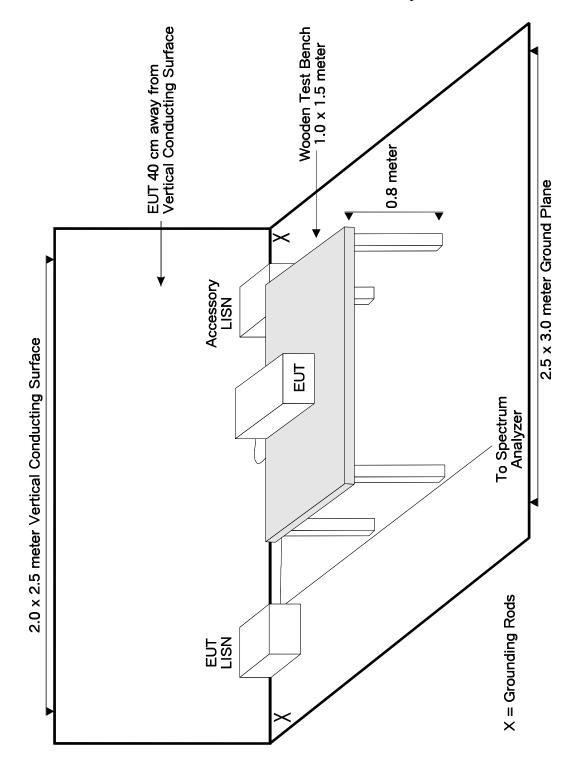
NOTE: All the power cords of the above support equipment are standard non-shielded, 1.8 meters long.

3.5 Cabling Diagram and Description

- Cable 1: This is a 6-foot braid and foil shielded round cable connecting the host Hewlett Packard laptop computer with the NEC monitor. It has metallic DB-15 type connector at the computer end and is hardwired to the monitor. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cable 2: This is a 6-foot braid and foil shielded round cable connecting the Hewlett Packard host computer to the Canon Printer. It has a metallic DB-25 type connector at the computer end and a metallic centronics type connector at the printer end. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.

4.0 TEST EQUIPMENT AND TEST SETUPS

The test equipment settings and functions are selected using the guidance of ANSI C63.4-1992. All test equipment setups and operations during conducted and radiated emissions testing are in accordance with this reference document.


4.1 Conducted Emissions At AC Mains Port

During conducted emissions measurements, a spectrum analyzer was used as the measuring instrument along with a preselector and quasi-peak detector. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage. The conducted emissions from the EUT in the frequency range from 150 kHz to 30 MHz were captured for graphical display through the use of automated LABVIEW EMI measurement software. All graphical readings were measured in the "Peak" mode only to reduce testing time. Upon completion of the graphical scan, the test lab personnel performed the conducted measurement scan manually using the spectrum analyzer front panel keys. All peak measurements coming within 3 dB of the limit line were "Averaged" and/or "Quasi-Peaked" and denoted appropriately in the EXCEL spreadsheet.

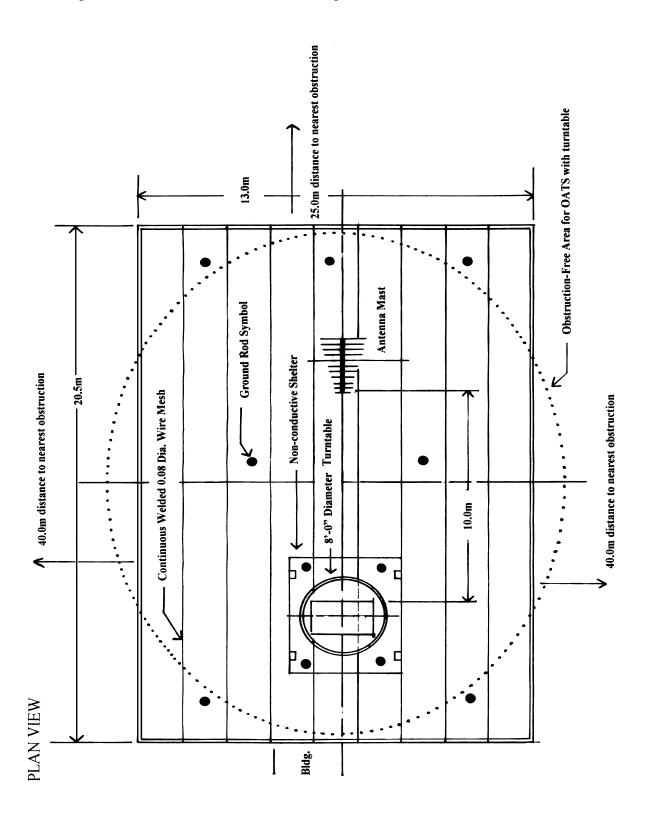
The Equipment Under Test (EUT) was configured as a system with peripherals connected, so that at least one interface port of each type is connected to one external peripheral when tested for conducted emissions according to ANSI C63.4: 1992. The EUT was tested in a tabletop configuration.

The six highest emission readings for Line 1 and Line 2 are highlighted on the data sheets in Appendix I. The graphical scans only reflects peak readings while the tabulated data sheets reflect peak, average, and/or quasi-peak readings which ever applies.

4.1.1 Conducted Emissions At AC Mains Port – Test Setup

Page 11 of 19 Report Number: INTEL-030329F FCC ID: CNTPP2080

CONDUCTED EMISSIONS TEST SETUP


4.2 Spurious Radiated Emissions

A spectrum analyzer was used as the measuring instrumentation along with a preselector and quasi-peak-detector. The pre-amplifiers were used to increase the sensitivity of the instrument. The spectrum analyzer was used in the peak detector mode with the "max-hold" feature activated and in Positive Peak mode. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The quasi-peak detector was used only for those readings, which are marked accordingly in the data sheet. The effective measurement bandwidth used for the radiated emissions test was 120 kHz for (30 MHz- 1000 MHz). The spectrum analyzer operated such that the modulation of the signal was filtered out to set the analyzer in linear mode. For testing beyond 1000 MHz a spectrum analyzer capable of taking reading above 1000 MHz was connected to the high frequency amplifier, where these measurement readings were taken with the transducer placed at a 3-meter test distance from the EUT.

The Open Area Test Sites (OATS) was used for radiated emission testing. These test sites are designed according to ANSI C63.4: 1992 and ANSI C63.7: 1992 guidelines. The Measurements were conducted in accordance with ANSI C63.4: 1992 and ANSI C63.7: 1992 requirements.

Broadband biconical, log periodic, and horn antennas were used as transducers during the measurement reading phase. The frequency spans were wide (30 MHz-88 MHz, 88 MHz-216 MHz, 216 MHz-300 MHz, and 300 MHz-1000 MHz). After 1000 MHz the horn antenna was used to measure emissions. The six highest emission readings in both horizontal and vertical polarities are highlighted on the data sheets in Appendix I.

4.2.1 Spurious Radiated Emissions – Test Setup

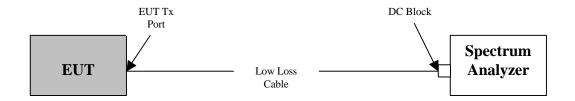
Page 13 of 19 Report Number: INTEL-030329F FCC ID: CNTPP2080

4.3 Maximum Peak Output Power Measurement

A power meter along with a power sensor was used to measure the maximum peak output power. The low (channel 1), middle (channel 6), and high (channel 11) were measured as well as data rates 1, 5.5, and 11 Mbps.

The EUT maximum peak output power is less than 1 Watt. Please refer to Appendix I for the data sheets.

4.3.1 Maximum Peak Output Power Measurement – Test Setup

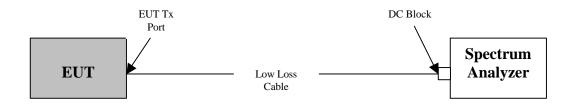


4.4 Occupied Bandwidth Measurement

A spectrum analyzer was used to measure the occupied bandwidth. The bandwidth was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz.

The EUT bandwidth is at least 500 kHz. Please refer to Appendix I for graphical plots.

4.4.1 Occupied Bandwidth Measurement – Test Setup

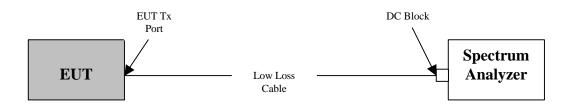


4.5 Spectral Power Density Measurement

A spectrum analyzer was used to measure the spectral power density. It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 3 kHz and the video bandwidth was 10 kHz. The highest 4.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

The EUT spectral power density does not exceed 8 dBm in any 3 kHz band. Please refer to Appendix I for graphical plots.

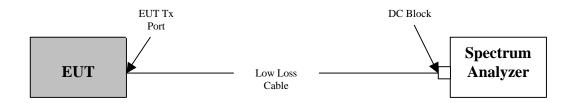
4.5.1 Spectral Power Density Measurement – Test Setup



4.6 Spurious Emissions Measurement At The Antenna Terminal

A spectrum analyzer was used to measure the spurious emissions at the antenna terminal. It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

The EUT RF power that is produced in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Please refer to Appendix I for graphical plots.


4.6.1 Spurious Emissions Measurement At The Antenna Terminal – Test Setup

4.7 Band Edge Measurement At The Antenna Terminal

A spectrum analyzer was used to measure the band edge measurements at the antenna terminal with the EUT transmitting at 2412 MHz (channel 1) and 2462 MHz (channel 11). It was measured using a direct connection from the RF output port of the EUT to the spectrum analyzer using a low loss cable and a DC block. The resolution bandwidth was 1 MHz and the video bandwidth was 1 MHz. It was verified that the band edge measurements were not above the limit in the restricted bands below 2390 MHz and above 2483.5 MHz. Please refer to Appendix I for graphical plots.

4.7.1 Band Edge Measurement At The Antenna Terminal – Test Setup

5.0 MODIFICATIONS AND RECOMMENDATIONS

There were no modifications done to the EUT.

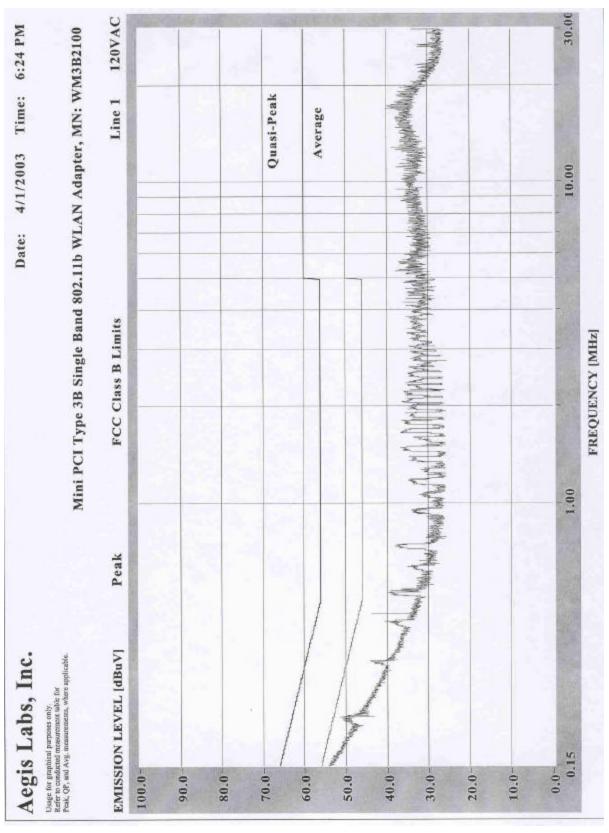
APPENDIX I

DATA SHEETS

CONDUCTED EMISSIONS AT AC MAINS PORT

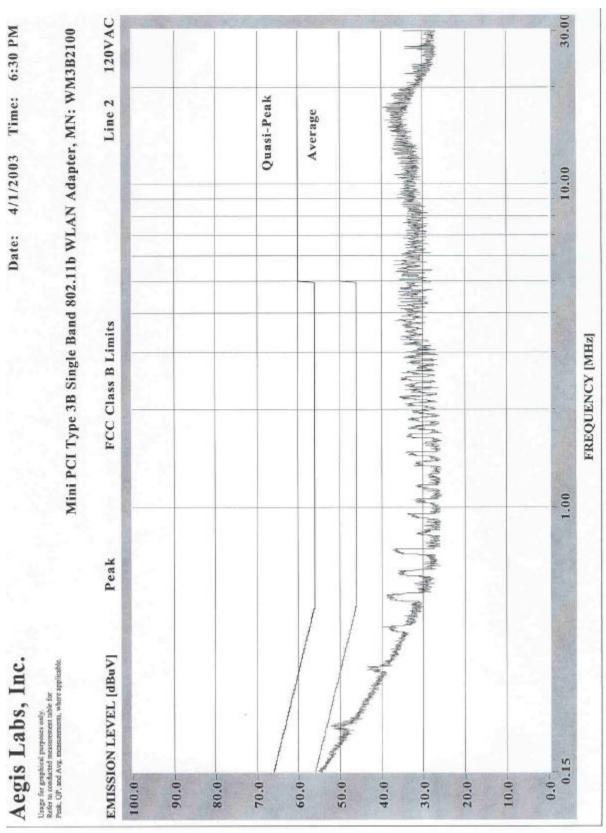
CLIENT:	Hewlett Packard Company	DATE:	04/01/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329-07
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGURATION:	Installed in Hewlett Packard Company	TEMPERATURE:	19 C
	laptop computer series PP2080.	HUMIDITY:	45% RH
		TIME:	9:00 PM

Standard:	FCC CFR 47, Part 15.207
Description:	AC Power Conducted Emissions
Results:	Passes FCC Limits


NOTE: During preliminary scans, there wasn't any difference which channel or data rate was used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps was used for final testing.

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

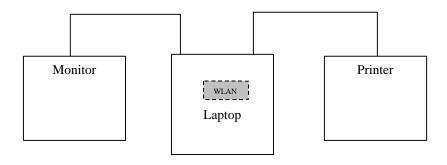
	FCC CLASS B CONDUCTED EMISSIONS – LINE 1						
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak	
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)	
0.1521	54.10	PK	55.94	-1.84	65.94	-11.84	
0.1521	28.00	AV	55.94	-27.94	65.94	-37.94	
0.2064	48.70	PK	54.39	-5.69	64.39	-15.69	
0.3174	44.50	PK	51.22	-6.72	61.22	-16.72	
0.4179	41.30	PK	48.34	-7.04	58.34	-17.04	
0.5202	42.30	PK	46.00	-3.70	56.00	-13.70	
0.7284	40.00	PK	46.00	-6.00	56.00	-16.00	


	FCC CLASS B CONDUCTED EMISSIONS – LINE 2						
Freq.	Meter	Detector	Average	Average	Quasi-Peak	Quasi-Peak	
(MHz)	Reading (dBuV)	(PK/QP/AV)	Limit (dBuV)	Delta(dB)	Limit (dBuV)	Delta(dB)	
0.1521	55.00	PK	55.94	-0.94	65.94	-10.94	
0.1521	29.05	AV	55.94	-26.89	65.94	-36.89	
0.2073	51.00	PK	54.36	-3.36	64.36	-13.36	
0.3174	44.90	PK	51.22	-6.32	61.22	-16.32	
0.4197	41.50	PK	48.29	-6.79	58.29	-16.79	
0.5274	40.60	PK	46.00	-5.40	56.00	-15.40	
0.7350	39.80	PK	46.00	-6.20	56.00	-16.20	

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

Page 4 of 47 Report Number: INTEL-030329F FCC ID: CNTPP2080

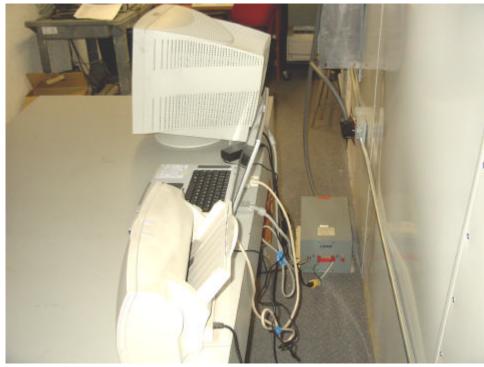
CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)


Page 5 of 47 Report Number: INTEL-030329F FCC ID: CNTPP2080

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

TEST EQUIPMENT USED						
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle	
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/03	1 Year	
Spectrum Analyzer - Display Section	Hewlett Packard	85662A	1833A00389	11/27/03	1 Year	
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/03	1 Year	
RF Preselector	Hewlett Packard	85685A	2620A000281	05/10/03	1 Year	
Attenuator - 5W-10dB	Pasternack	PE7014-10	N/A	11/03/03	1 Year	
LISN (EUT)	FCC	FCC-LISN- 50-25-2	9931	02/20/04	1 Year	
LISN (Access)	Com-Power	LI-200	12019	01/25/04	1 Year	
LISN (Access)	Com-Power	LI-200	12018	01/25/04	1 Year	
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/18/04	1 Year	

	ACCESSORIES EQUIPMENT									
Equipment Name	Manufacturer	Model Number	Serial Number							
Laptop	Hewlett Packard Company	BCL31001008	CAT000109160							
AC Adapter	Compaq Computer Corp.	239427-001	3108136504							
Monitor	NEC	JC-1575VMA	2Y785821							
Printer	Canon	BJC-4200	MT1-18							


BLOCK DIAGRAM

CONDUCTED EMISSIONS AT AC MAINS PORT (Continued)

PHOTOGRAPHS

Page 7 of 47 Report Number: INTEL-030329F FCC ID: CNTPP2080

SPURIOUS RADIATED EMISSIONS

CLIENT:	Hewlett Packard Company	DATE:	04/01/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329-06
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGURATION:	Installed in Hewlett Packard Company	TEMPERATURE:	20 C
	laptop computer series PP2080.	HUMIDITY:	43% RH
		TIME:	5:00 PM

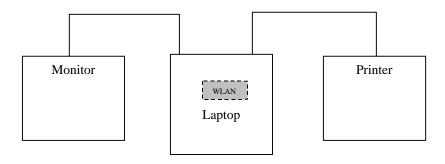
Standard:	CISPR22 Class B Limits
Description:	Spurious Emissions Measurements - Radiated
Results:	-1.12 dB (QP) margin @ 200.05 MHz (Horizontal Polarity)

NOTE: During preliminary scans, there wasn't any difference which channel or data rate was used with the EUT, therefore only Channel 1 at a data rate of 1 Mbps was used for final testing.

SPURIOUS RADIATED EMISSIONS (Continued)

	Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	(V)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
60.10	39.00	400	225			34.40	1.20	8.40	14.18	30.00	-15.82
80.11	40.60	400	180			34.39	1.50	6.50	14.23	30.00	-15.77
87.33	45.80	400	180			34.39	1.50	6.55	20.78	30.00	-9.22
120.14	42.90	400	180			34.39	1.80	13.40	23.72	30.00	-6.28
130.15	43.20	400	180			34.35	1.93	14.30	25.09	30.00	-4.91
150.15	37.40	400	135			34.31	2.00	15.20	20.30	30.00	-9.70
200.05	43.90	400	0	43.79	Q	34.31	2.40	17.00	28.88	30.00	-1.12
240.09	43.50	300	270			34.25	2.61	17.41	29.51	37.00	-7.49
286.02	39.40	250	135			34.20	2.90	19.03	27.48	37.00	-9.52
300.04	44.10	250	180			34.14	3.00	13.40	26.36	37.00	-10.64
320.07	38.90	200	135			34.14	3.01	13.52	22.55	37.00	-14.45
352.06	38.50	200	90			34.09	3.30	15.20	22.91	37.00	-14.09
368.10	39.50	200	45			34.09	3.31	15.19	23.91	37.00	-13.09
384.08	38.80	150	0			34.04	3.40	15.05	23.30	37.00	-13.70
400.05	40.90	150	0			34.02	3.50	15.20	25.58	37.00	-11.42
432.13	44.30	150	90			33.97	3.60	16.12	30.24	37.00	-6.76
499.42	43.30	100	90			33.87	3.86	17.81	32.21	37.00	-4.79
600.01	39.10	100	90			33.64	4.40	19.40	29.26	37.00	-7.74
700.06	37.00	100	90			33.54	4.90	21.60	29.96	37.00	-7.04
800.02	38.70	100	90			33.32	5.20	22.00	32.58	37.00	-4.42
900.03	34.10	100	90			33.04	5.60	22.70	29.36	37.00	-7.64

			Ver	tical Open	Field Ma	aximized	l Data			
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)			(dB)	(dB)	(dB)	(dBuV)		
53.37	43.30	100	0		34.40	1.10	10.97	20.26	30.00	-9.74
56.49	45.30	100	0		34.40	1.10	10.94	21.57	30.00	-8.43
60.08	50.70	100	90		34.40	1.20	8.70	26.18	30.00	-3.82
61.51	49.10	100	90		34.40	1.20	8.69	24.33	30.00	-5.67
80.10	42.00	100	90		34.40	1.50	7.00	16.12	30.00	-13.88
120.12	41.40	100	315		34.40	1.80	11.90	20.72	30.00	-9.28
200.03	40.00	100	180		34.31	2.40	17.10	25.19	30.00	-4.81
240.08	42.50	100	135		34.25	2.61	17.88	29.51	37.00	-7.49
286.06	36.90	100	45		34.20	2.90	19.36	25.54	37.00	-11.46
300.00	42.20	100	0		34.14	3.00	13.80	24.86	37.00	-12.14
304.10	43.70	100	0		34.14	3.00	13.83	26.69	37.00	-10.31
320.06	41.00	100	315		34.14	3.01	13.95	25.29	37.00	-11.71
352.06	42.10	100	45		34.09	3.30	15.40	26.71	37.00	-10.29
368.10	43.20	100	45		34.09	3.31	15.39	27.84	37.00	-9.16
384.12	41.50	100	45		34.04	3.40	15.34	26.56	37.00	-10.44
400.07	37.30	100	0		34.02	3.50	16.30	23.08	37.00	-13.92
432.09	40.30	100	90		33.97	3.60	16.66	26.69	37.00	-10.31


Page 9 of 47 Report Number: INTEL-030329F FCC ID: CNTPP2080

SPURIOUS RADIATED EMISSIONS (Continued)

	TEST EQUIPMENT USED							
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Calibration Cycle			
Spectrum Analyzer - RF Section	Hewlett Packard	8568B	2634A03093	11/27/03	1 Year			
Spectrum Analyzer - Display Section	Hewlett Packard	85662A	1833A00389	11/27/03	1 Year			
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00220	11/28/03	1 Year			
RF Preselector	Hewlett Packard	85685A	2620A000281	05/10/03	1 Year			
Preamplifier	Com-Power	PA-102	1438	04/29/03	1 Year			
Antenna - Biconical	EMCO	3110	9108-1421	02/11/04	1 Year			
Antenna - Log Periodic	EMCO	3148	4947	02/11/04	1 Year			
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/04	1 Year			

	ACCESSORIES EQUIPMENT									
Equipment Name	Manufacturer	Model Number	Serial Number							
Laptop	Hewlett Packard Company	BCL31001008	CAT000109160							
AC Adapter	Compaq Computer Corp.	239427-001	3108136504							
Monitor	NEC	JC-1575VMA	2Y785821							
Printer	Canon	BJC-4200	MT1-18							

BLOCK DIAGRAM

SPURIOUS RADIATED EMISSIONS (Continued)

PHOTOGRAPHS

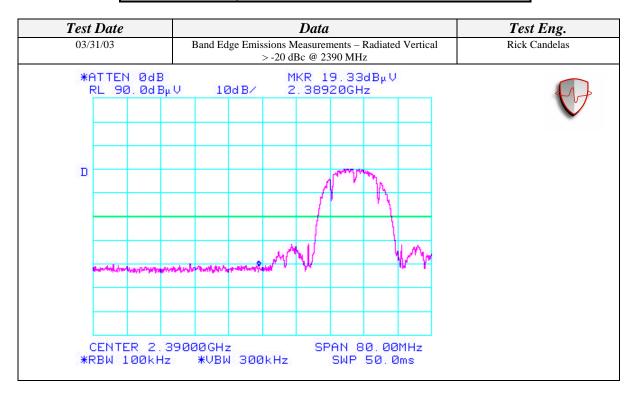
Page 11 of 47 Report Number: INTEL-030329F FCC ID: CNTPP2080

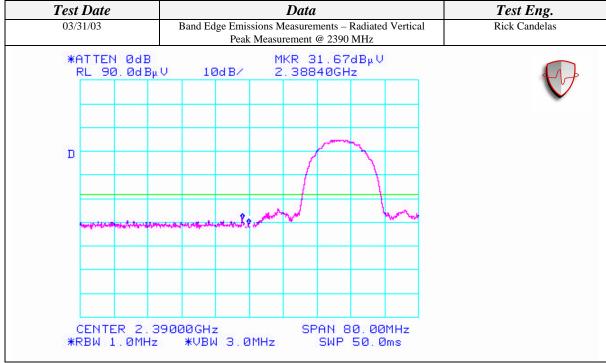
SPURIOUS RADIATED EMISSIONS (Continued)

CLIENT:	Hewlett Packard Company	DATE:	03/31/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGURATION:	Installed in Hewlett Packard Company	TEMPERATURE:	28 C
	laptop computer series PP2080.	HUMIDITY:	19% RH
		TIME:	8:30 AM

Standard:	FCC CFR 47, Part 15, 15.247(c), 15.209
Description:	Spurious Emissions Measurements - Radiated
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional
	radiator is operating, the radio frequency power that is produced by the intentional radiator is at
	least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level
	of the desired power, based on either an RF conducted or a radiated measurement.

SPURIOUS RADIATED EMISSIONS (Continued)

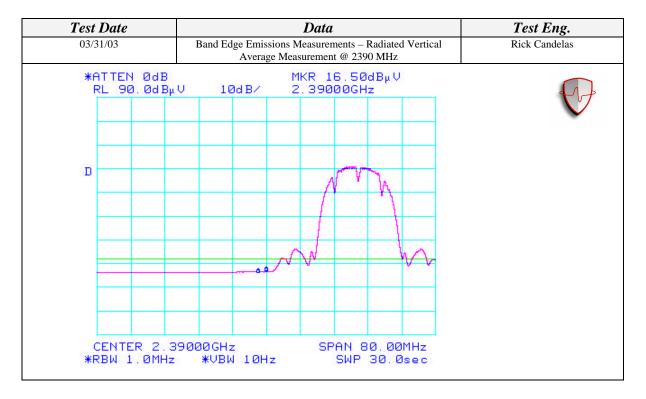

Fundamental and Band Edge Measurements at Channels 1, 6, & 11 Aegis Labs, Inc. File #: INTEL-030329-02


	Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	$\iota V)$	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
2410.80	64.17	100	90			2.99	29.22	96.38			2410.80
2387.73	30.83	100	90			2.93	29.18	62.94	74.00	-11.06	2387.73
2387.73				16.30	A	2.93	29.18	48.41	54.00	-5.59	2387.73
2390.00	30.10	100	90			2.94	29.18	62.22	74.00	-11.78	2390.00
2390.00				16.50	A	2.94	29.18	48.62	54.00	-5.38	2390.00
2436.25	65.00	100	90			3.05	29.27	97.32			2436.25
2461.36	65.67	100	90			3.11	29.32	98.10			2461.36
2484.97	30.00	100	90			3.16	29.37	62.53	74.00	-11.47	2484.97
2483.50				17.17	A	3.16	29.38	49.70	54.00	-4.30	2483.50

	Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	(V)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
2411.17	66.17	100	315			2.99	29.42	98.58			2411.17
2388.40	31.67	100	315			2.93	29.38	63.98	74.00	-10.02	2388.40
2388.40				16.00	A	2.93	29.38	48.31	54.00	-5.69	2388.40
2390.00	30.00	100	315			2.94	29.38	62.32	74.00	-11.68	2390.00
2390.00				16.50	A	2.94	29.38	48.82	54.00	-5.18	2390.00
2436.25	68.83	100	90			3.05	29.47	101.35			2436.25
2461.33	68.50	100	90			3.11	29.52	101.13			2461.33
2483.90	30.83	100	90			3.16	29.57	63.56	74.00	-10.44	2483.90
2483.50				17.17	A	3.16	29.57	49.90	54.00	-4.10	2483.50

SPURIOUS RADIATED EMISSIONS (Continued)

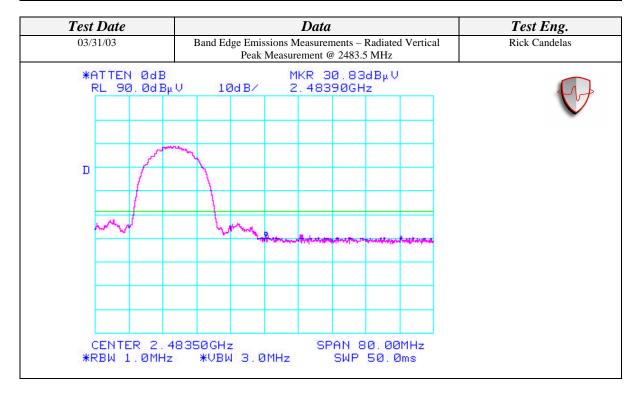
Band Edge Measurement Plots at Channels 1 & 11

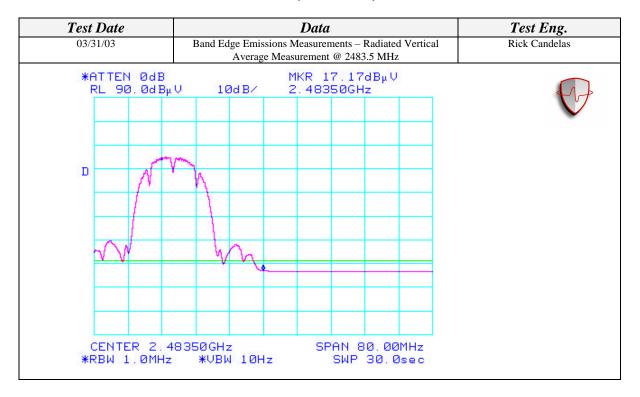


Page 14 of 47

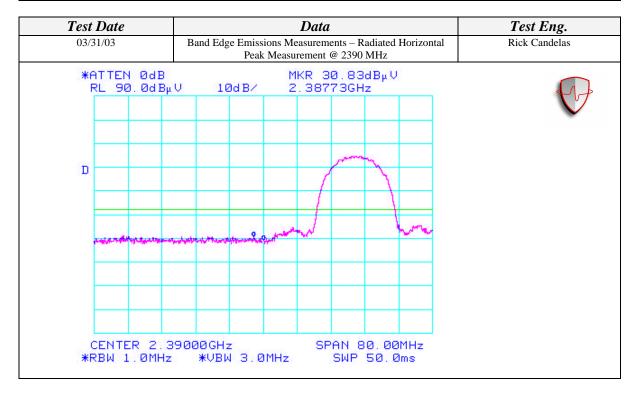
Report Number: INTEL-030329F

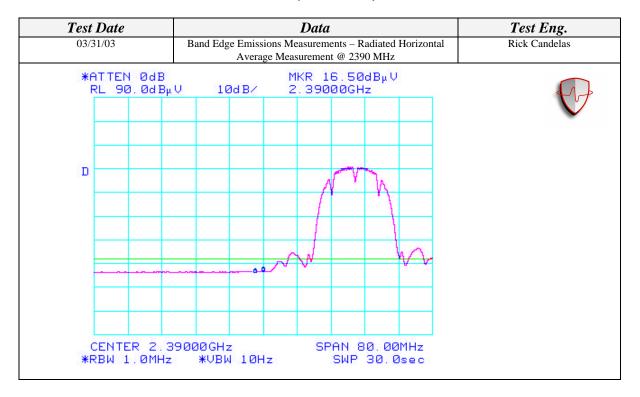
FCC ID: CNTPP2080

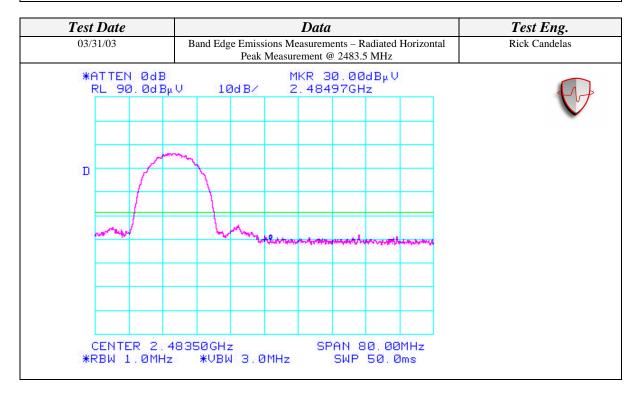

SPURIOUS RADIATED EMISSIONS (Continued)

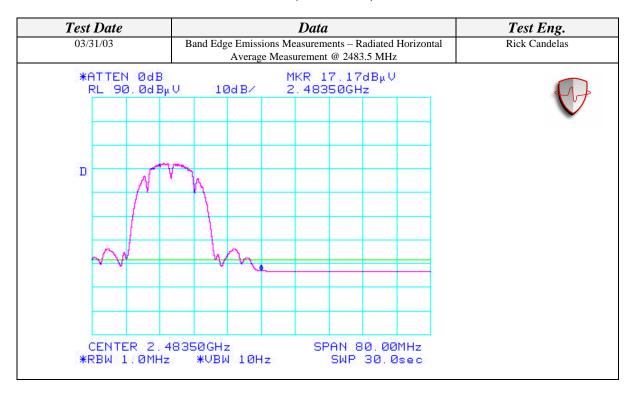

FCC ID: CNTPP2080

SPURIOUS RADIATED EMISSIONS (Continued)


Test Date	Data	Test Eng.
03/31/03	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdBµ	MKR 20.17dBμV V 10dB∕ 2.48390GHz	
		•
D M		
4/*\/	Market Ma	
CENTER 2.4		
*RBW 100kHz	*VBW 300kHz SWP 50.0ms	


SPURIOUS RADIATED EMISSIONS (Continued)


Test Date	Data	Test Eng.
03/31/03	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 9Ø. ØdBµ	MKR 19.83dBμV V 10dB/ 2.38880GHz	
CENTER 2.3 *RBW 100kHz		


SPURIOUS RADIATED EMISSIONS (Continued)

Test Date	Data	Test Eng.
03/31/03	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 9Ø. ØdΒμ	> -20 dBc @ 2483.5 MHz MKR 2Ø.33dBμV	Rick Califferias
CENTER 2.4 *RBW 100kHz		

SPURIOUS RADIATED EMISSIONS (Continued)

FCC ID: CNTPP2080

Harmonic Measurements at Channels 1, 6, & 11@ 1Mbps Data Rate Aegis Labs, Inc. File #: INTEL-030329-03

	Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	$\iota V)$	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
4824.01	44.50	100	135			36.16	4.06	34.10	46.50	74.00	-27.50
4824.01				33.65	A	36.16	4.06	34.10	35.65	54.00	-18.35
7236.17	42.83	100	135			36.54	5.10	36.86	48.25	74.00	-25.75
7236.17				30.41	A	36.54	5.10	36.86	35.83	54.00	-18.17
9648.43	45.50	100	180			36.20	5.99	38.11	52.62	83.21	-30.59
4873.91	41.67	100	90			36.20	4.10	34.27	43.84	74.00	-30.16
4873.91				29.67	A	36.20	4.10	34.27	31.84	54.00	-22.16
7311.22	43.17	100	135			36.59	5.10	36.79	48.47	74.00	-25.53
7311.22				30.53	A	36.59	5.10	36.79	35.83	54.00	-18.17
9748.48	45.67	100	135			36.90	6.05	38.25	53.07	82.32	-29.25
4924.06	43.00	100	135			36.24	4.14	34.44	45.34	74.00	-28.66
4924.06				30.83	A	36.24	4.14	34.44	33.17	54.00	-20.83
7381.83	44.50	150	135			36.63	5.10	36.72	49.69	74.00	-24.31
7381.83				32.37	A	36.63	5.10	36.72	37.56	54.00	-16.44
9847.93	45.83	100	180			36.82	6.11	38.39	53.50	81.43	-27.93

	Vertical Open Field Maximized Data										
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk AVG (dBı		Preamp Factor (dB)	Cable Factor (dB)	Ant. Factor (dB)	Corrected Reading (dBuV)	Limits (dBuV)	Diff (dB) +=FAIL
4824.34	43.67	100	135			36.24	4.14	34.07	45.64	74.00	-28.36
4824.34				33.78	A	36.24	4.14	34.07	35.75	54.00	-18.25
7236.28	43.17	100	135			36.54	5.00	36.76	48.49	74.00	-25.51
7236.28				29.93	A	36.54	5.00	36.76	35.25	54.00	-18.75
9647.50	45.50	100	180			36.98	5.99	38.17	52.67	80.75	-28.08
4873.97	42.50	100	90			36.20	4.10	34.22	44.62	74.00	-29.38
4873.97				30.86	A	36.20	4.10	34.22	32.98	54.00	-21.02
7311.43	43.50	100	180			36.59	5.10	36.71	48.73	74.00	-25.27
7311.43				30.71	A	36.59	5.10	36.71	35.94	54.00	-18.06
9748.06	45.83	100	180			36.90	6.05	38.35	53.32	82.19	-28.87
4924.16	43.00	100	135			36.24	4.14	34.37	45.27	74.00	-28.73
4924.16				33.19	A	36.24	4.14	34.37	35.46	54.00	-18.54
7390.17	43.17	100	135			36.63	5.10	36.67	48.30	74.00	-25.70
7390.17				31.46	A	36.63	5.10	36.67	36.59	54.00	-17.41
9847.63	45.33	100	180			36.82	6.11	38.53	53.14	81.30	-28.16

Spurious Emissions Measurements on Ch. 1 @ 1Mbps Data Rate Aegis Labs, Inc. File #: INTEL-030329-04

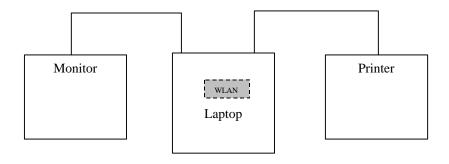
EUT in "Continuous Transmit Mode"

	Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	V)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
1000.00	51.50	100	0			37.29	1.60	24.90	40.71	74.00	-33.29
1000.00				39.43	A	37.29	1.60	24.90	28.64	54.00	-25.36
1030.48	53.50	100	45			37.25	1.61	24.92	43.06	74.00	-30.94
1030.48				39.80	A	37.25	1.61	24.92	29.36	54.00	-24.64
1347.18	56.33	100	45			37.02	2.00	26.01	47.39	74.00	-26.61
1347.18				43.88	A	37.02	2.00	26.01	34.94	54.00	-19.06

	Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	(V)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
1000.00	55.50	100	180			37.29	1.60	25.00	44.81	74.00	-29.19
1000.00				40.44	A	37.29	1.60	25.00	29.75	54.00	-24.25
1030.50	51.67	100	45			37.25	1.61	25.02	41.32	74.00	-32.68
1030.50				39.64	A	37.25	1.61	25.02	29.29	54.00	-24.71
1128.00	53.67	100	0			36.88	1.70	25.36	43.99	74.00	-30.01
1128.00				40.65	A	36.88	1.70	25.36	30.97	54.00	-23.03
1328.67	55.00	100	315			37.01	2.00	26.04	46.06	74.00	-27.94
1328.67				40.25	A	37.01	2.00	26.04	31.31	54.00	-22.69

Spurious Emissions Measurements on Ch. 1 @ 1Mbps Data Rate Aegis Labs, Inc. File #: INTEL-030329-05

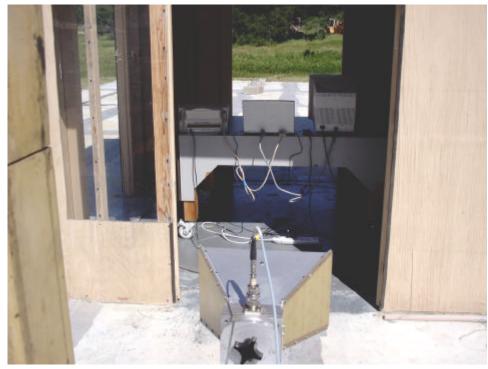
EUT in "Continuous Receive Mode"


	Horizontal Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	V)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
1000.00	52.50	100	0			37.29	1.60	24.90	41.71	74.00	-32.29
1000.00				41.25	A	37.29	1.60	24.90	30.46	54.00	-23.54
1030.75	51.83	100	45			37.25	1.61	24.92	41.39	74.00	-32.61
1030.75				38.41	Α	37.25	1.61	24.92	27.97	54.00	-26.03
1347.30	56.83	100	45			37.02	2.00	26.01	47.89	74.00	-26.11
1347.30				44.00	A	37.02	2.00	26.01	35.06	54.00	-18.94

	Vertical Open Field Maximized Data										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)
(MHz)	Reading	Height	(degrees)	AVG (dBu	(V)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)		
1000.00	54.17	100	0			37.29	1.60	25.00	43.48	74.00	-30.52
1000.00				40.12	A	37.29	1.60	25.00	29.43	54.00	-24.57
1031.58	54.50	100	180			37.25	1.61	25.02	44.16	74.00	-29.84
1031.58				42.50	A	37.25	1.61	25.02	32.16	54.00	-21.84
1128.58	55.83	100	180			36.88	1.70	25.36	46.16	74.00	-27.84
1128.58				42.41	A	36.88	1.70	25.36	32.74	54.00	-21.26
1328.33	57.17	100	0			37.01	2.00	26.04	48.23	74.00	-25.77
1328.33				41.20	A	37.01	2.00	26.04	32.26	54.00	-21.74

	TEST EQUIPMENT USED									
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration					
		Number	Number	Due Date	Cycle					
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years					
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year					
Antenna - Horn	EMCO	3115	2230	02/06/04	1 Year					
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/08/04	1 Year					

ACCESSORIES EQUIPMENT								
Equipment Name	Manufacturer	Model Number	Serial Number					
Laptop	Hewlett Packard Company	BCL31001008	CAT000109160					
AC Adapter	Compaq Computer Corp.	239427-001	3108136504					
Monitor	NEC	JC-1575VMA	2Y785821					
Printer	Canon	BJC-4200	MT1-18					


BLOCK DIAGRAM

RADIO SPURIOUS RADIATED EMISSIONS (Continued)

PHOTOGRAPHS

Page 26 of 47 Report Number: INTEL-030329F FCC ID: CNTPP2080

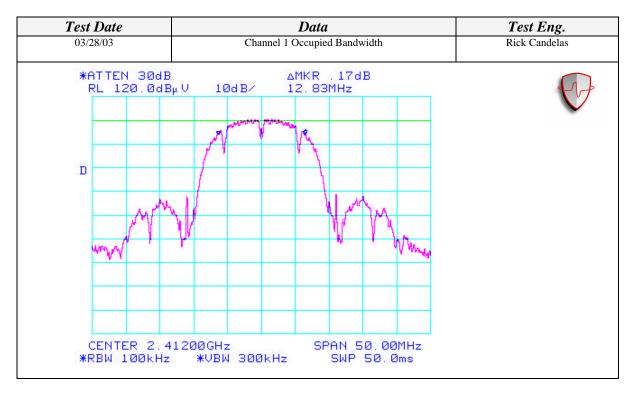
MAXIMUM PEAK OUTPUT POWER MEASUREMENT

CLIENT:	Hewlett Packard Company	DATE:	03/28/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329-01
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGUARTION:	Installed in Hewlett Packard Company	TEMPERATURE:	25 C
	laptop computer series PP2080.	HUMIDITY:	35% RH
		TIME:	2:00 PM

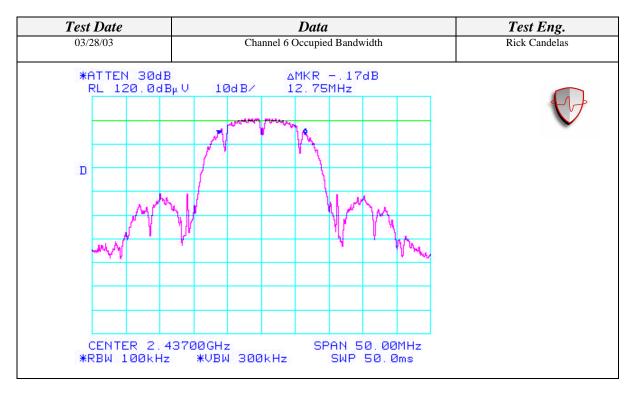
Standard:	FCC CFR 47, Part 15, 15.247(b)
Description:	Peak Output Power – Conducted
Results:	Maximum Peak Output Power is less than 1 W.
	47.86 mW @ Channel 6 at a data rate of 1 Mbps

Frequency (MHz)	Rate (Mbps)	Power (dBm)	Cable Factor	Power Corrected	Power (mW)
			(dB)	(dBm)	
2412.00	1	16.48	0.15	16.63	46.03
2412.00	5.5	16.19	0.15	16.34	43.05
2412.00	11	16.12	0.15	16.27	42.36
2437.00	1	16.65	0.15	16.80	47.86
2437.00	5.5	16.35	0.15	16.50	44.67
2437.00	11	16.30	0.15	16.45	44.16
2462.00	1	16.38	0.15	16.53	44.98
2462.00	5.5	16.08	0.15	16.23	41.98
2462.00	11	16.03	0.15	16.18	41.50

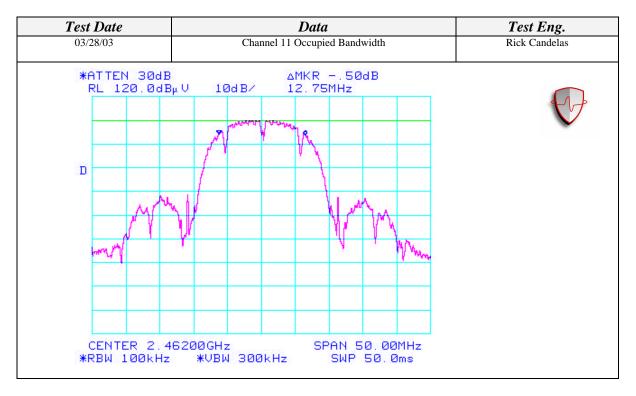
NOTE: Using CRTU Ver. 1.1.0.3000 software provided by Intel Corporation to set power limits.


OCCUPIED BANDWIDTH MEASUREMENT

CLIENT:	Hewlett Packard Company	DATE:	03/28/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329-08
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGURATION:	Installed in Hewlett Packard Company	TEMPERATURE:	25 C
	laptop computer series PP2080.	HUMIDITY:	35% RH
		TIME:	2:30 PM

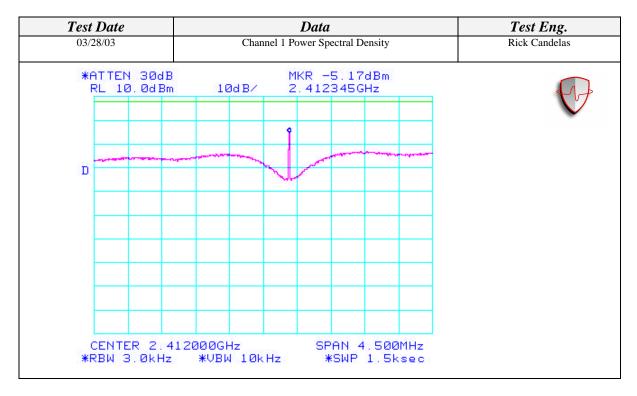

Standard:	FCC CFR 47, Part 15, 15.247(a)(2)
Description:	Occupied Bandwidth Measurement
Results:	6dB bandwidth is at least 500 kHz.

TEST RESULTS SUMMARY				
Data Result				
Channel 1 Occupied Bandwidth	12.83 MHz 6 dB Bandwidth			
Channel 6 Occupied Bandwidth	12.75 MHz 6 dB Bandwidth			
Channel 11 Occupied Bandwidth	12.75 MHz 6dB Bandwidth			

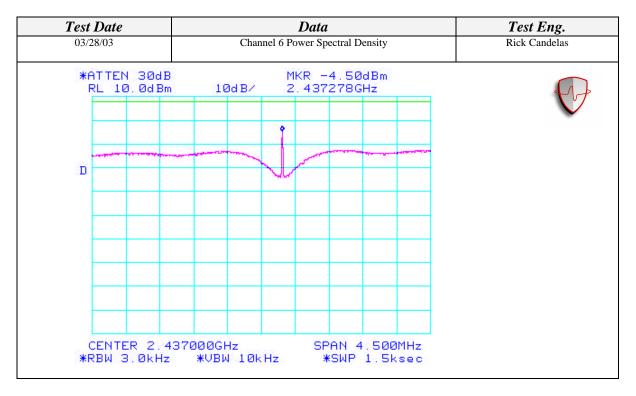

OCCUPIED BANDWIDTH MEASUREMENT (Continued)

OCCUPIED BANDWIDTH MEASUREMENT (Continued)

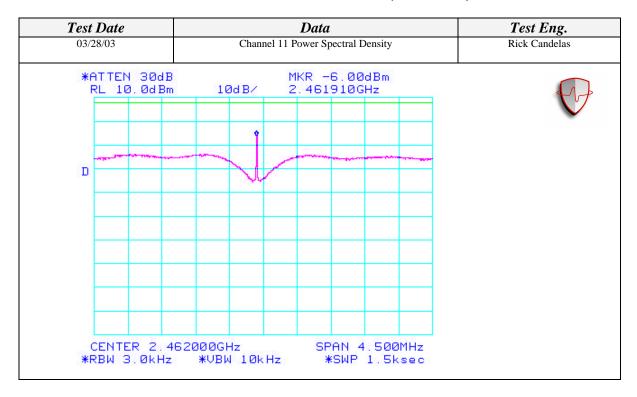
OCCUPIED BANDWIDTH MEASUREMENT (Continued)


SPECTRAL POWER DENSITY MEASUREMENT

CLIENT:	Hewlett Packard Company	DATE:	03/28/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329-08
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGURATION:	Installed in Hewlett Packard Company	TEMPERATURE:	25 C
	laptop computer series PP2080.	HUMIDITY:	35% RH
		TIME:	3:00 PM

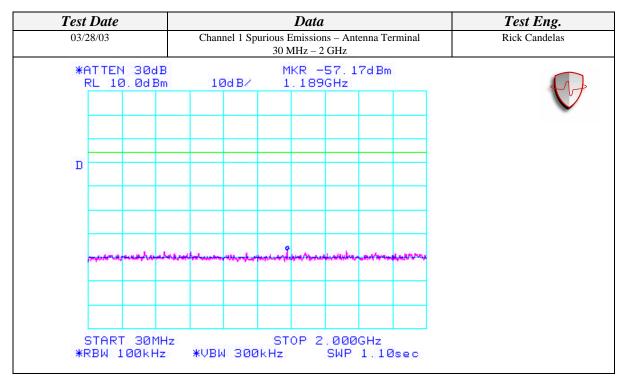

Standard:	FCC CFR 47, Part 15, 15.247(D)
Description:	Power Spectral Density Measurement
Results:	Transmitted power density averaged over any 1 second interval is not greater than 8 dBm in any 3 kHz bandwidth within these bands

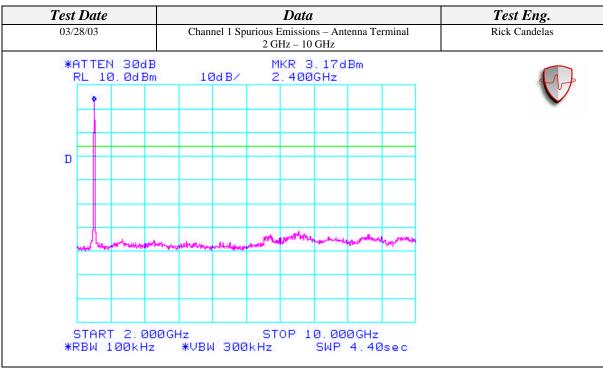
TEST RESULTS SUMMARY				
Data Result				
Channel 1 Power Spectral Density	-5.17 dBm – Pass			
Channel 6 Power Spectral Density	-4.50 dBm – Pass			
Channel 11 Power Spectral Density	-6.00 dBm - Pass			

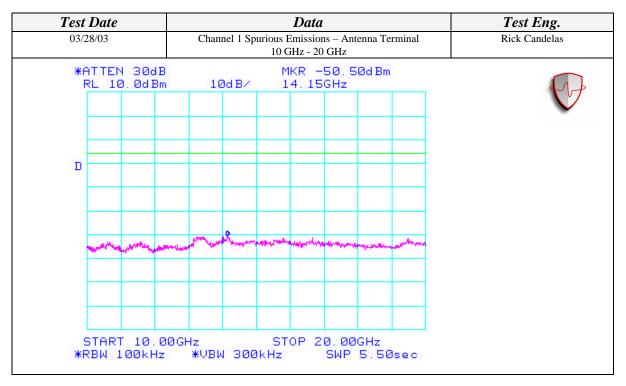

SPECTRAL POWER DENSITY MEASUREMENT (Continued)

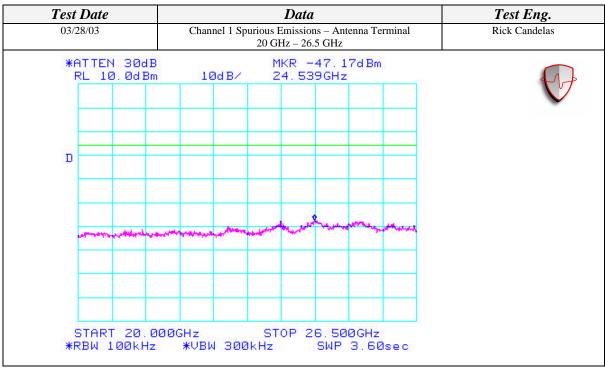
SPECTRAL POWER DENSITY MEASUREMENT (Continued)

SPECTRAL POWER DENSITY MEASUREMENT (Continued)

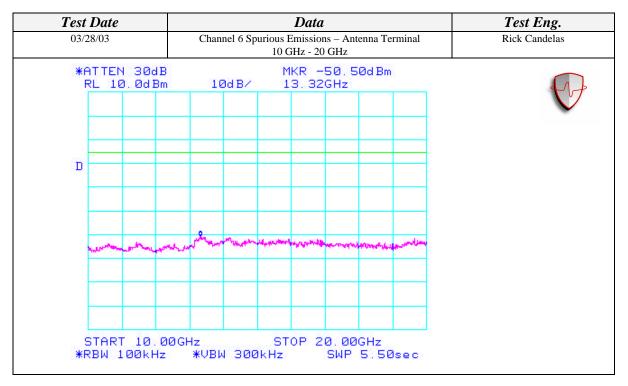


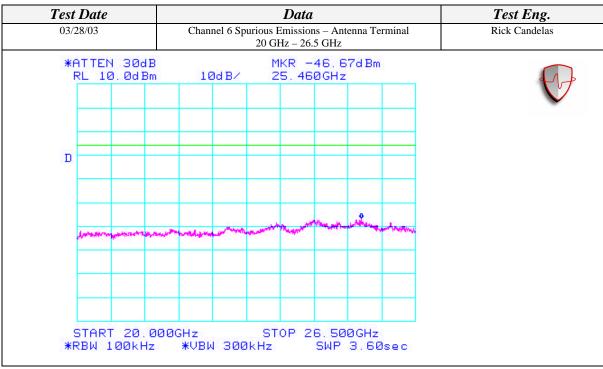

SPURIOUS EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL

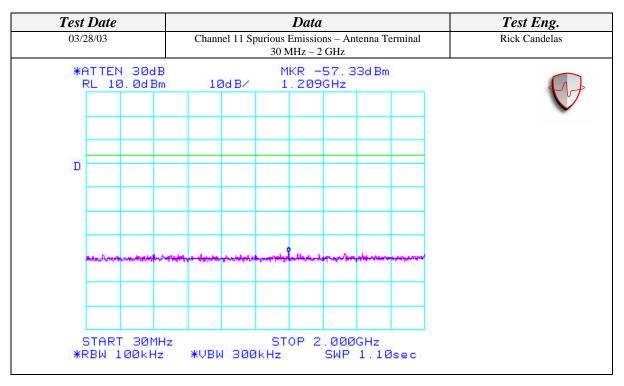

CLIENT:	Hewlett Packard Company	DATE:	03/28/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329-08
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGURATION:	Installed in Hewlett Packard Company	TEMPERATURE:	25 C
	laptop computer series PP2080.	HUMIDITY:	35% RH
		TIME:	3:30 PM

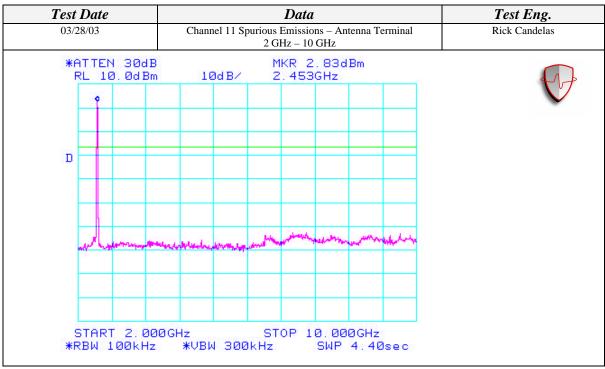

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Conducted Spurious Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional
	radiator is operating, the radio frequency power that is produced by the intentional radiator
	shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the
	highest level of the desired power, based on either an RF conducted or a radiated measurement.

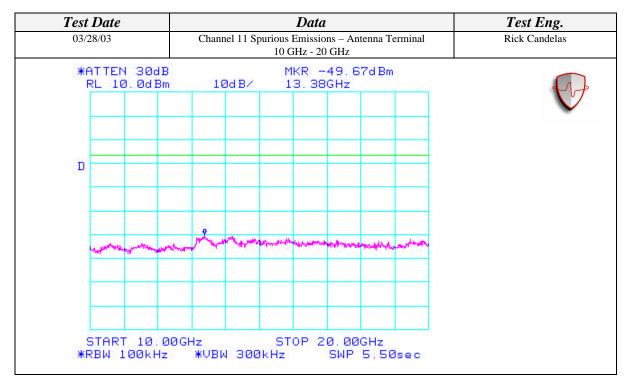
TEST RESULTS SUMMARY				
Data	Result			
Channel 1 Spurious Emissions –	Max Spur Signal @ -57.17 dBm – Pass			
Antenna Terminal - 30MHz – 2GHz				
Channel 1 Spurious Emissions –	Max Spur Signal @ -48.00 dBm – Pass			
Antenna Terminal - 2GHz – 10GHz				
Channel 1 Spurious Emissions –	Max Spur Signal @ -50.50 dBm – Pass			
Antenna Terminal - 10GHz – 20GHz				
Channel 1 Spurious Emissions –	Max Spur Signal @ -47.17 dBm – Pass			
Antenna Terminal - 20GHz – 26.5GHz				
Channel 6 Spurious Emissions –	Max Spur Signal @ -57.83 dBm – Pass			
Antenna Terminal - 30MHz – 2GHz				
Channel 6 Spurious Emissions –	Max Spur Signal @ -49.00 dBm – Pass			
Antenna Terminal - 2GHz – 10GHz				
Channel 6 Spurious Emissions –	Max Spur Signal @ -50.50 dBm – Pass			
Antenna Terminal - 10GHz – 20GHz				
Channel 6 Spurious Emissions –	Max Spur Signal @ -46.67 dBm – Pass			
Antenna Terminal - 20GHz – 26.5GHz				
Channel 11 Spurious Emissions –	Max Spur Signal @ -57.33 dBm – Pass			
Antenna Terminal - 30MHz – 2GHz				
Channel 11 Spurious Emissions –	Max Spur Signal @ -47.00 dBm – Pass			
Antenna Terminal - 2GHz – 10GHz				
Channel 11 Spurious Emissions –	Max Spur Signal @ -49.67 dBm – Pass			
Antenna Terminal - 10GHz – 20GHz				
Channel 11 Spurious Emissions –	Max Spur Signal @ -47.33 dBm – Pass			
Antenna Terminal - 20GHz – 26.5GHz				

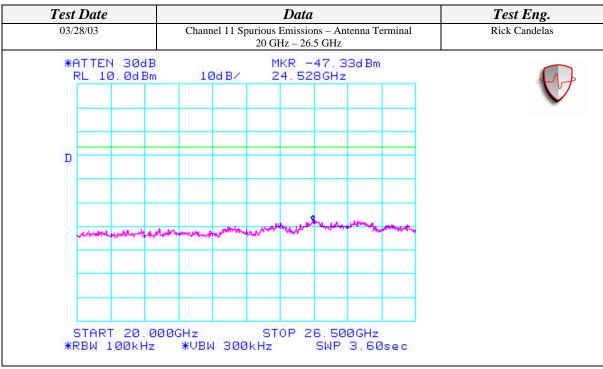


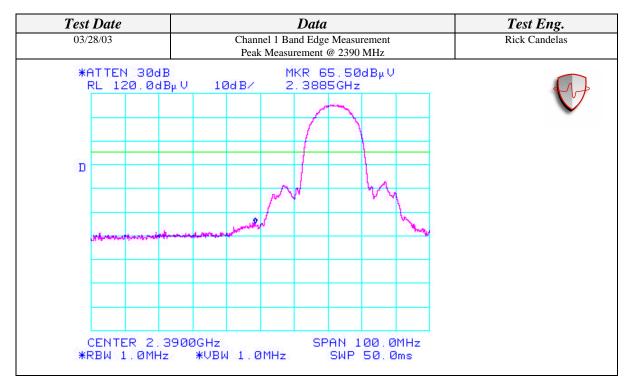


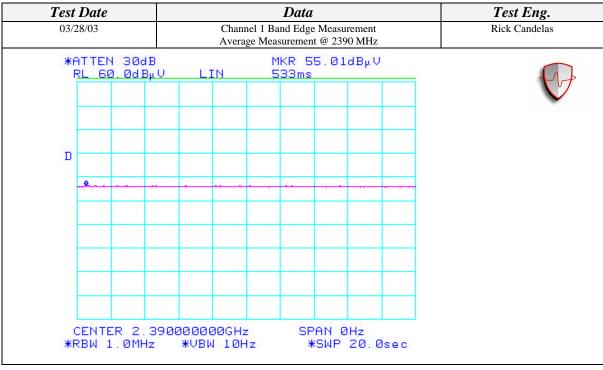



Test Date	Data	Test Eng.
03/28/03	Channel 6 Spurious Emissions – Antenna Terminal 30 MHz – 2 GHz	Rick Candelas
*ATTEN 30dB RL 10.0dBm	MKR -57.83dBm 10dB∕ 1.274GHz	
D		
physical physical deposits and the second	nogramme acouptive the second of the second	

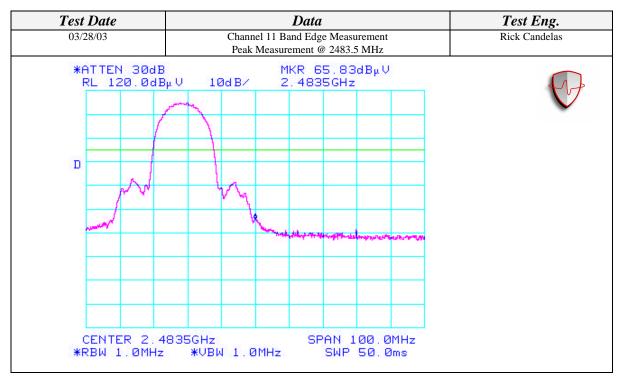


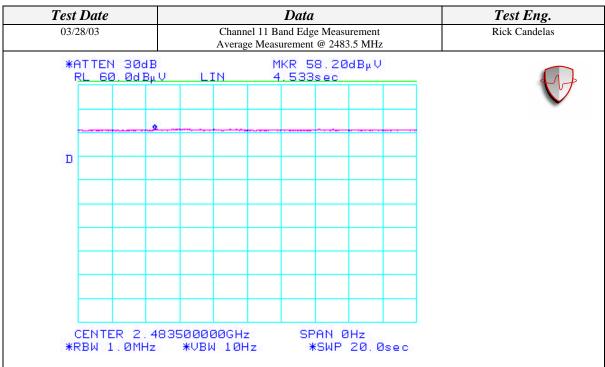



BAND EDGE EMISSIONS MEASUREMENT AT THE ANTENNA TERMINAL

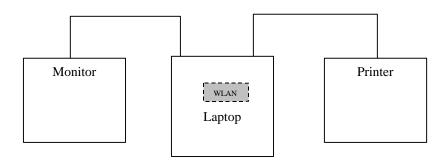

CLIENT:	Hewlett Packard Company	DATE:	03/28/03
EUT:	Intel PRO/Wireless 2100 LAN 3B	PROJECT	INTEL-030329-08
	MiniPCI Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	47B12B013ADA97767012	SITE #:	2
CONFIGURATION:	Installed in Hewlett Packard Company	TEMPERATURE:	25 C
	laptop computer series PP2080.	HUMIDITY:	35% RH
		TIME:	4:30 PM

Standard:	FCC CFR 47, Part 15, 15.247(c)
Description:	Conducted Band Edge Emissions
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional
	radiator is operating, the radio frequency power that is produced by the intentional radiator
	shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the
	highest level of the desired power, based on either an RF conducted or a radiated measurement.


TEST RESULTS SUMMARY					
Data	Result				
Channel 1 Band Edge Measurement	>20 dBc – Pass				
Peak Measurement @ 2390 MHz					
Channel 1 Band Edge Measurement	55.01 dBuV - Pass				
Average Measurement @ 2390 MHz					
Channel 11 Band Edge Measurement	>20 dBc – Pass				
Peak Measurement @ 2483.5 MHz					
Channel 11 Band Edge Measurement	58.20 dBuV - Pass				
Average Measurement @ 2483.5 MHz					


CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)

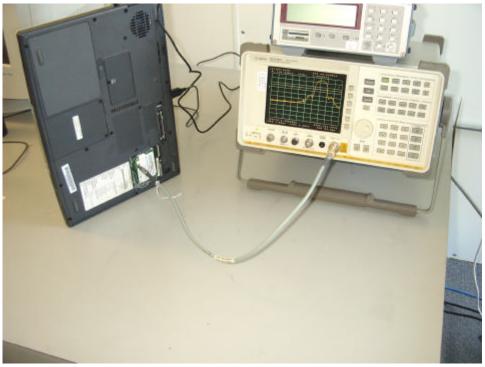
CONDUCTED BAND EDGE EMISSIONS MEASUREMENT (Continued)



ALL CONDUCTED MEASUREMENTS SETUP

TEST EQUIPMENT USED							
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration		
		Number	Number	Due Date	Cycle		
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years		
DC Block	Inmet	8039	N/A	N/A	N/A		
Power Meter	Rohde & Schwarz	NRVS	DE30863	11/24/03	1 Year		
Power Sensor	Leistungsmesskoph	NRV-Z5	844855/012	11/24/03	1 Year		
Temperature /	Dickson	TH550	7255185	01/08/04	1 Year		
Humidity Monitor							


ACCESSORIES EQUIPMENT							
Equipment Name	Manufacturer	Model Number	Serial Number				
Laptop	Hewlett Packard Company	BCL31001008	CAT000109160				
AC Adapter	Compaq Computer Corp.	239427-001	3108136504				
Monitor	NEC	JC-1575VMA	2Y785821				
Printer	Canon	BJC-4200	MT1-18				


BLOCK DIAGRAM

ALL CONDUCTED MEASUREMENTS SETUP (Continued)

PHOTOGRAPHS

Page 47 of 47 Report Number: INTEL-030329F FCC ID: CNTPP2080